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1. THREE PERSPECTIVES ON
OBSERVATIONS

One of the most impressive features of human
cognitive processing is our ability to perform
inductive inferences. Without any perceived effort,
we are prepared, sometimes with great confidence, to
generalize from a very limited number of
observations.

One of the goals of cognitive science in general, and
artificial intelligence in particular, is to provide
computational models of different aspects of human
cognition. So how can we mechanize induction? How
can we even hope to capture the ease and assurance of
the human inductive competence in a model confined
by the thoroughness and strictness of computation?

It is commonplace that induction is going from single
observations to generalizations. But this statement
loses its air of triviality if one takes seriously, as I
propose to do, the question of what an observation is.
It is surprising that this question has received very
little attention within the philosophy of science.1
The key argument of this article is that there is no
unique way of characterizing an observation. Indeed, I
shall distinguish three levels of accounting for
observations (or, since all levels may be adopted at
the same time, they may as well be called
perspectives):

1. The linguistic level: This way of viewing
observations consists of describing them in some
specified language. The language is assumed to be
equipped with a fixed set of primitive predicates and
the denotations of these predicates is taken to be
known. As will be argued in Section 2, the linguistic
approach is a central part of logical positivism.

1One notable exception is Shapere (1982). See Section 4.1.

2. The conceptual level: On this level observations
are not defined in relation to some language but
characterized in terms of some underlying
‘conceptual space’. The conceptual space, which is
more or less connected to perceptual mechanisms,
consists of a number of ‘quality dimensions’.
Induction is here seen as closely related to concept
formation. According to the conceptual perspective,
inductive inferences show prototype effects, in
contrast to the linguistic perspective which operates
on Aristotelian concepts (cf. Smith & Medin 1981).

3. The subconceptual level: Observations are here
characterized in terms of inputs from sensory
receptors. The observations are thus described as
occurring before conceptualization. The inductive
process is seen as establishing connections between
various types of inputs. One currently popular way of
modelling this kind of process is by using neural
networks.

My main objective in this article is to argue that
depending on which approach to observations is
adopted, thoroughly different considerations about
inductive inferences will come into focus.2 In my
opinion there is a multitude of aspects of inductive
reasoning and not something that can be identified as
the problem of induction. The upshot is that there is
no canonical way of studying induction. What is
judged to be the salient features of the inductive
process depends to a large extent on what  an
observation is considered to be.

2I cannot talk about three ways of describing observations,
because the very notion of ‘describing’ presumes the
linguistic level.
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2. THE LINGUISTIC LEVEL

2.1 Observation statements and
the riddles of induction

The most ambitious project of analyzing inductive
inferences during this century has been that of the
logical positivists. According to their program, the
basic objects of scientific inquiry are sentences or
statements in some formal or natural language. An
observation is a particular type of statement. The
observational statements are supposed to be furnished
to the reasoner by uncorrigible perceptual
mechanisms.

Ideally, the scientific language is a version of first
order logic where a designated subset of the atomic
predicates represent observational properties and
relations. These observational predicates are taken to
be primitive notions. This means that when it comes
to inductive reasoning, all observational predicates
are treated in the same way. For example, Carnap
(1950, Section 18B) requires that the primitive
predicates of a language be logically independent of
each other. The advantage of this, from the point of
view of the positivists, is that induction then becomes
amenable to logical analysis which, in the purist
form, is the only tool admitted.

However, it became apparent that the methodology of
the positivists led to serious problems for their
analysis of induction. The most famous ones are
Goodman’s (1955) “riddle of induction” and
Hempel’s (1965) “paradox of confirmation”. In
Gärdenfors (1990), I have analyzed these problems
using the conceptual approach to induction. One
conclusion to be drawn from the analysis is that these
problems show that the linguistic level is not
sufficient for a complete understanding of inductive
reasoning.

2.2 An example from machine
learning

The most common type of knowledge representation
within the AI tradition is ‘propositional’ in the sense
that it is based on a set of rules or axioms together
with a data base. In this representation, the ‘facts’ in
the data base correspond to observations. The rules
and the data base are combined with the aid of a
theorem prover or some other inference mechanism to
produce new rules or facts. The basic and the derived
‘knowledge’ is then the material on which a planning
or problem solving program can operate.

The propositional form of knowledge representation
used in mainstream AI is thus well suited to the
positivist tradition. And when implementing

inductive inference mechanisms on a computer, this
has been the dominating methodology. A rather
typical example of the linguistic perspective within
AI is the chapter on induction in Genesereth and
Nilsson (1987). They assume (pp. 161-162) that there
is a set !  of sentences which constitutes the
background theory and a set " of data (which is to be
generalized). It is required that ! does not logically
imply " . They then define a sentence #  to be an
inductive conclusion if and only if (1) # is consistent
with ! " and (2) the hypothesis # explains the data
in the sense that ! {#} logically entails ".3

In general, Genesereth and Nilsson view inductive
inferences as problems of concept formation:4

The data assert a common property of some
objects and deny that property to others, and
the inductive hypothesis is a universally
quantified sentence that summarizes the
conditions under which an object has that
property. In such cases, the problem of
induction reduces to that of forming the
concept of all objects that have that property.
(1987, p. 165).

