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Abstract. The concept of schema and some general
characteristics of models using schemata are
discussed. It is shown by computer simulations
how a combination of a number of simple neural
circuits are capable of performing actions similar
to those commonly attributed to schemata,
especially self-organization of a representational
code, recognition of spatial and temporal
structure, adaptive performance and semantic
constraint satisfaction.

1. INTRODUCTION

What are the basic units of cognitive processing?
The so called Classical Theories (Fodor &
Pylyshyn, 1988) argue that these units are
symbols together with symbolic processes. On
the other hand, the Connectionist School argues
that we should approach cognition at another
level and study how neuronlike elements interact
to produce collective effects (Rumelhart et. al.
1986). Both camps seem to assume that the other
is totally wrong. Yet, there is no doubt that
human behaviour exhibits examples of both the
symbol processing capabilities of the Classical
School and the interactive activation type of
processing in Connectionist models. Nor is it
controversial that, on the lowest level, cognitive
abilities are implemented as a neural system. A
marriage of the symbol processing capabilities of
the Classical Theories with the constraint
satisfying capabilities of the Connectionist
Theories is something that is highly desired. The
simplest way to do this is to assume that the
cognitive system is supplied with both a classical
module and a connectionist module. This

approach, that has been adopted by Smolensky
(1987), does not answer any questions, however.
The issue is not to decide whether the human
cognitive system is a symbol processing
automaton or a connectionist network (or both),
but to establish what level is appropriate for the
description of a cognitive system.

1.1 What is the correct level
of descriptions?

Ideally one should start at the neural level and
gradually increase the level of abstraction to
dispatch from the complexity of the lower
levels. Eventually, we would end up with a
whole set of descriptive models, each of which
could be reduced to the one below. Which model
we would use should then depend on the
phenomena we are trying to explain. In most
cases, our model should be located somewhere on
the path from the low level neural model to the
higher level cognitive model. This is a very
important issue as we try to describe highly
complex phenomena.

The different systems that are capable of
explaining these phenomena are usually complex
enough to be reduced to each other. For instance,
it is easy to show how to implement a classical
architecture in a neural net, and even easier to go
the other way. In fact, every computer simulation
of a connectionist model is an example of this.
Our task would be easy if we had a complete
description of the nervous system, and the
processes in it. Unfortunately, what we have is
almost nothing more than design principles and
some general ideas about structure. Nor do we
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know what the higher level systems should be.
The assumption of the Classical School that the
higher level system is a symbol processing
automaton can be as wrong as the idea that
interactive activation is the basic process in the
high level system as well as in the low level
system.

1.2 Schemata as a vehicle for
high-level processes

To bridge the gap between the low-level neural
models and the high-level symbolic models I
will concentrate on the concept of a schema.
Schemata are neutral in respect to the different
views of cognition and have been used in models
from both camps. I want to show how schemata
with highly complex structure can self-organize
in a neural circuit. With schemata as an
intermediate level, it is possible to describe
symbolic processes as an interaction among
symbol schemata. Note that I am not trying to
implement a classical architecture. The schema
level is not a symbol manipulating automaton,
but have the ability to self-organize in a way that
allows behaviour that is usually associated with
symbol manipulation as well as the behaviour
typically attributed to connectionist models. As
the schema level is nothing more than a possible
interpretation of a set of neural models, I believe
that it is a good candidate for an intermediate
descriptive level. In this paper, I will show some
possible neural instantiations of the schema
system. However, a large set of neural
mechanisms could be responsible for the
behaviour described here. Many details of the
neural model could be changed without losing
the emergent properties of the schema level.

1.3 Overview

The rest of this paper is divided into three
sections. The first one discusses some of the
properties and problems of various views on
schemata. Especially, self-organization, indexing,
multiple instantiation and schemata representing
temporal structures such as actions, plans and
linguistic representations are considered. The
second section develops a neurally based model of
schema processing that suggests an unified basis
for all schema mechanisms. Finally, I present a
few preliminary computer simulations that show
some of the properties discussed in sections 2 and
3.

2. SCHEMATA

The basic building unit in many theories of
cognition is the schema. Even though the concept
seems to have as many definitions as authors,
some common core exists in all of them. I will
use the term schema as a collective name for the
structures as used by Piaget (1952, 1973), Arbib
and Hanson (1987) and Rumelhart et. al. (1986c).
I would also like to include concepts usually
denoted by other names such as Frames (Minsky,
1987), Scripts (Schank & Abelsson, 1977) etc.
Among the different authors we find some
common characteristics of schemata. The
following list, adapted from Rumelhart et. al.
(1986c) summarizes some of the main features.

1. Schemata are used for representing objects,
situations, and actions. This implies that
schemata must have dynamic properties.

2. Schemata have variables. This indicates
that there are ways to change a schema to
adapt it to different situations.

3. Schemata can be embedded. One schema can
have another schema as a part or as an
instantiation of a variable.

4. Schemata support default assumptions
about the environment. They are capable of
filling in missing information. Schemata
are not passive data structures. They are
active representations.

