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Abstract
We show that by introducing an appropriate
schema concept and exploiting the higher-level
features of a resonance function in a neural
network it is possible to define a form of non-
monotonic inference relation between the input
and the output of the network. This inference
relation satisfies some of the most fundamental
postulates for nonmonotonic logics. The con-
struction presented in the paper is an example of
how symbolic features can emerge from the
subsymbolic level of a neural network.

1 INTRODUCTION
Within cognitive science there is a controversy concerning
the basic units of cognitive processing. On the one hand
there are the so called classical theories (e.g., Fodor and
Pylyshyn 1988) where it is argued that the basic units are
symbols handled by rule-based processes. On the other
hand, the connectionist school argues that we should
approach cognition at another level and study how
neuronlike elements interact to produce collectively
emerging effects (e.g., Rumelhart et al. 1986).

We believe that it is possible to unify the symbol
processing capabilities of the classical theories to the
constraint satisfying capabilities of connectionist
theories. We want to show that by developing a high-level
description of the properties of neural networks it is
possible to bridge the gap between the symbolic and the
subsymbolic levels (see Smolensky 1988). The key
concept for this construction will be that of schemata. To
some extent inspired by earlier schema theories, we will
introduce a general schema concept which is appropriate
for studying neural networks on levels above the neurons

(see Balkenius 1990). Certain operations on schemata will
also be presented.

As an application of the schema concept for neural
networks, the aim of this paper is to show that certain
activities of such networks can be interpreted as
nonmonotonic inferences. We shall study these inferences
in terms of the general postulates for nonmonotonic
logics that have recently been introduced in the literature.
It seems that a large class of neural networks will
generate so-called cumulative nonmonotonic inferences
(Makinson 1989).

2 A CONCISE DESCRIPTION OF
 NEURAL NETWORKS
This section outlines a general description of a class of
neural networks. The outline will be used as the starting
point for the development of a high-level description
based on schemata.

We can define a neural network N as a 4-tuple <S,F,C,G>.
Here S is the space of all possible states of the neural
network. The dimensionality of S corresponds to the
number of parameters used to describe a state of the
system. Usually S=[a,b]n, where [a,b] is the working range
of each neuron and n is the number of neurons in the
system. We will assume that each neuron can take
excitatory levels between 0 and 1. This means that a state
in S can be described as a vector x = <x1,...,xn> where
0 ! xi ! 1, for all 1 ! i ! n. The network N is said to be
binary if xi = 0 or xi = 1 for all i, that is if each neuron can
only be in two excitatory levels.

C is the set of possible configurations of the network. A
configuration c "  C describes for each pair i and j of
neurons the connection cij between i and j. The value of cij
can be positive or negative. When it is positive the
connection is excitatory and when it is negative it is
inhibitory. A configuration c is said to be symmetric if cij
= cji for all i and j.
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F is a set of state transition functions or activation
functions. For a given configuration c " C, a function
fc " F describes how the neuron activities spread through
that network.

G is a set of learning functions that describe how the
configurations develop as a result of various inputs to the
network. In the sequel, the learning functions will play
no significant role.

The two spaces S and C interact by means of the difference
equations

x(t+1) = fc(t)(x(t)) 

c(t+1) = gx(t)(c(t)) 

where s " S, f " F, c " C and g " G.

This gives us two interacting subsystems in a neural
network. First, we have the system <S,F> that governs the
fast changes in the network, i.e., the transient neural
activity. Then, we have the system <C,G> that controls
the slower changes that correspond to all learning in the
system. By changing the behaviour of the functions in the
two sets F and G, it is possible to describe a large set of
different neural mechanisms. Generally the state
transition functions in F have much faster dynamics than
the learning functions in G. We will assume that the state
in C is fixed while studying the state transitions in S.

E x a m p l e : In an Interactive Activation network
(Rumelhart and McClelland 1986) with four nodes, S is
the space [min,max]4, C is the space of all 4×4 matrices,
and F = {fc(x)=(1-#)x+I(c,x) | c"C, x"S}. Ii(c,x) =
c ix i(max-x i) if cix i>0 and Ii(c,x) = cix i(xi- m i n )
otherwise. Here the constant 1-# dampens the activation
levels of the neurons and Ii describes the change of the
activation level of xi  due to the influence from the other
neurons.