They define a concept-formation problem as a
quadruple P,N,C,$ , where P  is a set of positive
instances of a concept, N is a set of negative instances,
C  is a set of concepts to be used in defining the
concept, and $ is a language to use in phrasing the
definition.

For example, consider the problem of identifying a
class of cards from a regular card deck. The language
for problems of this kind of problem is taken to be a
standard first order language with a set of basic
predicates like ‘numbered’, ‘face’, ‘odd’, ‘jack’, ‘four’,
‘red’, and ‘spade’. The set P consists of those cards we
know belong to the class and N consists of the cards
we know are not members of the class. The
‘conceptual bias’ C determines which among the basic
predicates are allowed to be used in forming the
inductive rule determining the class. For example,
only ‘numbered’, ‘face’, ‘black’ and ‘red’ may be
allowed when describing the rule, so that ‘bent’ and
‘played with the left hand’, among others, are
excluded. $ , finally, is the ‘logical bias’ which
restricts the logical form of the rule that determines
the class. For instance, only definitions consisting of
conjunctions of basic predicates may be allowed.

3Note that this criterion can only be seen as supplying
necessary but not sufficient conditions. For example, for
any sentence % such that ! logically entails %, it holds that
¬%  v " (where " is the conjunction of all elements in
" ) is consistent with !  "  and !  
{¬% v "} logically entails ".
4For a similar approach, see Michalski and Stepp (1983).
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Using the notion of a concept-formation problem
P,N,C,$ , Genesereth and Nilsson develop an

algorithm for performing inductive inferences
satisfying the constraints given by C and $. A central
notion in their construction is that of the ‘version
space’ for the concept-formation problem which
consists of all rules that are satisfied by all the
positive instances in P, but by no instance in N. The
algorithm works by pruning the version space as new
positive and negative instances are added.

Even though AI researchers have had some success in
their attempts to mechanize induction, it is clear that
their methodology suffers from the same general
problems as the linguistic level in general. The
enigmas of induction that have been unearthed by
Goodman, Hempel and others are applicable also to
the induction programs in recent mainstream AI.

Trying to capture inductive inferences by an
algorithm also highlights some of the general
limitations of the linguistic perspective. The
programs work by considering the applicability of
various logical combinations of the atomic predicates.
But the epistemological origin of these predicates are
never discussed. Even though AI researchers are not
actively defending the positivist methodology, they
are following it implicitly by treating certain
predicates as observationally, or at least externally,
given. However, the fact that the atomic predicates
are assumed as granted from the beginning means that
much inductive processing has already been
performed.

I agree with Genesereth and Nilsson (1987) that
induction is one form of concept formation, but their
sense of concept formation is much too narrow. We
not only want to know how observational predicates
should be combined in the light of inductive evidence,
but, much more importantly, how the basic
predicates are inductively established in the first
place. This problem has, more or less, been swept
under the rug by the logical positivists and their
programming followers in the current AI tradition.
Using logical analysis, the prime tool of positivism
and AI, is of no avail for these forms of concept
formation. In brief, the linguistic approach to
induction sustains no creative inductions, no
genuinely new knowledge, and no conceptual
discoveries. To do this, we have to go below language.

3. THE CONCEPTUAL LEVEL

What I see as the source of the troublesome cases for
the linguistic approach, like Hempel’s and Goodman’s
riddles, is that if we use logical relations alone to
determine which inductions are valid, the fact that all
predicates are treated on a par induces symmetries
which are not preserved by our understanding of the

inductions: “Raven” is treated on an equal basis with
“non-raven”, “green” with “grue” etc. What we need
is a non-logical way of distinguishing those
predicates that may be used in inductive inferences
from those that may not.

There are several suggestions for such a distinction in
the literature. One idea is that some predicates denote
“natural kinds” or “natural properties” while others
don’t, and it is only the former that may be used in
inductions (cf. Quine 1969 and Gärdenfors 1990).
Natural kinds are normally interpreted realistically,
following the Aristotelian tradition, and thus
assumed to represent something that exists in reality
independently of human cognition. However, when it
comes to inductive inferences it is not sufficient that
the properties exist out there somewhere, but we need
to be able to grasp the natural kinds with our minds.
In other words, what is required to understand
induction, as performed by humans, is a
conceptualistic or cognitive analysis of observations
of natural properties. Thus we are back at the problem
of saying what an observation is, but now on the
conceptual level.