5. Schemata are closely connected to
memory.

2.1 Schemata and
Connectionism

Rumelhart et. al. (1986c) argue that schemata are
sets of microfeatures and show how they can
emerge from the collective behaviour of small
neuronlike elements. Each microfeature is
represented by a neuronlike unit that interacts
with the others by activating or deactivating
them. This interpretation of schema lends itself
to implementation in constraint satisfying
networks (Ackley et. al., 1985, Hinton, and
Sejnowski, 1988, Smolensky, 1988, Hopfield
1982, 1984), and can also account for the self-
organization of schemata as the network interacts
with its environment. This is a highly desired
property of any model of cognition. For Piaget,
this was one of the main issues. His view of
schemata is more complex and I will only
consider a few general aspects of it. Most
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important to notice is that schemata, in Piaget's
view, are related not only to static
representations of concepts, but to actions and
temporally organized events as well. This is
something that has been missing in most
connectionist modelling. Some efforts have been
made to handle temporal structure (e.g. Elman,
1989, Grossberg 1986), but, as far as I know, no
clear connections to schema theory has yet been
pointed out. Neither are connectionist models
good at representing multiple instantiations of a
schema. For example, Rumelhart and Kawamoto
(1988) make the very strong assumption that a
schema for a sentence contains exactly four slots.
One for each of the possible roles in the sentence.
As a result, it is possible to have exactly four
instantiations of different schemata at a single
time. Of course, we can postulate any number of
slots for the number of roles we need in our
sentence comprehension model. However, such a
solution will always be ad hoc and if we want to
model discourse comprehension, this is not an
accessible path at all, unless we are willing to
accept slots for instances like 'the-actor-of-the-
second-relative-clause-of-the-third-sentence'.
Such an approach is clearly absurd.

Another problem with slots is how
generalisation from one slot to another should be
made. Since the corresponding nodes in all slots
are not generally active at the same time, the
usual learning mechanisms that affect nodes that
are currently active, such as Hebb’s rule (Hebb,
1949), cannot be used. If slots are used, it is hard
to retain systematicity. The main problems of the
connectionist account of schemata involves the
representation of multiple instantiations and
temporal sequences in perception and action.
Below, possible mechanisms for the solutions to
these problems are discussed.

2.2 Computations in the style
of the brain

Arbib, Conklin and Hill (1987) take a view at a
higher level by stating a few added assumptions
about schemata. The framework is described as
being “in the style of the brain” and their idea of
schemata is similar to that of Rumelhart's in
some respects but ideas from traditional semantic
nets are also used (Woods, 1975). The
environment is represented by an assemblage of
schemata, each of which corresponds to an object
in the environment. Schemata have two sources of
activation. A schema receives an input from the
environment that corresponds to how well the
schema fits perceived objects or events. It also

receives activation or deactivation from other
active schemata.

One assumption of Arbib’s is that schemata can
be understood as “master copies” of certain
programs. They can be copied and tagged to form
multiple instantiations of a schemata. Schemata
interact in the same way as the nodes in
connectionist networks. This assumption sharply
contrasts with the view that a neural assembly is
responsible for the representation of a certain
schema. Although many parallels to neural
mechanisms are used to support this schema
theory, no account is given for how schemata can
be copied in a neural system. In fact, it is
inconsistent with a straightforward neural
interpretation of the theory. The copy of a schema
has to be associated with a corresponding copy of
interaction links to other schemata. In the neural
interpretation, this would require the network to
copy the actual physical synapses between neural
cells. This is a biologically very implausible
mechanism. Such a view of schemata cannot be
considered to be a neural theory. However, it does
raise one important question: how do we
represent multiple instantiation of the same
schema at a neural level?

2.3 Frames and Scripts

Minsky's notion of frames is yet another instance
of a schema theory at a higher level (Minsky,
1987), with inspiration from both neural theory
and semantic nets. If we look at other higher
level accounts for schemata, such as Schank's
scripts, we see more rigid structures. Schemata
are typically considered to be a set of variables
and procedures. When we give the variables
values, we get an instantiation of a schema. This is
also the definition of schemata usually used in
the field of Artificial Intelligence (cf. Charniak
& McDermott, 1985).

3. A NEURAL NETWORK
BASED MODEL OF SCHEMA
PROCESSING

The following sections develop a neural network
based model of schema processing capable of self-
organization of schemata with the properties
discussed above. Schemata can be of two types. I
will call the first one static schemata. They are
used to represent static entities such as objects.
The other kind of schemata will be called
dynamic schemata. They are responsible for the
representation of actions, plans and processes. A
schema theory must account for both these kinds
of schemata.
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The model incorporates a few basic neural
modules, each of which can be implemented in a
number of ways. First I develop a mechanism for
representing static schemata. This architecture is
based on an idealized model of cortical
organization. Temporally organized schemata are
handled as sequences of static schemata. A special
type of chunking module is developed for
recognition, prediction, and production of schema
sequences.

3.1 An Idealized Model Of
Cortical Organization

The model is based on a few general observations
of cortical organization and 'design principles' of
the nervous system that together can account for
the processing of static schemata. First, the
lateral interaction between cortical neurons is
usually described as having the form of a
Mexican hat (Kohonen, 1988). Neurons close to
each other send excitatory signals to each other
and neurons further away exchange inhibitory
signals. The strength of the signals are functions
of the distance between cells and decreases with
distance. Second, over larger distances, the cell
populations communicate with each other
through intracortical association fibres and with
other parts of the brain through specific afferent
and efferent projection fibres. (cf. Carpenter,
1984). Third, there exists some evidence for
division of cell populations into antagonistic
pairs (Grossberg, 1987).

If we combine these principles and add some
further assumptions, we are able to construct a
model of cortical processing. Consider a set, F(a),
of neural populations,

F(a) = {v0, v1, ..., vn}, (1)

with the following characteristic (figure 1):

A. Antagonistic clusters

Each population is divided into two antagonistic
clusters vi+  and vi- that have exclusively
inhibitory connections to each other. This is a
result of short range inhibitory connections.
Denote the activity, or short time memory trace
(STM), of each cluster by xi+ and xi-. Because of
the inhibitory connections, the activity of the
population as a whole stays approximately
constant. Thus, we have,

xi+ + xi- ! C. (2)

The result of this, in the case of binary activation
values, is that either xi+ or xi- is on. Networks
with this property are often called dipoles and

have been thoroughly discussed by Grossberg
(1978).