The general description of a neural network given here
comprises a large class of the systems presented in the
literature, for example Hopfield (1984) nets, Boltzmann
machines (Ackley et al. 1985), Cohen-Grossberg (1983)
models, Interactive Activation models (Rumelhart et al.
1986), the McCulloch-Pitts (1943) model, the BSB
model (Anderson et al. 1977), the Harmony networks
(Smolen-sky 1986), and the BAM model (Kosko 1987).

3 SCHEMATA
The basic building block for many theories of cognition is
the schema. Even though the concept seems to have as
many definitions as authors, some common core exists in
all of them. We will use the term schema as a collective
name of the structures as used by Piaget (1952, 1973),
Arbib and Hanson (1987), and Rumelhart et al. (1986).
We also want to include concepts usually denoted by
other names such as 'frames' (Minsky, 1981 1987),
'scripts' (Schank & Abelson, 1977), etc. Among the
various proposals we find some common characteristics
of schemata:

• Schemata can be used for representing objects,
situations, and actions.

• Schemata have variables. There is thus some way of
changing the schema to adapt it to different situations. As
a consequence, schemata can be embedded. One schema can
have another schema as a part or as an instantiation of a
variable.

• Schemata support default assumptions about the
environment. They are capable of filling in missing
information.

Rumelhart et al. (1986) argue that schemata are sets of
'microfeatures' and show how they emerge from the
collective behavior of small neuronlike elements. Each
microfeature is represented by a neuronlike unit that
interacts with the others by activating or deactivating
them. This interpretation of schema lends itself to
implementation in constraint satisfying networks
(Ackley et al. 1985, Hinton and Sejnowski, 1988,
Smolensky 1988, Hopfield 1982, 1984).

Arbib, Conklin and Hill (1987) take a higher level view
and make a few additional assumptions about schemata.
The framework for their notion is described as being "in
the style of the brain." Their idea of schemata is similar to
that of Rumelhart's in some respects, but ideas from
traditional semantic nets are also used. The environment
is represented as an assemblage of schemata, each of which
corresponds to an object in the environment.

Minsky's notion of frames is yet another instance of a
schema theory at a higher level (Minsky, 1987) with
inspiration from both neural theory and semantic nets. If
we look at other higher level accounts for schemata, such
as Schank's 'scripts', we see more rigid structures. A
schema is typically considered to be a set of variables and
procedures. When we give the variables values we get an
instantiation of a schema. This is also the definition of
schemata usually used in the field of AI (Charniak &
McDermott, 1985).

We want to argue that there is a very simple way of
defining the notion of a schema within the theory of
neural networks that has the desired properties. The
definition we propose is that a schema $ corresponds to a
vector <$1,...,$n> in the state space S. That a schema $ is
currently represented  in a neural network with an
activity vector x = <x1,...,xn> means that xi % $i, for all 1
! i ! n. An equivalent definition is to say that a schema is
the cone $ = {z S: zi % $i, for all 1 ! i ! n} generated by
the vector <$1,...,$n> and where $ is represented in a
neural network with activity vector x iff x $. There is a
natural way of defining a partial order of 'greater
informational content' among schemata by putting $ % &
iff $i % &i for all 1 ! i ! n. There is a minimal scheme in
this ordering, namely 0 = <0,...,0> and a maximal element
1 = <1,...,1>.

In the light of this definition, let us consider the general
desiderata for schemata presented above. Firstly, it is
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clear that depending on what the activity patterns in a
neural network correspond to, schemata as defined here
can be used for representing objects, situations, and
actions.

Secondly, if $ % &, then & can be considered to be a more
general schema than $, and $ can thus be seen as an
instantiation of the schema &. 'he part of $ not in & is a
variable instantiation of the schema &. This implies that
all schemata with more information than &  can be
considered to be an instantiation of &  with different
variable instantiations. Thus, schemata can have variables
even though they do not have any explicit representation
of variables. Only the value of the variable is represented
and not the variable as such. The index of the
instantiation is identified with the added activity vector
$-&.

This representation of variables instantiation avoids the
combinatorial explosion of the tensor product represen-
tation of variable binding suggested by Smolensky (1991)
but is weaker in power since it limits the possible
embeddings of schemata. For example a schema cannot be
recursively embedded into itself. However, the schema
concept presented here can very well be used to represent
the 'filler' and 'role' structures of Smolensky's construc-
tions, as long as the sets of fillers and roles are disjoint.

Thirdly, the next sections will be devoted to showing
that schemata support default assumptions about the
environ-ment. The neural network is thus capable of
filling in missing information.