3.1 Conceptual spaces

One of the primary functions of concepts is to
structure the perceptual sensory inflow into
categories that are useful for planning, reasoning and
other cognitive activities. The concepts we use are not
independent of each other but can be structured into
domains: Spatial concepts belong to one domain,
kinship relations to another, concepts for sounds to a
third, and so on.5

The epistemological framework for a domain of
concepts I propose to call a conceptual space. A
conceptual space consists of a number of quality
dimensions. I have no exhaustive definition of a what
a quality dimension is, but must confine myself to
giving examples. Some of the dimensions are closely
related to what is produced by our sensory receptors
like space, pitch, temperature and color, but there are
also quality dimensions that are of an abstract non-
sensory character like time and dimensions of social
relations. The dimensions of a conceptual space are
taken to be cognitive and infra-linguistic in the sense
that we (and other animals) can represent the
properties of objects, for example when planning an
action, without presuming an internal language in
which these properties are expressed.

The notion of ‘space’ should be taken in the
mathematical sense. It is assumed that each of the
quality dimensions is endowed with certain
topological or metric structures. For example, ‘time’
is a one-dimensional structure which we conceive of

5Cf. Langacker’s (1986) use of ‘domains’ in cognitive
semantics.
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as being isomorphic to the line of real numbers.6
Similarly, ‘weight’ is one-dimensional with a zero
point, isomorphic to the half-line of non-negative
numbers. The topological structure of the color space
is described in Gärdenfors (1990). Some quality
dimensions have a discrete structure, i.e., they merely
divide objects into classes, e.g., the sex of an
individual.7

Let us now turn to the problem of identifying
observations on the conceptual level. Using the
notion of conceptual spaces, an observation can be
defined as an assignment to an object of a location in a
conceptual space. For example, the observation that
is described on the linguistic level as “x is red” is
expressed on the conceptual level by assigning x a
point in color space. Since natural languages only
divide the color domain into a finite number of
categories the information contained in the
statements that x is red is much less precise than the
information furnished by assigning x a location in
color space. In this sense, the conceptual level allows
much richer devices for reporting observations.

3.2 Concept formation

On the conceptual level one can distinguish between
two types of inductive processes. One is closely
related to concept formation: In Gärdenfors (1990), I
analysed ‘natural properties’ in terms of conceptual
spaces. The key idea is that a natural property is
identified with a convex region of a given conceptual
space. Via the notion of ‘convexity’ the topological
properties of the quality dimensions are utilized. A
convex region is characterized by the criterion that
for every pair o1 and o2 of points in the region, all
points between o1 and o2 are also in the region. The
definition presumes that the notion of ‘between’ is
meaningful for the relevant dimensions. This is,
however, a rather weak assumption which demands
very little of the underlying topological structure.

On the basis of this criterion of natural properties, it
is now possible to formulate a constraint on
induction, which is helpful in solving the
conundrums of the linguistic approach:

(C) Only properties corresponding to a convex
region of the underlying conceptual space may be
used in inductive inferences.

6To some extent the representation of time is culturally
dependent, so that other cultures have a different time
dimension as a part of their cognitive structure. Cf.
Gärdenfors (1992) for a discussion of how this influences
the structure of language.
7Discrete dimensions may also have additional structure as,
for example, in kinship or biological classifications. The
topology of discrete dimensions is further discussed in
Gärdenfors (1990).

It is only proposed that convexity is a necessary
condition, but perhaps not sufficient, for a property
to count as natural and thus allowed in inductive
inferences. I argue in Gärdenfors (1990) that criterion
(C) solves many of the problems of induction that
appear on the linguistic level. Furthermore, the
criterion can also be used to explain the prototype
effects that are exhibited by natural concepts (Rosch
1975, 1978, Gärdenfors 1991).

An assumption that is within reach now is that most
basic words in natural languages denote convex
regions in some conceptual space. (This assumption
can be made even if we have no idea of what the
dimensions are or how their topology looks like).
From the assumption it follows that the assignment
of meanings to the expressions on the linguistic level
is far from arbitrary. On the contrary, the semantics
(and to some extent even the grammar) of the
linguistic constituents is severely constrained by the
structure of the underlying conceptual space. This
thesis is anathema for the Chomskian tradition
within linguistics, but, as a matter of fact, it is one of
the central tenets of the recently developed
‘cognitive’ linguistics.8

As another sign of the importance of the conceptual
level, I submit that most of scientific theorizing
takes place at this level. Determining the relevant
dimensions involved in the explanation of a
phenomenon is a prime scientific activity. And once
the conceptual space for a theory has been established,
theories, in the form of equations, that connect the
dimensions can be proposed and tested.9

3.3 The origin of quality
dimensions

The second kind of inductive process on the
conceptual level concerns how the quality dimensions
of the conceptual spaces are determined. There does
not seem to be a unique origin of our quality
dimensions. Some of the dimensions are presumably
innate and to some extent hardwired in our nervous
system, as for example color, pitch, and probably also
ordinary space. These subspaces are obviously
extremely important for basic activities like finding
food and getting around in the environment.