B. Excitatory groups

Each population, vi, is further divided into a set
of smaller neural groups,

vi = {vi0, vi1, ..., vin}. (3)

Each group vij receives excitatory connections
from three sources.

C. Excitatory lateral interaction

The first source is the other neuron groups in the
same population. This excitation serves to make
the activation of all nodes in the population
approximately the same. If we denote the
activation of each neuron group in vi  by xi0, xi1,...,
xin then,

xij = xik, for i,j = 0, 1,..., n. (4)

This type of lateral excitation has been used by
Kohonen (1988) to acount for the formation of a
cluster of active neurons and by Edelman (1989)
to describe what he calls neuronal groups.

F (a)

F (b)

vi+

vi-

xi1
xi2

xi3

Figure 1. An idealized model of cortical organization.
The text describes the architecture in detail.

D. Intracortical Associations

The second source of activation is different for
each neural group in vi . Let group vij+ and vij-
receive input from population vj+. Note that only
positive populations are allowed to send
intracortical associations to other populations,
but both positive and negative populations
receive excitatory signals from other
populations.
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E. Projections

The last kind of excitatory connections project
from another set of neural populations F(b). All
neurons in a population are most responsive to
approximately the same activity pattern in F(a).
Thus, we can consider each population in F(a) to
be a feature detector for activity patterns in F(b).
The projection from F(b) to F(a) corresponds to
the specific afferent projection fibres to cortex
from lower structures or to longer intracortical
association fibres.

F. Activity equations

 Each population vi+ and vi - obey the following
non-linear equations,

\F(dxi ;dt) = -Axi+(B-xi)I\S(+;i)-"xi I\S(-;i),
(5)

where A describes the passive decay of the
activity, B is the upper bound for the activity, I+
describes the excitatory and I- the inhibitory
input.

I \ S ( + ; i ) = \ I \ s u ( j = o ; n ;
f(xj)w+;ji)+I(b);i, (6)

and,

I\S(-;i) = \I\su(j=o;n; f(xj )w\S(-;ji)) (7)

where wji+ is the strength of the connection from
population vj+ to vi + and wji- is the strength of
the connection from population vj+ to vi -. Ii(b)
describes the excitatory signals from F(b). (5) -
(7) are an approximation of the collective
behaviour of all cells in the population. It is also
possible to use a simpler linear approximation of
the activity equation (5).

\F(dxi ;dt) = -Axi + I\S(+;i) - I\S(- ;i), if xi#]0,
$[, (5')

\F(dxi ;dt) = min{0, -Axi  + I\S(+;i) - I\S(-;i)}, if
xi = $,
\F(dxi ;dt) = max{0, -Axi  + I\S(+;i) - I\S(- ;i)},

if xi  = 0.

For these equations to be valid we have to adjust
the wij:s to compensate for processes in the
individual cells in the population. How this is
done will be described in the next section.

The output function is chosen to be sigmoid or S-
shaped. A typical choice is,

fij(x) = \F(max(0, x-%ij)&;max(0, x-%ij)&+d),
(8)

where % is the threshold for the population; &
and ' are positive constants. Output functions

similar to (8) have been studied in different
contexts in many neural models (e.g. Grossberg
1973, Hopfield, 1984). In many studies the
following functions have been used instead,

fij(x) = 1/(1+e-x ), or (8')

fij(x) = tanh(x). (8'')

Given the weights wij, the equations (5)-(8)
define a constraint satisfying network. The
properties of these equations are more
thoroughly discussed by Grossberg (1973).

There are two different ways to understand what
happens in each population vi . The first approach
is to look at all the signals that are received by
the population and consider what pattern of
activity that makes the group of neurons respond.
We may consider the neuron group a recognizer or
categorizer for certain patterns in the rest of the
network. This is what Grossberg (1978) calls an
in-star (figure 2). The second approach is to
investigate what other populations are activated
by vi . In this case, we say that vi  reads out a
pattern in the other populations. The population
vi  is called an out-star.

Figure 2. (LEFT) A neuronal out-star; (RIGHT) A
neuronal in-star. The two figures illustrate two
interpretations of a neuronal operation. In the in-star
the neuron reacts on an input pattern while the out-star
produces a pattern of activity.

What makes this model presented in this paper
different from most connectionist models is not
the equations that govern the transient behaviour
of the system, but the way in which the synaptic
weights that define the processing are defined and
changed. This will be presented in the next
section.

3.2 Neural Plasticity

As a result of different activity patterns
presented in F(b), the synaptic weights within
F(a) are changed to let the system build a model
of its environment. The learning process is based
on a few simple principles: change of threshold.,
activity strengthening and environment
sampling.
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A. Change of threshold

The threshold of each neuron group vij changes
over time according to the following equation:

\F(d;dt)%ij = -C%ij + Dxij (9)

This makes % ij approach the exponentially
moving average of xij (Kohonen, 1988). If the two
positive constants C and D are chosen sufficiently
small and xij is an observation from a set of
patterns with static distribution, %ij is close to
the mean activation of vij. This can be interpreted
as growth of the neurons in vij if they receive
many signals. The larger size of the neuronal
soma reqiures more external activation if the
activity is going to reach the point where it starts
to fire. If the neurons receive few signals, the
process is the opposite. It decreases its size and
will be easier to activate.

B. Activity strengthening

As the somata of the neurons in vij grows larger
or smaller according to (9), they are more easily
activated. The output level of the population,
tends to change accordingly. This can be described
by,

out(xij) = (\F(1;1-%ij))(f(xi )zij-%ij) (10)

if we assume that % ij<1. The choice of this
particular output function makes the range of the
output independent of the probabilities of each
activity patern in F(a). The normalization factor
(1-%ij)-1  is not absolutely necessary for the
system to work but improves the performance
considerably.