There are some elementary operations on schemata that
will be of interest when we consider nonmonotonic
inferences in a neural network. The first operator is the
conjunction $•& of two schemata $ = <$1,...,$n> and
& = <&1,...,&n> which is defined as <(1,...,(n>, where
(i = max($i,&i) for all i. In terms of cones, $•& is just the
intersection of the cones representing $ and &.

If we consider schemata as corresponding to observations
in an environment, we can interpret $ •&  as the
coincidence of two schemata, i. e., the simultaneous
observation of two schemata.

Secondly, the complement $* of a schema $ = <$1,...$n>
is defined as <1-$1,...,1-$n>(recall that 1 is assumed to be
the maximum activation level of the neurons, and 0 the
minimum). In general, the comple-mentation operation
does not behave like negation since, for example, if $ =
<0.5,...,0.5>, then $* = $. However, if the neural network
is assumed to be binary, that is, if neurons only take
activity values 1 or 0, then * will indeed behave as a
classical negation on the class of binary-valued schemas.

Furthermore, the interpretation of the complement is
different from the classical negation since the activities
of the neurons only represent positive information about
certain features of the environment. The complement $*
reflects a lack of positive information about $. It can be
interpreted as a schema corresponding to the observation

of everything but $. As a consequence of this distinction
it is pointless to define implication from conjunction and
complement. The intuitive reason is that it is impossible
to observe an implication directly. A consequnce is that
the ordering % only reflects greater p o s i t i v e
informational content.

However, something similar to classical negation can be
constructed in a number of ways. We can let the schema
<0.5,...,0.5> represent a total lack of information. Greater
activity will correspond to positive information and
lesser activity to negative information. The ordering %
can be changed to reflect this interpretation if we let $ %
& iff |$i-0.5| % |&i-0.5| and $i and &i both lie on the same
side of 0.5, for all i. In this ordering, <0.5,...,0.5> is the
minimal schema and 1 and 0 are both maximal.

Yet another way to construct a negation, which forces us
to change the network, is to double the number of nodes in
the network and let the new nodes represent the negation
of  the schema represented in the original nodes. This is
achieved by letting the schemata obey the condition
xi =1-xn+i (where n is the number of neurons in the
original network). It is also possible to impose weaker
conditions on the activity of the new nodes to reflect
alternative negations.

These alternative ways of defining negation merit further
studies. However, in this paper we will, for simplicity,
confine ourselves to the first definition given above.

Finally, the disjunction $)& of two schemata $ =
<$1,...,$n> and & = <&1,...,&n> is defined as <(1,...,(n>,
where (i = min($i,&i) for all i. The term 'disjunction' is
appropriate for this operation only if we consider
schemata to represent propositional information.
Another interpretation that is more congenial to the
standard way of looking at neural networks is to see $
and & as two instances of a variable. $)& can then be
interpreted as the generalization from these two instances
to an underlying variable.

It is trivial to verify that the De Morgan laws $)& =
($*•&*)* and $•& = ($*)&*)* hold for these operations.
The set of all schemata forms a distributive lattice with
zero and unit, as is easily shown. It is a boolean algebra if
the underlying neural network is binary. In this way, we
have alrady identified something that looks like a pro-
positional structure on the set of vectors representing
schemata.

4 RESONANT SCHEMATA
A desirable property of a network that can be seen as
performing inferences of some kind is that it, when given
a certain input, stabilizes in a state containing the results
of the inference. In the theory of neural network such
states are called resonant states.

In order to give a precise definition of this notion,
consider a neural network N = <S,F,C,G>. Let us assume
that the configuration c is fixed (or changes very slowly)
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so that we only have to consider one state transitiion
function fc. For a fixed c in C, let fc0(x) = fc(x) and
fcn+1(x) =fc° fcn(x). Then a state y in S is called
resonant if it has the following properties:

(i) fc(y) = y (equilibrium)

(ii) If for any x S and each * > 0 there exists a + > 0 
such that |x-y| < +, then |fcn(x)-y| < * when n % 0 

(stability)

(iii) There exists a + such that if |x-y| < +, then  
limn,- fcn(x) = y   (asymptotic stability).

Here |.| denotes the standard euclidean metric on the state
space S. A neural system N is called resonant if for each
fixed c in C and each x in S there exists a n > 0, that
depends only on c and x, such that fcn(x) is a resonant
state.