But from the point of view of induction, the
dimensions that are learned are of greater interest.
Learning new concepts often involves expanding
one’s conceptual space with new quality dimensions.
‘Volume’ is an example here. According to Piaget’s
‘conservation’ experiments with five year olds, small

8Cf. Lakoff (1987) and Langacker (1986).
9For a discussion of the role of conceptual spaces in science,
see Gärdenfors (1990) and (1991).
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children do not make a distinction between the height
of a liquid and its volume. The conservation of
volume, which is part of its conceptual structure, is
something that must be learned. In general,
introducing new quality dimensions is a much more
advanced form of induction than concept formation
within a given conceptual space.

A similar process occurs within sc ience . By
introducing theoretically precise, non-psychological
quality dimensions, a scientific theory may help us
find new inductive inferences that would not be
possible on the basis of our subjective conceptual
spaces alone. As an example, consider Newton’s
distinction between weight and mass, which is of
crucial importance for the development of his
celestial mechanics, but which has no correspondence
in human psychology. It seems to me that the
cognitive construction involved in Newton’s
discovery of the distinction between mass and weight
is of the same nature as when a child discovers the
distinction between height and volume. Another
example of a scientifically introduced dimension is
the distinction between temperature and heat, which
is central for thermodynamics. In contrast, human
perception of heat is basically determined by the
amount of heat transferred from an object to the skin
rather than by the temperature of the object.

In order to give another illustration of how the
scientific process is helpful in constructing the
underlying conceptual space, thereby providing an
understanding of how concepts are formed, I shall
briefly present the phonetic identification of vowels
in various languages. According to phonetic theory,
what determines a vowel are the relations between
the basic frequency F0 of the sound and its formants
(higher frequencies that are present at the same time).
In general, the first two formants F1 and F2 are
sufficient to identify a vowel. This means that the
coordinates of two-dimensional space spanned by F1
and F2 (in relation to a fixed basic pitch F0) can be
used as a fairly accurate description of a vowel.
Fairbanks and Grubb (1961) investigated how people
produce and recognize vowels in ‘General American’
speech. Figure 1 summarizes some of their findings.

The scales of the abscissa and ordinate are the
logarithms of the frequencies of F1 and F2 (the basic
frequency of the vowels was 130 cps). A self-
approved vowel is one that was produced by the
speaker and later approved of as an example of the
intended kind.

Figure 1.
Frequency areas of different vowels in the two-

dimensional space generated by the first two
formants. Values in cps. (From Fairbanks and Grubb,

1961.)

An identified sample of a vowel is one that was
correctly identified by 75% of the observers. The
preferred samples of a vowel are those which are
“the most representative samples from among the
most readily identified samples” (Fairbanks and
Grubb 1961, p. 210).

As can be seen from the diagram, the preferred,
identified and self-approved examples of different
vowels form convex subregions of the space
determined by F1 and F2 with the given scales. As in
the case of color terms, different languages carve up
the phonetic space in different ways (the number of
vowels identified in different languages varies
considerably), but I conjecture again that each vowel
in a language will correspond to a convex region of
the formant space.

The important thing to note in this example is that
identifying F1 and F2 as the relevant dimensions for
vowel formation is a phonetic discovery. We had the
concepts of vowels already before this discovery, but
the spatial analysis makes it possible for us to
understand several features of the classifications of
vowels in different languages.

The last examples of how science introduces new
quality dimensions for concept formation highlights
one fundamental problem for this second type of
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inductive process on the conceptual level: Where do
the dimensions and their topology come from?
According to Popper’s terminology this kind of
process belongs to the ‘context of discovery’. Within
traditional philosophy of science, it has in general
been thought to be futile to construct a mechanistic
procedure for generating scientific discoveries of this
kind. However, when it comes to human learning and
concept formation, the prospects may not be so
hopeless after all. This will be the topic of next
section where inductive processes below the
conceptual level will be considered.

4. THE SUBCONCEPTUAL LEVEL

4.1 Observations by receptors

In the most basic sense an observation is what is
received by our sensory organs. In this sense, an
observation can be identified with what is received by
a set of receptors. For human beings, these inputs are
provided by the sensory receptors, but one can also
talk of a machine having observations of this kind via
some measuring instruments serving as receptors. The
receptors provide ‘raw’ data in the sense that the
information is not assumed to be processed in any
way, neither in a conceptual space, nor in the form of
some linguistic expression.

Within the philosophy of science, it is important to
make a distinction between percep t ion  and
observation. As Shapere (1982) points out, the term
‘observation’ plays a double role for the traditional
philosopher of science. He writes:

On the one hand, there is the perceptual aspect:
“observation”, as a multi tude of
philosophical analyses insist, is simply a
special kind of perception, usually interpreted
as consisting in the addition to the latter of an
extra ingredient of focussed attention. ... On
the other hand, there is the epistemic aspect of
the philosopher’s use of ‘observation’: the
evidential role that observation is suppose to
play in leading to knowledge or well-
grounded belief or in supporting beliefs
already attained. (Shapere 1982: 507-508)

Within the empiricist tradition of philosophy of
science, the two uses of ‘observation’ have been
confounded. However, in modern science it is obvious
that it is the epistemic aspect of observation that is of
importance. As Shapere (1982: 508) formulates it:

Science is, after all, concerned with the role of
observation as evidence, whereas sense-
perception is notoriously untrustworthy ... .
Hence, with the recognition that information
can be received which is not directly accessible

to the senses, science has come more and more
to exclude sense-perception as much as
possible from playing a role in the acquisition
of observational evidence; that is, it relies
more and more on other appropriate, but
dependable, receptors.