C. Environment sampling

When the group vij is active, it samples its
environment in order to reproduce it the next
time it is activated. This is governed as,

\F(d;dt)zij = xij[-ezij+hxi ], (11)

where zij is the strength of the excitatory synapse
from xi  to xij. in analogy with (9), zij approaches
the mean activation of xi  at periods when xij is
active (Kohonen, 1988).

D. A probability approximation of the network
equations

If we assume the populations to take on binary
values, equations (8)-(11) suggest an
approximation for the connections, wij, described
above. This approximation rests on the
probability of coactivation of different neuron
groups:

wij!max(0,\F(p(j|i)-p(j);1-p(j))) (12)

p(j|i)=p(f(xj ) > ( | f(xi) > (), (13)

p(j)=p(f(xj ) > (). (14)

The parameter (  is used to decide when the
activity of a neuron is sufficiently close to 1 to be
considered active. This rests on the assumption
that the network receives binary activation
patterns. However, since the neurons normally do
not reach their maximal activation, we can not
replace the condition f(x)>(  with the more
obvious f(x)=1.

Equations (5)-(14) characterize a self-organizing
constraint satisfying network. This can be easily
understood if we consider equation (12), which
lets us interpret the weights in terms of the
involved probabilities. This has four important
consequences.

First, the weight of the connection from
population vi  to vj  is 0 if the activities of the two
populations are uncorrelated. This captures the
idea that the activity of one of two uncorrelated
populations does not contain any information
about the state of the other population. As a
result, they should not be able to influence each
other’s state.

Second, the connections have the same sign as the
correlation. This implies that the signs of the
two connections between two populations have
the same sign. For example, if the activity of
population vi  is positively correlated with
another population vj , this population must be
positively correlated with vi . However, the
strength of the correlation may be entirely
different.

Third, if vj  is always active when vi  is, (i.e. if
p(j|i)=1) the connection takes on its maximal
value. Similarly, if vj  is never active when vi  is,
(i.e. if p(j|i)=0) then the connection takes on its
minimal value. Consequently, there will be
strong inhibitory clusters among populations
that are never active at the same time and strong
excitatory clusters among populations that are
always active together. It seems that this
property can be used to automatically construct
an optimal clustering for competitive learning.
The network automatically constructs the
number of competetive and cooperational
clusters necessary to represent the structure of
the input. Also, the size of each cluster is
dependent on the input.

Fourth, the connections are asymmetric. With
asymmetrical interaction, population vi  can, in
principle, excite vj  even though vj  inhibits vi , but
by using (12), we know that the connections
between two populations have the same sign in
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both directions. Unfortunately, this makes the
system hard to analyze. We cannot easily define a
performance index like the harmony function
used by Smolensky (1988) or the energy function
used by Hopfield (1982, 1984) and Hinton and
Sejnowski (1985, 1988).

Formulas similar to (12)-(14) have been
frequently used in information theory as measure
of transferred information (cf. Hintikka, 1968).
We can interpret equation (12) as the information
that is transferred from the state of xi  about the
state of xj . This interpretation makes the meaning
of the four properties above intuitively sensible.

E. Convergence of Trajectories

In the special case when the weights of the
connections are symmetrical, Cohen and
Grossberg (1983) have found a Liapunov function
that can be used to analyse the behaviour of the
network. However, little success has been made
in the general case. The Liapunov function has
been used to analyse some networks with
asymmetrical connections, but it is unclear if that
type of analysis can be extended to cover the
network presented here. What we would like to
do is to find a simple way to predict the path
through its state space, the vector x = (x0, x1,..., xn)
will follow for every initial value. Especially
important is the question of convergence. Do the
trajectories of x converge for all initial value of x
and if so, to what point?

Computer simulations show that for weights
constructed according to (12) the trajectories of x
always converge, but the theoretical work that
guarantees that this is true in general is still
lacking.

3.3 Static Schemata

To understand the capabilities of the system
characterized in the last few sections we need an
interpretation of the neural activity at a higher
level. Such an interpretation is developed in this
section and shown to constitute a good candidate
for a schema level description of neural
mechanisms. We will first consider static
schemata. A static schema corresponds to a stable
pattern of activity in a network. Such schemata
will be used in this section to introduce the
schema concept and will later be generalized to
dynamic schemata which can handle more
complex structures.

A. Representational properties and protoypes

Each population in F (a) receives excitatory
signals from F(b). As a population responds only

to a subset of the activity patterns of F(b), it is
appropriate to consider the activity pattern over
the populations of F(a) as a categorization of the
activity in F(b). With each population of F(a),
we can associate a certain representational
property. There exists a set of activity patterns,
Pi , in F(b) for which a population, vi , in F(a),
reacts above a certain threshold. The property
associated with vi  corresponds to the activity
pattern in the part of F(b) that is shared by all
activity patterns in Pi . We may call this common
pattern the prototype for the property pi . The
activity of vi , can be considered the strength of
the hypothesis that a pattern in F (b) has the
property pi .

B. Prototypicality

It is interesting to note that the activity of vi is
invariant over a large set of patterns in F(b),
namely those for which the hypothesis pi  is
equally strong. Depending on the activity of vi
for each such invariant set, its members can be
placed at a certain distance from the prototype.
The closer to the prototype a pattern in F(b) is,
the greater effect on F(a). The higher activity in
F(a) for more prototypical patterns implies that
they are more easily recognized and have greater
influence on memory than patterns that are less
prototypical. Prototypes are further discussed in
relation to the computer simulations in section
4.1.