If limn,- fcn(x) exists, it is denoted by [x]c, and [.]c is
called the resonance function for c. It follows from the
definitions above that all resonant systems have a
resonance function. For a resonant system, we can then
define resonance equivalence as x~y iff [x]=[y]. It
follows that ~ is an equivalence relation on S that
partitions S into a set of equivalence classes.

A system considered by Cohen and Grossberg (1983) can
be written as

(1) xi(t+1) - xi(t) = ai(xi)[bi(xi) - .j cijdj(xj)]

for a fixed c C, if cij = cji % 0, ai(xi) % 0 and di'(xi) % 0.
Here ai which is supposed to be continuous and positive is
called the amplification function and bi the self-signal
function. The function di which is assumed to be positive
and increasing is called the other-signal function and
describes how the output from a neuron depends on its
activity. It may seem that equation (1) only describes
systems where the neurons inhibit each other, but it has
been shown that a number of neural models without the
restriction cij%0 can be rewritten in the form of (1) by the
use of a simple change of coordinates (Grossberg 1989).

Theorem (Cohen and Grossberg 1983): Every trajectory
of (1) approaches an equilibrium point.

A consequence of this theorem is that systems that can be
described by an equation of the form (1) are resonant
systems. Grossberg (1989) shows that the Cohen-
Grossberg (1983) model, Hopfield (1984) nets,
Boltzmann machines (Ackley et al. 1985), the
McCulloch-Pitts (1943) model, the BSB model
(Anderson et al. 1977), and the BAM model (Kosko
1987) are resonant systems. Furthermore, it is trival to
show that the Harmony networks (Smolensky 1986) also
can be described by an equation in the form of (1) and thus
are resonant systems too. A common feature of these
types of neural networks is that they are based on
symmetrical  configuration functions C, that is, the
connections between two neurons are equal in both
directions.

The function [.]c can be interpreted as filling in default
assumptions about the environment, so that the schema
represented by [$]c contains information about what the
network expects to hold when given $ as input. Even if $
only gives a partial description of, for example, an object,
the neural network is capable of supplying the missing
information in attaining the resonant state [$]c.

5 NONMONOTONIC INFERENCES
IN A NEURAL NETWORK

We now turn to the problem of providing an
interpretation of the activities of a neural network that
will show it can perform nomonotonic inferences.

5.1 DEFINITION OF A NONMONOTONIC
OPERATION

A first idea for describing the nonmonotonic inferences
performed by a neural network N is to say that [$]c
contains the nonmonotonic conclusions to be drawn from
$. However, in general we cannot expect the schema $ to
be included in [$]c, that is, [$]c % $ does not always hold.
Sometimes a neural network rejects parts of the input
information – in pictorial terms it does not always
believe what it sees.

So if we want $ to be included in the resulting resonant
state, we have to modify the definition. The most natural
solution is to 'clamp' $ in the network, that is, to add the
constraint that the activity levels of all neurons is above
$i, for all i. Formally, we obtain this by first defining a
function f$ via the equation f$(x) = f(x)•$ for all x S.
We can then, for any resonant system, introduce the
function [.]c$ for a configuration c C  as follows:

[x]c$ = limn,-f$n(x)

This function will result in resonant states for the same
neural networks as for the function [.]c above. The reason
is that the difference equation for f$ can be written in the
form (1) by replacing all occurences of x by x•$ and then
absorbing the conjunction into the functions a, b and d.
Since the conditions of the theorem are also fullfilled for
the new a, b and d, the Cohen-Grossberg theorem is thus
applicable.

Since we are working with a fixed configuration c for a
given network, we shall suppress the subscript c in the
sequel.

The key idea of this paper is then to define a nonmono-
tonic inference relation between schemata in the
following way:

$ & iff [$]$ % &

This definition fits very well with the interpretation that
nonmonotonic inferences are based on expectations as
developed in Gärdenfors (1991). Note that $ and & in the
definition are officially not propositions but schemata
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that are defined in terms of neural activity vectors in a
neural network. However, in the definition of  they are
treated as propositions. Thus, in the terminology of
Smolensky (1988), we make the transition from the
subsymbolic level to the symbolic simply by giving a
different interpretation of the structure of a neural
network. We do this without assuming two different
systems as Smolensky does, but the symbolic level
emerges from the subsymbolic in one and the same system
(cf. Woodfield and Morton 1988). Just like a person may
bid at an auction by raising his hand, a neural network may
carry out symbolic inferences by performing subsymbolic
operations. This kind of double interpretation of an
information processing system is also discussed in
Gärdenfors (1984).