Given that we are focussing on the epistemic aspect of
observations, let us then consider induction on the
subconceptual level. How do we distill sensible
information from what is received by a set of
receptors? Or, in other words, how do we make the
transition from the subconceptual to the conceptual
and the linguistic levels? These questions indicate the
kinds of inductive problems that occur on the
subconceptual level.

The basic problem is that the information received by
the receptors is too rich and unstructured. What is
needed is some way of transforming and organizing
the input into a form that can be handled on the
conceptual or linguistic level. There are several
methods for treating this kind of problem. Within
psychology, various methods of multidimensional
scaling have been developed.

For example, in Shepard’s (1962a,b) algorithm, the
input data is assumed to contain information about
the relative distances between n  points in some
unknown space. The distances between the points are
not expressed in metrical terms, but only given as a
rank order of the n(n-1)/2 distances between the n
points. Any such rank order can be represented in a
space of n-1 dimensions. Shephard’s algorithms starts
out from a representation in such a space and then
successively reduces the dimensionality until no
further dimensions can be eliminated without a
substantial disagreement between the rank order
generated by the metric assignment and the original
rank order. For many empirical areas the intial data
can be reduced to a space with two or three
dimensions.10 These dimensions can then function as a
basis for concept formation according to the outline
in Section 3.2.

4.2 Induction with the aid of
neural networks

In this subsection a different method for going from
the subconceptual to the conceptual level will be
outlined. The mechanisms for the method are based on
neural networks. In a neural network, the receptors
and the information they receive can be identified
with a set of input neurons and their activity values.
This set of values will be called the input vector. In
interesting cases there is a large number of input
neurons which means that the dimensionality of the

10Cf. Shepard (1962b) for several examples of the results
of the procedure.
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input vector is very high. The purpose of an inductive
method at this subconceptual level is to reduce the
complexity of the input information in an efficient
and systematic way.

The neural network model I will be outlining here is
based on Kohonen’s (1988) self-organizing feature
maps. The distinguishing property of these maps is
that they are able to describe the topological
relations of the signals in the input vector using
something like a conceptual space with a small
number of dimensions. Basically, the mapping can be
seen as reducing the dimensionality of the input
vector.

A self-organizing feature map is a neural network
which consists of an input vector that is connected to
an output array of neurons. In most applications, this
array is one- or two-dimensional, but in principle it
could be of any number of dimensions. The essential
property of the network is that the connections
between the neurons in the array and the learning
function are organized in such a way that similarities
that occur among different input vectors are
preserved in the mapping, in the sense that input
vectors that have common features are mapped onto
neighbouring neurons in the map. The degree of
similarity between two input vectors is determined
by some distance measure (which normally is the
standard Euclidean metric, but many metrics are
possible to use).

In other words, the mapping from the input vector to
the array preserves the topological relations while
reducing the dimensionality of the representation
space. The low-dimensional ‘feature map’ that results
as an output of the process can be viewed as a
conceptual space in the sense of the preceeding section.
The mapping is generated by the network itself via
the learning mechanism of the network. In practice, it
normally takes quite a large number of learning
instances before the network stabilizes enough so
that further changes can be ignored.11

The mechanism is best illustrated by a couple of
artificial examples taken from Kohonen (1988). In
figures 2 and 3 the input vectors were assumed to be
uniformly distributed over a triangular area. In the
network represented in figure 2, the output array was
one dimensional, i.e., the output neurons were
arranged along a line. The number of neurons on this
line is fixed. Any input from the triangular space
results in some activities in the neurons in this line.
Figure 2 shows the inverse mapping of the input
vectors which resulted in the highest activities of

11New learning by instances that do not follow the
previous frequency pattern can always change the mapping
function. This means that it is impossible to talk about a
‘final’ mapping function.

single neurons in the line, where each dot corresponds
to an output neuron. As can be seen, the mapping
preserves relations of similarity, and, furthermore,
there is a tendency of the line trying to ‘cover’ as
much as possible of the surface, in the sense that the
distance between any point in the surface and the line
being as small as possible.

Figure 2.
Distribution of weight vectors on a linear array of

neurons.
(From Kohonen (1988), p. 135.)

In figure 3, the corresponding network contains an
output array that is two-dimensional, with the
neurons arranged in a square. Figure 3 again shows the
inverse mapping, indicating which neurons in the
input space produce the greatest responses in the
output square. As can be seen, the inverse mapping
represents a deformation of the output array that
preserves topological relations as much as possible.