C. Perceptual properties

In the special case when F(b) is a part of the
nervous system involved in perception, the
activity of v i  should be understood as a
hypothesis on a property of the external world.
This interpretation is valid if we take into
account what seems to be a general principle of
neural representation, namely that of
representation by place (Carpenter, 1984,
Lansner, 1986). This postulate says that a neural
population is always responsible for the
representation of the same representational
property. Such a property is on a rather low level
and does not correspond directly to what is
usually understood as a property. Ordinary high
level properties such as the shape of an object
should be identified with sets of representational
properties.

D. Competition and cooperation

The activity patterns of F (b ) to which the
response of vi is greater than a certain amount, ),
defines a convex set in the statespace of F(b),
namely a sphere of large dimensionality. When
cooperation is learned among nodes, the spaces
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collapse to their disjunction. If competition
instead is learned and the prototypes are
sufficiently close, the spaces are changed to the
Voronoi tessellation corresponding to the
prototypes (Kohonen, 1988). This is the result of
the competition among the F(a) nodes. It forces
F (a) to choose the property with the largest
activity.

E. Definition of a schema

We can now define a schema, *, as an activity
pattern in  F(a),

* = < x0, x1, …, xn >, (15)

where xi  is the activity of population vi  and n is
the number of populations in F(a). Since we
equate each population in F (a )  with a
representational property pi , we may also
consider a schema as a set of such representational
properties, {pi , pj, ..., pk }, where pi  is in the set if xi
is greater than the threshold (. In the rest of this
paper, these two interpretations of a schema will
be used interchangingly.

The schemata self-organize according to the
system equations (5)-(14) defined above. After
some experience with the environment, in this
case the patterns in F (b ), the system will
construct schemata that represent different
aspects of the environment.  Let us consider some
of the different relations that can exist between
two schemata, * and +.

F. Schema containment

Let * = <*0, *1,…, *n> and + = <+0, +1,…,+n>. If
for each i *i  , +i, then we say that * is contained
in +. The schema * can be considered a more
general schema than + . The schema +  is an
instantiation of the schema *. The part of + not in
*, is a variable part of the schema *. This implies
that all schemata with *  as a subset can be
considered to be an instantiation of *  with
different variable instantiations. Thus, schemata
can have variables even though they do not have
any explicit representation of variables. Only the
value of the variable is represented and not the
variable as such. If we consider schemata sets of
representational properties, the notion of
containment corresponds to set inclusion.

The index of the instantiation is identified with
the added properties in + compared to *. The
possible instantiations are constrained by the
weights of the connections in the low level
neural system. This is the mechanism responsible
for conditions on variable instantiations and
default values. Since we can speak of a
containment relation on schemata, it follows

that there is an elementary possibility for the
embedding of schemata in each other. However,
for the tasks usually associated with schema
processing, this elementary form of embedding is
not sufficient. For example, self embedding is
not possible. In fact, the possible embeddings are
even more limited if we accept definition (15) of
schema above. Since each property can only occur
once in the schema, only schemata that do not
share any properties can be embedded. This is
truly too limited and some added mechanism is
needed. Such a mechanism will be developed in
section 3.5-3.7.

G. Generalization of schemata

Define the generalization of two schemata * and
+ as a new schema ", where for each i, "i  = min(*i ,
+i). In the set interpretation of schemata the
generalization corresponds to the disjunction of
the two sets * and +. If this disjunction, ", is not
empty, the two schemata are similar. For the
generalization of two schemata * and +, we will
use the notation * - + . The larger the
generalization is, the larger the similarity. This
can be the starting point of a definition of a
similarity measure for schemata. If * and + are
disjoint sets, they are not at all similar. This
simple idea of similarity is only justified if the
projection from F(b) to F(a) preserves the sizes
of the patterns. This does not hold in general, but
since learning in the F(b).F(a) projection will
not be discussed in this paper, the definition above
is sufficient for our present purposes. Since each
property is physically represented in a specific
place, two similar schemata cannot be represented
simultaneously without being mixed. This may
indeed sound limiting at first, but is only, if we
want everything to be actively represented at the
same time. This is not at all necessary and the
advantages of using a dynamic representation that
changes over time will be discussed below.

H. The coincidence of schemata

Define the coincidence of two schemata * and + as
a new schema ", where for each i, "i  = max(*i , +i).
If we interpret schemata as set of
representational properties, the coincidence of
two schemata is the schema that contains all the
representational properties of both the original
schemata. In other words, coincidence
corresponds to the union of sets. For the
concidence of * and and +, we write *•+.

I. Implicit associations

Define Imp(*, +) as the sum of the signals sent to
schema + if schema * is active. Thus, Imp() is a
function from two schemata to /. The strength
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of this function for all different *  and +
determines the model of the environment built
by the network. This is the schema level version
of connective weights between cell populations.
Depending on various assumptions on the neural
level, the definition of Imp() will be looking
different. No explicit example will be worked
out here. This is called an implicit association
since the association is not explicitly represented
in the schemata, but rather by the connections in
the network. Note that while the generalization
and coincidence are operators on the space of
schemata, the Imp() function is of a different
type.

J. Resonant schemata

From the Imp function it is a straight forward
matter to define a function from each schema * to
another schema [*]. [*] is the schema that get
activated as a result of the initial activation of *.
This is called the resonant schema corresponding
to *. It corresponds to the equilibrium state that
the neural level approaches with a certain input
corresponding to the schema *. We can also easily
define an equivalence class to each schema *. This
is the class of schemata for which the resonant
schemata are equal to [*].

K. Explicit association

Define Exp(* , +) as a monotone increasing
function of the size of the generalization of
schema * and +. The exact shape of the function
depends on assumptions on the neural level. Exp()
is a similarity measure for schemata. It can also
be used as a starting point for a discussion of
associations between schemata. The larger Exp is
the larger the association. Since the similarity is
explicitly represented in the schema, this type of
association is called an explicit association. How
such associations are used to form links between
schemata will be discussed below in section 3.4.