The symbolic interpretation of neural networks that is
based on the schema concept presented here can be applied
to all neural networks. This is in contrast to some
symbol-handling neural networks, like e.g., the µKLONE
system of Derthick (1991), where the propositional
structure is a starting point for the construction of the
network.

Before turning to an investigation of the general
properties of generated by the definition, we want to
illustrate it by showing how it operates for a simple
neural network.

Example: The network consists of four neurons with
activities x1,...,x4. Neurons that interact are connected by
lines. Arrows at the ends of the lines indicate that the
neurons excite each other; dots indicate that they inhibit
each other. If we consider only schemata corresponding to
binary activity vectors, it is possible to identify schemata
with sets of active neurons. Let three schemata $ ,&,(
correspond to the following activity vectors $=<1 1 0 0>,
&=<0 0 0 1>, (=<0 1 1 0>. Assume that x4 inhibits x3
more than x2 excites x3. Given $ as input the network
will activate (, thus $  (. Extending the input to $•&
causes the network to withdraw ( since the activity x4
inhibits x3. In formal terms $•&  (.

$

&

(

x4

x3x2

x1

5.2 GENERAL PROPERTIES OF
 NONMONOTONIC OPERATIONS
One way of characterizing the nonmonotonic inferences
generated by a neural network is to study them in terms
of the general postulates for nonmonotonic logics that
have recently been introduced in the literature (Gabbay

1985, Makinson 1989, 1991, Kraus, Lehmann, and Magidor
1990, Makinson and Gärdenfors 1990, Gärdenfors 1991).
We shall present some of these postulates and determine
whether they are satisfied for a function [.]$ determined
by a transition function in a neural network.

It follows immediately from the definition of [.]$ that 
satisfies the property of Reflexivity:

$ $

If we say that a schema & follows logically from $, in
symbols $ &, just when $ % &, then it is also trival to
verify that satisfies Supraclassicality:

If $ &, then $  &

In words, this property means that immediate
consequences of a schema are also nonmonotonic
consequences of the schema.

If we turn to the operations on schemata, the following
postulate for conjunction is also trivial:

If $  &  and $ (, then $ & • (
(And)

More interesting are the following two properties:

If  $  & and $ • & (, then $ (
(Cut)

If  $  & and $ (, then $ • & (
(Cautious Monotony)

Together Cut and Cautious Monotony are equivalent to
each of the following postulates:

If  $  & and & $, then  $ ( iff & (

(Cumulativity)

If  $  & and & $, then  $ ( iff & (

(Reciprocity)

Cumulativity has become an important touchstone for
nonmonotonic systems (Gabbay 1985, Makinson 1989,
1991). It is therefore interesting to see that the inference
operation defined here seems to satisfy Cumulativity for
almost all neural networks where it is defined. However,
it is possible to find cases where it is not satisfied:

Counterexample to Reciprocity: The network illustrated
below is a simple example of a network that does not
satisfy Reciprocity (or Cumulativity). This network is
supposed to be linear in the sense that the total impact on
the activity of a neuron can be written as a weighted sum
of the excitatory and inhibitory inputs to the neuron, with
the cij's as weights (represented as +1, +2, +3, and -10 in
the figure below).

If we assume that there is an excitatory connection
between $ and &, it follows that $ & and & $ since $
and & do not receive any inhibitory inputs. Suppose that $
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= <1 0 0 0> is given as input. Since we have assumed that
the inputs to x3 interact additively, it follows that (
receives a larger input than +, because of the time delay
before +  gets activated. If the inhibitory connection
between ( and + is large, the excitatory input from & can
never effect the activity of x3. We then have $ ( and
$  + . If instead &=<0 0 0 1> is given as input, the
situation is the opposite, and so + gets excited but not (,
and consequently &  ( and & +. Thus, the network does
not satisfy Reciprocity.

&$

(

x4

x3x2

x1

+-10

+ 2

+ 3+ 1

A critical factor here seems to be the linear summation of
inputs that locks x2 and x3 to inputs from the outside
because the inhibitory connection between them is large.

We have performed extensive computer simulations of
networks wich obey shunt ing  rather than linear
summation of excitatory and inhibitory inputs. The
simulations suggest that Reciprocity is satisfied in all
networks of this kind.