Figure 3.
Distribution of weight vectors on a rectangular array

of neurons.
(From Kohonen (1988), p. 135.)
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Figure 4 shows an example of how the network self-
organizes in learning a mapping. The initial values of

Figure 4.
Distribution of weight vectors on a rectangular array of neurons.

(From Kohonen (1988), p. 135.)

the mapping were selected so that there was a random
mapping from a circular region of the input triangle
to a linear array of output neurons. The network was
then fed with a number of input vectors, randomly
selected from the full triangle. The sequence of
figures indicate how the mapping is improved over
time, where the numbers below the figures represent
the number of learning trials.

These examples are artificial in that we know the
initial distribution of input vectors, which
furthermore is of low dimensionality. In real
applications, the dimensionality of the input space is
high and its topology is unknown. However, it can be
shown, at least when the output array is one-
dimensional, that the mapping in the limit (i.e., after
infinitely many learning instances) will preserve as
much as possible of the topological structure of the
input space.12

Kohonen’s goal in using the maps is not limited to
inductive inference only but representation of
information in general. He writes:

Economic representation of data with all their
interrelationsships is one of the most central
problems in information sciences, and such an

12 For a more precise statement of this result and a proof
see Kohonen (1988), pp. 145-148.

ability is obviously characteristic of the opera-
tion of the brain, too. In thinking, and in the
subconscious information processing, there is a
general tendency to compress information by
forming reduced representations of the most
rele-vant facts, without loss of knowledge
about their interrelationsships (Kohonen
1988, p. 119).

In collaboration with Christian Balkenius, I have
started working on a general architecture for a neural
network system that utilizes self-organizing feature
maps to perform inductive inferences. The overall
architecture of the inductive network is depicted in
Figure 5. The input receptors are divided into a small
number of subsets (in the figure there are two such
subsets). The purpose of this division is to group
together receptors that contain information about
‘the same’ feature, so for example, visual receptors
belong to one group, auditory receptors to another
etc. When the network is applied, the decision about
how the set of receptors should be grouped must be
made by the user. But this is about the only thing she
has to decide – except for some parameter settings,
the network then performs the rest of the inductive
inferences.

The input vectors are then mapped onto one Kohonen
surface each. In figure 5 these are depicted as one-
dimensional lines, but they may as well be two- or
three-dimensional surfaces. In the figure, there are
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only two Kohonen surfaces, but they may, of course,
be more than two depending on how the input

receptors are grouped into subspaces. One of the
surfaces may

Autoassociating system

Asymmetric connections

(Conditional 
probabilities)Kohonen 

surfaces

Input measurements 
grouped in subspaces

Figure 5.
Architecture of inductive neural network

be a purely classificatory space, representing ‘names’
of the categories that are identified by the network.13

The Kohonen surfaces are then pairwise connected by
asymmetric connections between the neurons in the
two surfaces. The connections are total in the sense
that each neuron on one surface is connected to all
neurons on the other surface. The learning rule for
these connections functions in such a way that the
strength of the connection cij between a neuron xi on
one surface and a neuron yj on another reflects the
conditional probability (estimated from the learning
examples) that yj be activated given that xi is
activated.14 The connections vary between -1 and +1
and obtain the extreme values only when xi and yj are
never and always, respectively, activated together. In
a sense, the network performs implicit computations
of the inductive statistics.15

Once the learning phase has been completed, relating
input receptors to Kohonen surfaces and these

13The linguistic form of the names has, of course, to be
provided by the user.
14The mathematical form of the connections are closely
related to Hintikka’s (1969, p. 328) measures of ‘evidential
support,’ in particular the measure defined in his equation
(27)*.
15The sense in which neural networks perform implicit
statistic inferences can be made very precise. For example,
see Lippman (1987) for a presentation of some of the
results connecting least mean square and maximal
likelihood solutions to the computations of neural
networks.

surfaces to each other, it is then possible to use the
network to classify new objects. By feeding the
system with a partial input vector, for example, the
values for one of the subspaces, the network can then
compute the expected  values for all the other
receptors and the expected locations for all the
Kohonen surfaces. In this way the network guesses
the unknown properties of the object it has only
received partial information about. The network is
thus able to generalize from earlier experience and
make inductive inferences using the connections
between the different Kohonen spaces.