L. Categorisation and Association

The projection from F(b) to F(a) allows F(a)  to
act as a set of categorizers for the patterns in
F(b). The neuronal field F(a) acts as an auto-
associator whose items are the categories formed
in the F(b).F(a) projection. The two processes
of categorization and association are responsible
for all processing in the network described above.
It is possible to use the schema formulation to
show, in a formal way, how these two processes
are related. Such an analysis has been made in
Balkenius (1992). There is a simple intuitive
relation between the process of categorization
and the in-star architecture and association and
the out-star architecture. The out-star can be said

to read out an association to the network (figure
2).

3.4 Intermediate Memory as a
Basis for Multiple
Instantiations, Links and
Embeddings.

Definition (15) above excludes the possibility of
the representation of similar (in the sense defined
above) schemata simultaneously. The main
advantage of this kind of representation is that
everything the system learns about a schema is
automatically generalized to all instances of that
schema. Since no slots are used, there is no need to
move information from one slot to another. The
motivation for this type of schema
representations comes from the decision to avoid
strong assumptions about the number of slots
used for representations. It is also unclear how
slots could self-organize in a biological neural
network if they are not explicitly present in the
input.

To represent more than one schema, a mechanism
for intermediate memory is introduced. It is
important to realize that even if we postulate a
certain number of slots for representing different
items, we need a mechanism for saving the old
contents of those slots when their contents are
changed. For instance, consider the case of
linguistic representations. Assume that we have
one slot for each semantic role in a sentence. This
works well if we want to represent only one
sentence, but as soon as we want our schema
system to work with more than one sentence at a
time, we need some kind of storage mechanism.
We can as well introduce such a mechanism at
once and leave the problems with slots behind at
the same time.

To do this we need to do one additional
assumption at the neural level. The effect of the
activity in the presynaptic population on the
postsynaptic one is assumed to be temporarily
raised after simultaneous activation of both the
pre- and postsynaptic population. This can be the
result of one of the following neural
mechanisms.

A. Temporary lowering of the threshold in a
cell group, vij, after activation.

B. Temporary sensitation of the cell group,
vij, after activation.

C. Temporary depolarization of the synaptic
junctions after activation.
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Each of these three mechanisms above can be
approximated by,

 wij!max(0,\F(p(j|i)-p(j);1-p(j)))+IMij
(12')

where IMij is an intermediate memory term and,

\F(d;dt)IMij=-cIMij+'xij, (16)

or alternatively,

\F(d;dt)IMij=-cIMij+'xijxji (16')

This will function as an intermediate memory by
temporarily changing the set of resonant states.
Thus, the resonance function depends on the IM
matrix (a similar view of temporary changes of
neural connectivity can be found in von der
Malsburg and Bienenstock, 1986).

Example 1: Intermediate Memory

This example tries to explain the effect of the
added mechanism. Suppose we present two
schemata, * and +, to the system by manipulating
the activity in F(b). Assume that [*]=*  and
[+]=+. Also, suppose that the generalization of *
and + is ", i. e. "=*-+, and that there exists a
subset of *, denoted by *', that is not in +. First,
present the schema + to the network then reset
the activity of F(a) (figure 3a and b). If we now
present the schema " to the system, the schema +
will be recalled (figure 3c). This is because the
intermediate memory have changed " to +, i.e.
["]=+ . Thus, the most salient schema that is
similar to " is recalled. If, instead, we would
have used *' as input, the schema *=[*'] would
have been recalled (figure 3d). This mechanism
works for a large number of simultaneously
represented schemata in an intermediate memory.
The index of each instantiation of a schema is
identified with the part of the schema that
distinguishes it from other similar schemata. The
limiting factors are the similarity of the
different schemata in IM. The more similar they
are, the larger the probability that they will be
mixed with each other.

a. *

+

"

*'

t0

t1

b.

t2

t3

t2

t3

c.

d.

Figure 3. (a) The different schemata; (b) + is stored in
intermediate memory; (c) "  is used as a cue to recall +;
(d) * ' is used as a cue to recall *.

Example 2: Explicit linking

The intermediate memory can be used to represent
schemata that are linked to each other by means of
an explicit association relation. Let us say that
we want to represent a relation, 0, between two
schemata * and +. This is accomplished by storing
two patterns in the intermedient memory. First,
the coincidence of * and 0 are stored in IM, and
then the coincidence of + and 0 (Figure 4a and b).
This associates the two schemata *  and + by
means of the undirected relation 0. If we want the
relation (or link) to be directed, all we need to do
is to add to each instance of 0 some information
referring to the direction of the relation. Let 1
represent the schema for being first argument to
the relation and 2 the schema for being the last.
The directed relation is represented in IM as two
schemata, namely, *•1•0 and +•2•0 (Figure 4c).
To recall each part of the relation, we present
only a part of the relation, say 1•0 to recall *•1•0
or possibly a smaller part, if only a few schemata
are stored in IM (Figure 4d). This mechanism
works for any number of arguments to a relation.
It should be noted that this mechanism also can
handle some forms of self-embedding. It is
important to realize that none of the schemata *,
+, 0, 1 and 2 above necessarily must be exactly the
same each time they are represented as long as
they are sufficiently similar. This implies that
schemata can have a radial structure without
violating the mechanisms described here.
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a. *

+

*

+

0

0

0 2

b.
0 1

t0

t1

c.
0 1

+

Figure 4. Explicit linking. The figures are explained in
the text.

This completes the description of the system for
static schemata. The rest of the paper develops
some possible neural architectures for systems
capable of dynamic schema processing. Computer
simulations of the static schema system can be
found in section 4.1-4.4.