Shunting interaction of inputs is used in many
biologically inspired neural network models (e.g., Cohen
and Grossberg 1983, Grossberg 1989, Hodgkin 1964, Katz
1966, and  Kuffer and Nichols 1976) and is an
approximation of the membrane equations of neurons. A
simple example of such a network can be described by the
following equation:

(2) xi(t+1) = xi(t) + +(1-xi(t)).jd(xi(t))cji+ + 

+ +xi(t).jd(xi(t))cji-

Here + is a small constant, cij+ and cij- are matrices with
all cij+=cji+%0, and all cij-=cji-!0; d(x)%0 and d'(x)>0.
The positive inputs to neuron xi are shunted by the term
(1 -x i(t)) and the negative inputs by xi(t). As a
consequence, the situation where one input locks another
of opposite sign cannot occur, in contrast to the linear case
above. In other words, a change of input, that is a change in
.jd(xi(t))cji+ or .jd(xi(t))cji-, will always change the
equilibrium of xi.

We believe that the fact that one input never locks
another of opposite sign is the reason why all the
simulated shunting networks satisfy Reciprocity.

Simulation example: As an example of a simulation we
start from the network illustrated above. The matrix for
the values of cij+ and cij- in equation (2) is as follows:

Table 1: Connection Matrix

0 1 0 2
1 0 -10 0
0 -10 0 3
2 0 3 0

The function d in the equation was chosen as d(xi ) =
= (max(xi -#,0))2/((max(xi -#,0))2 + 0.2), where # is an
output threshold which was chosen to be 0.1. Finally, the
constant + was set to 0.005. (The values of the constants
are not crucial for the outcome of the simulation).

In the simulation, the atomic schemata correspond to the
activities x1, ..., x4 of the single neurons. For these
neurons there are 16 different combinations of binary
input schemata. In the table below these input schemata
are indicated by bold face values. This represents clamped
activities of the neurons according to the definition of the
function [x]c$.

The vectors in the table describe the resonant states
induced by the different input vectors. Except for the
limiting case 0, there are four different resonant states for
this network. It is easy to check that the nonmonotonic
inference relation generated by this set of resonant states
satisfies Reciprocity. For example, in case 2 we have
(  $ and in case 3 we have ( • $  & and in accordance
with Reciprocity (or Cut), we also find in case 2 that
$  &.

Table 2: Resonant States

run x1 x2 x3 x4

0: 0.00 0.00 0.00 0.00

1: 1.00 0.12 0.71 1.00

2: 1.00 1.00 0.23 1.00

3: 1.00 1.00 0.23 1.00

4: 1.00 0.09 1.00 1.00

5: 1.00 0.09 1.00 1.00

6: 1.00 1.00 1.00 1.00

7: 1.00 1.00 1.00 1.00

8:  1.00 0.12 0.71 1.00

9: 1.00 0.12 0.71 1.00

10: 1.00 1.00 0.23 1.00

11: 1.00 1.00 0.23 1.00
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12: 1.00 0.09 1.00 1.00

13: 1.00 0.09 1.00 1.00

14: 1.00 1.00 1.00 1.00

15: 1.00 1.00 1.00 1.00

For the disjunction operation it does not seem possible to
show that any genuinely new postulates for nonmontonic
inferences are fulfilled. The following special form of
transitivity is a consequence of Cumulativity (cf. Kraus,
Lehmann, and Magidor (1990), p. 179):

If $)& $ and $ (,  then $)& (

This principle is thus satisfied whenever Cumulativity is.

The general form of Transitivity, i.e., if $  & and & ( ,
then $ (, is not valid for all $ , & , and (, as can be
shown by the first example above. Nor is the following
principle generally valid:

If $ ( and & (, then $)& (
(Distribution)

Counterexample to Distribution: The following network
is a simple counterexample: x1 excites x4 more than x2
inhibits x4. The same is true for x3 and x2. Giving $=<1
1 0 0> or &=<0 1 1 0> as input activates x4, thus $  (
and &  (. The neuron x2 which represents schema $)&
on the other hand has only inhibitory connections to x4.
As a consequence $)& ( .

$ &

(

$)&

x4

x3

x2

x1

6 CONCLUSION
We have shown that by introducing an appropriate schema
concept and exploiting the higher-level features of a
resonance function in a neural network it is possible to
define a form of nonmonotonic inference relation. It has
also been established that this inference relation satisfies
some of the most fundamental postulates for nonmono-
tonic logics. The construction presented in this paper is an
example of how symbolic features can emerge from the
subsymbolic level of a neural network.
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