Christian Balkenius and I have done some preliminary
experiments using a network with the architecture
that has been outlined here. So far, the results seem
very promising. One example concerns a classification
of 44 individual parasitical wasps. For each individual
the values of twelve variables are supplied together
with the species name it was assigned by an
entomologist. These variables represent different
kinds of data, some binary, some ordinal, and some
real-valued. After discussions with the entomologist,
we divided the input variables into four groups: One
consisting of five variables on proportions of sizes of
various body parts, the second consisting of four
other morphological variables, the third consisting of
three ecological variables, and the fourth simply a
coding for the species name. Each of these four
variable groups was mapped onto a one-dimensional
Kohonen surface (i.e., a line), and the four surfaces
were pairwise connected by asymmetric connections
as described above.
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After training the network by showing it the
individual input vectors a number of times, it can be
tested by feeding in all input variables for a
particular individual, except for its species
categorization and compare the output with that of
the entomologist. In our tests, the network makes
very few errors in classifying the 44 wasps. The
results are, to some extent, dependent on the number
of neurons on each Kohonen surface. If we allow as
many as 50 neurons, which is more than the number of
wasps, then the network can learn to correctly
classify every individual in the sample. However, if
there are only 20 neurons on the Kohonen surfaces,
then it correctly classifies 43 out of 44. One can, of
course, also feed in data (except for names of the
species) about individuals that were not present in the
learning sample. The species names that are produced
as outputs from the network seem to have a high
degree of validity. However, the performance of the
network still awaits more detailed testing against
empirical material.

The methodology of founding a classification on a
large number of numerical data is similar to so called
numerical (or phenetic) taxonomy (Sokal and Sneath
1963, Ruse 1973) In my opinion, however, the
mechanisms behind the classifications obtained by the
neural network model and their biological validity
are superior to what is achieved in numerical
taxonomy. One essential difference is that, as a matter
of methodology, all variables are treated as having
equal value in the process of computing the numerical
taxonomy. However, even if it may seem that the
same holds of the inputs to the neural network
described above, the variables are implicitly assigned
different importance via the influence they have on
the topology of the Kohonen surfaces that emerge
during the learning period.

What are then the drawbacks of using neural
networks of the type described here for inductive
processes? A fundamental epistemological problem
is that even if we know that the network will
generate Kohonen surfaces that perform the right
kind of job, we may not be able to ‘describe’ what the
emerging dimensions represent. Even if we, for
example, know that a system consisting of four one-
dimensional Kohonen surfaces provides a perfect
classification of a population of parasitical wasps,
this may not help us in interpreting the ‘meaning’ of
the surfaces, i.e., what overall features of the wasps
that they represent. In other words, we may not be
able to make the transition between the
subconceptual level and the conceptual level. This
kind of level problem is ubiquitous in applications of
neural networks for learning purposes. The upshot is
that a future theory of neural networks must
somehow bridge bridge the gap of going from the
subconceptual level to the conceptual level. We may

account for the information provided at the
subconceptual level in term of a dimensional space
with some topological structure, but there is no
general recipe for determining what is the conceptual
meaning of the dimensions of the space.

Other problems concern more methodological issues.
How should the input variables be grouped before
they are mapped onto different Kohonen surfaces?
How does one decide how many dimensions to use in
the target surface of the mapping from the input
variables? These kinds of problems are found
everywhere in science and they are not particular to
using neural networks for the classifications.16 In
fact, the methodological problems involved in the
procedure presented here seem to be smaller than the
problems one encounters for other classification
methods.

5. CONCLUSION: WHAT IS
INDUCTION?

Where on the three levels that have been described
here is real induction to be found? The answer is
nowhere and everywhere. The main thesis of this
article is that there are several kinds of inductive
processes. Depending on what perspective one takes on
observations, different ways of generalizing the
observations become relevant. Traditional philosophy
of science has concealed these distinctions by
neglecting the conceptual and subconceptual levels.
For a complete account of induction, all three levels
must be mustered.

What is the relation between the three levels? I hope
it has become clear from my presentation that I do
not view the three levels as being in conflict with
each other. They should rather be regarded as three
perspectives on observations that complement each
other. Different aspects of inductive processes need to
be explained on different levels. By disregarding
some level one restricts the possibilities for
understanding the mechanisms of inductive reasoning.

A three-level theory of cognitive representation that
is related to the one proposed in this paper has been
suggested by Harnad (1987) as a way of analysing
problems in categorical perception.17 He calls his
lowest level the iconic representation (IR), “being
an analog of the sensory input (more specifically, of
the proximal projection of the distal stimulus object
on the device’s transducer surfaces)” (Harnad 1987, p.
551). The IRs are analog mappings which “faithfully

16For instance, very similar problems would be
encountered when applying the multi-dimensional scaling
methods that were outlined above.
17This theory was brought to my attention by Paul
Hemeren when the present article was almost finished.



11

preserve the iconic character of the input for such
purposes as same-different judgements, stimulus-
matching, and copying” (p. 552). It is obvious that
this form of representation corresponds to what I
have here called the sub-conceptual level.

The middle level Harnad calls categorical representa-
tion (CR). This representation eliminates most of the
raw input structure and retains what is invariant in
the produced categorization: “Whereas IRs preserve
analog structure relatively indiscriminately, CRs
selectively reduce input structure to those invariant
features that are sufficient to subserve successful
categorization (in a given context)” (p. 553).