3.5 Representing sequential
structure

A. Mapping time into space

The usual approach to representing sequential
information in a neural network incorporates the
idea of mapping time into space. The most
commonly used method is to represent the input
each time at a different place. Using this idea we
need a different physical slot for each time slot
we want to be represented. This implies that the
number of slots used must equal the number of
events that we are going to represent in the
network. This is unsatisfactory for several
reasons. First, it shares the problems discussed
above with other mechanisms based on slots.
Second, as time moves on, we need to sequence the
inputs through the slots by means of a shift
operation. How this could be realized by a real
neural network is not clear for those models that
incorporate such mechanisms. It is highly
unlikely that a sequential buffer can be seen as a
biologically plausible mechanism (Grossberg
1978, 1986).

  t0 t1 t2

Figure 5. Time slots. Different parts of the network are
used to represent the schemata at different times.

B. Ignoring temporal structure

Another approach used by some researchers is to
ignore the dynamic aspects of the input totally,
and represent it directly as a spatial pattern
thereby mapping the temporal problem onto a
spatial one. (e.g. Rumelhart and McClelland,
1986) Since the mechanisms for static
representations are much better understood, this
may be a tempting route to follow, but it must be
taken into account that when the dynamical
problem is mapped onto a static one, much of the
original problems are lost, and thus, the
explanative power of the static model is reduced.

C. Intermediate memory as virtual slots

If we accept definition (15), neither of the above
mechanisms are acceptable. Fortunately, the
intermediate memory mechanism suggests a
solution. If we present a sequence of schemata to
the system, then each of them get stored in IM,
which acts as a set of virtual slots. Each slot can
be accessed by activating a sufficiently large part
of its content. This representation overcomes the
problem of choosing a fixed number of slots. A
sequential input of schemata is stored as a set of
potential schemata that are available for recall
from IM at any time.

What is missing now, is a representation of the
sequential ordering of schemata that can be
recognized by another part of the system. The
introduction of such a representation is needed to
process temporal structure. Consider a neural
circuit, G, with the following properties:

A. Each population in G receives input from
one population in a constraint satisfying
network (F(a)) that is capable of static
schema processing and intermediate
memory.

B. As a population in F (a) increases its
activity the corresponding population in G
receives a short pulse of activity. This can
be generated by a number of neural GATE
mechanisms (figure 6). The pulse causes
the state of a sequence sensitive DECAY
module (figure 9) to change in one of two
ways. The first type of change causes the
network to be order sensitive while the
second type makes it order and rhythm
sensitive.
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Figure 6. Three GATE mechanisms. As the input to the
lower population turns active, a short pulse is emitted
from the circuit.

D. An order sensitive circuit

The pulse increases the activity of the population
receiving it and decreases the activation in all
other populations either as a result of on-center
off-surround projection from G to S (figure 9a)
or as a result of lateral interaction within S
(figure 9b). These mechanisms are said to support
active decay of the activity in S since the activity
decreases only when S receives an input. Active
decay makes the representation in S independent
of the time between the impulses to F(a) and
thus makes S sensitive to order but not to rhythm
(figure 7).

Input

Output

x0

x1

x2

y0

y1

y2

t

t

t

t

t

t

Figure 7. The representation of order genrated by the
network in figure 9a. The input to the circuit is denoted
by xi and the output by yi .

E. A rhythm sensitive circuit

The pulse from G  increases the activity of
receiving population but leaves all other

activities in S  unaffected. Instead they decay
passively. This mechanism is said to support
passive decay and makes S both order and rhythm
sensitive (figure 8 and 9c).

Output y0

y1

y2

t

t

t

Figure 8. The representation of order and rhythm
generated in the circuit in figure 9c. The input is the
same as in figure 7.

a.

b.

c.

Figure 9. Three DECAY mechanisms. (a): Active decay
as a result of signal read-in. (b): Decay due to
normalizing properties within the field. (c): Passive
decay within each cell population.

The effect of each of the mechanisms above is to
leave a STM trace in S that encodes the sequential
ordering of the input to F(a). The more recently
the schema is received by F(a) the stronger the
activation of the corresponding populations in S.
Thus, these mechanisms produce an recency
gradient in S. (cf. Cohen and Grossberg, 1986,
Grossberg, 1973, 1986) The more recent an event,
the more active is its representation. This is a
mechanism that maps time into space and is
consistent with (15).
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F. Multiplicative decay

A particularly interesting case occurs when S
supports a multiplicative decay, i.e. the changes of
the temporal representations can be written as,

xi(t+3t) = c3t * xi (t), (17)

where if xi  is the activity of population i in S and
c does not depend on i. This leaves the relative
activities of the different population constant
even if the input to S is increased (see figure 8 and
10).

  
*

+

"

t0

t1

t2

Figure 10. The activity of the three populations in S( 1)

as a result of presenting the schema sequence (*,  +,  " )
to the system.

3.6 Recognizing and
Classifying Sequential
Structure

The last section describes how a sequence of
schemata could be converted to a spatial code. The
system has now to recognize these different
sequential orderings that are represented in S.
This can be done in a number of ways. The
simplest mechanism, capable of self-organization
of recognition classes, is a network using simple
competitive learning (Rumelhart and Zipser,
1988). But, as discussed by Grossberg (1980),
simple competitive learning cannot form a stable
categorization of arbitrary input vectors. The
problem is especially apparent when the input
vectors are highly linearly dependent as is the
case with the activity vectors in S. A number of
different options are available for the solution to
this problem.