Again, it is clear that this level corresponds to the
conceptual level of this article. Unfortunately,
Harnad says very little about how the categorization
is acheived, except that it is some kind of filtering
process. Furthermore, he provides no account of the
structure of the categorical representation, with the
exception that he presumes that categorization is to a
certain extent context dependent. I believe that it is a
strength of the theory of conceptual spaces outlined
in Section 3 that it has strong, and to a large extent
testable, implications for categorization and concept
formation.

The highest level in Harnad’s triad is symbolic
representation (SR), which naturally corresponds to
the linguistic level of this paper. He introduces a
“description system” (p. 554), the expressions of
which assign category membership to experiences.
The description system presumes that the CRs are
already labeled:

Instead of constructing an invariance filter of
the basis of direct experience with instances, it
operates on existing labels, and constructs
categories by manipulating these labels, in
particular, assigning membership on the basis
of stipulated rules rather than perceptual
invariants derived from direct experience (p.
554).

Here it seems to me that Harnad is partly falling back
on the Aristotelean tradition of concept formation.
The upshot seems to be a hybrid theory:

Descriptions spare us the need for laborious
learning by direct acquaintance; however, they
depend on the prior existence of a repertoire of
labeled categories on which the combinatory
descriptions can draw. Hence symbol ic
representations (SRs), which are encoded as
mental sentences, define new categories, but
they must be grounded in old ones; the
descriptive system as a whole must
accordingly be grounded in the acquaintance
system (p. 556).

The use of the metaphor “grounded” indicates that
Harnad views the three representation forms as
separate systems. In contrast, the three levels
presented here are three perspectives on one and the
same system. Nevertheless, the similarities between
mine and Harnad’s are indisputable. Since Harnad
proposes his three kinds of representations as a tool
for understanding phenomena of categorical
perception, these similarities strengthen the links
between concept formation and the present analysis
of induction.

It is also worthwhile comparing the three levels of
observation and induction discussed in this article
with Smolensky’s (1988) distinction between the
subsymbolic and symbolic levels in the context of
connectionist models. In my opinion, his
‘subsymbolic level’ corresponds closely enough to
what has here been called the subconceptual level.
However, Smolensky confounds the symbolic and
conceptual levels.18  The reason why is simple: he is
committ ing himself  to  ‘High Church
Computationalism’ by “limiting consideration to the
Newell/Simon/Fodor/Pylyshyn view of cognition”
(p. 3). One of the central tenets of the symbolic
approach is what Smolensky formulates as
‘hypothesis 4b’:

The programs running on the intuitive
processor are composed of elements, that is,
symbols, referring to essentially the same
concepts as the ones used to consciously
conceptualize the task domain (p.5).

He then gives the following reason for calling the
symbolic level ‘conceptual’:

Cognitive models of both conscious rule
application and intuitive processing have been
programs constructed of entities which are
symbols both in the syntactic sense of being
operated on by symbol manipulation and in the
semantic sense of (4b). Because these symbols
have the conceptual semantics of (4b), I am
calling the level of analysis at which these
programs provide cognitive models the
conceptual level (ibid.).

However, there is a different tradition within
cognitive science where the conceptual level of this
paper is given independent standing. For example, I
believe the theory of conceptual spaces presented in
Section 3.1 can be seen as a generalization of the state
space approach, advocated among others by P. M.

18He even uses the two names: “I will call the preferred
level of the symbolic paradigm the conceptual  level and
that of the subsymbolic paradigm the subconceptual  level”
(Smolensky 1988:3).
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Churchland (1986a,b), and of the vector function
theories of Foss (1988). The theory of conceptual
spaces is a theory for representing information, not a
theory about symbol manipulation. (The symbol
paradigm that Smolensky is referring to is called the
‘sentential paradigm’ by the Churchlands.19)

Even though he fails to identify it as a separate level,
Smolensky is well aware of this ‘vectorial’ approach,
as can be seen from the following quotation:

Substantive progress in subsymbolic cognitive
science requires that systematic commitments
be made to vectorial representations for
individual cognitive domains. [...] Unlike
symbolic tokens, these vectors lie in a
topological space in which some are close
together and others far apart (Smolensky
1988, p. 8).

He even recognizes the importance of establishing a
connection between the subconceptual level and the
conceptual level:

Powerful mathematical tools are needed for
relating the overall behavior of the network
to the choice of representational vectors;
ideally, these tools should allow us to invert
the mapping from representations to behavior
so that by starting with a mass of data on
human performance we can turn the
mathematical crank and have the
representational vectors pop up. An example
of this general type of tool is the technique of
multidimensional scaling (Shephard 1962),
which allows data on human judgments of
similarity between pairs of items in some set
to be tuned to vectors for representing those
items (in a sense). The subsymbolic paradigm
needs tools such as a version of
multidimensional scaling based on a
connectionist model of the process of
producing similarity judgments (ibid.)

In conclusion, Smolensky’s binary distinction
between the symbolic and the subsymbolic level is
insufficient. We need all three levels of representing
information that have been presented in this paper to
give an adequate description of the various inductive
processes that are encountered in the human realm as
well as in the artificial.
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