A. Masking fields

One solution is to use a 'Masking Field'
architecture (MF) for recognition of the activity
vectors in S (Grossberg, 1986, 1987). MF:s are
especially interesting because of their ability to
segment input into substrings with lengths that
are highly context sensitive. The main idea is to
exploit a multiplicative decay property in S and
classify all subsequences represented in S
s imultaneously .  Then the  dif ferent

classifications of the subsequences are allowed to
compete with each other to form a stable
segmentation. The architecture of a MF is highly
complex and it would lead too far to describe it
in any detail here (for an extensive analysis refer
to Grossberg, 1986 or Cohen and Grossberg, 1986,
1987).

B. Self-organizing topology preserving maps

A simpler mechanism is the self-organizing
topology preserving mapping presented by
Kohonen (1988). Here, a set of activity vectors of
large dimensionality can be mapped onto one
single, or a few, dimensions. The mapping
preserves topology by letting neurons that are
close to each other code similar activity patterns.
Although the coding is not stable, recoding can
only be performed as a continuous movement of
parts of the map. This makes the problem of
instability smaller as long as the recoding
process does not proceed to fast. The mechanism
for producing a mapping from S  to the
recognition field R can be characterized in the
following way (figure 11):

Competition The populations in R compete for
the coding of an activity vector in S . The
population that receives the largest input is
selected as the winner.

Cooperation The winning population excites
populations physically close to it as a decreasing
function of distance.

Learning The winning populations and its
neighbors are allowed to change their receptive
fields towards the activity vector of S to make
them more responsive to the input pattern.

Figure 11. Laterally interconnected populations
capable of forming a topology preserving mapping
from the activity patterns in the lower field to the
upper.

This classification process is capable of
constructing a taxonomic map of the activity
vectors in S that are distributed over the nodes of
R.

With one of the afore-mentioned mechanisms, it
is possible for a schema processing system to
construct a classification for the different
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sequential orderings of static schemata that
appear in F(a). This classification can be used as a
basis for the prediction of the next schema in the
sequence, or as a trigger signal for sequential
production of schemata in F(a).

3.7 Prediction and
Production

A. Sequential read-out

The activity patterns in S show a recency gradient
with respect to the temporal ordering of the
schemata in F(a). There exists a number of neural
mechanisms that take a pattern with a primacy
gradient as input and produce a temporal sequence
of events as a result. Such a mechanism does the
opposite of G. While G takes a sequence of events
as input and produces a recency gradient, our next
mechanism takes a primacy gradient as input and
reads out a temporally ordered sequence of
events. For this, we need two modules, R-I and R-
O, for sequential read-in and read-out (figure 12).
We also need two levels of sequence
representations G ( 1 ).S(1).R(1)  a n d
G(2).S(2) . Let us first consider how a read-out
mechanism works and then proceed to how the
primacy gradient is constructed.

G

CS

R

G

R -I

R -O

S

S

(2)

(2)

(1)

(1)

(1)

Figure 12. The interaction between the different neural
modules in the schema processing system. CS:
constraint satisfying net (F(a)  and F(b)); G(1)  and
G(2) : gate circuits; S(1)  and S(2) : sequential
representation; R- I:sequential read-in module; R-O:
sequential read-out module.

Assume that the larger the signal in the
connection from a population in S2 to R-I, the
faster a signal is sent from R -I to R -O . Now
suppose that the mapping from S (1)  to R -O
represents a primacy gradient. If a single
population in G(2)  is activated, it will in turn
activate a sequence of populations in R-O. Let
activation of a population in R-O  emit a short
pulse to its corresponding population in F(a).
This could be accomplished by means of an
inhibitory connection from each node in R-O to
itself, or through an interneuron. This mechanism
is appropriate for the read-out of the primacy
gradient coded in the mapping from S(2)  to R -I
into F (a). The read-out mechanism may be
modulated by a read-out signal that non-
specifically activates all the nodes in R-O. This is
approximately the approach of Grossberg (1986)
and Cohen and Grossberg (1986). Another read-
out mechanism that uses a primacy gradient to
read-out sequences is discussed by Crick in his
model of attention (1984).

B. Learning of a primacy gradient

The last problem to consider is how the primacy
gradient is learned in the mapping from S(2)  to R-
I. Let R-I receive inputs from G(1) or F(a) in such
a way that each time a population is activated in
F(a), the corresponding population in R -I is
activated for a short time. If the activity of each
population in S(1)  is used as a sampling signal for
the corresponding population in R-I, the amount
of the pattern in R-I that S(2)  samples depends on
how recently a certain sequence was produced in
F(a). This produces a primacy gradient in the
mapping from S(2)  to R-I. The prediction read-
out at each time can be approximated by,

PREDt  = SSt \I\su(u=to;t; SSu RIu ), (18)

where SSt is the sampling signal at time t, and RIt
is the read-in signal at the same time.

C. Predicting a schema sequence

To predict schema sequences, we need to expand
the system with two modules with capabilities
similar to G(1)  and S(1) . These modules, G(2)  and
S(2) , represent the temporal ordering of the
classifications in R(1) . The greater the activity in
a population in S (2) , the more recently the
corresponding sequence was recognized by R(1) .
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SAMPLING 
SIGNAL

PREDICTION

READ-IN

Figure 13. Sequential Read-In module (R-I). The
sampling signal determines the amount of read-in
signal sampled by the population. The prediction is
approximately equal to the product of the sampling
signal and the average amount of sampled read-in.

Example 1: Learning a schema sequence

Assume that the sequence of schemata (*, +, ")
was produced in F(a). When * is produced, the
sequence (*), (of one item) is represented in S(1) .
It is now possible for R (1)  to recognize that
sequence. This in turn causes S(2) to represent that
the sequence (*) was recently recognized. At the
same time R-I is activated with *, it receives a
sampling signal from S(2) that lets the S(2).R-I
connections sample the pattern in R-I. Now + is
presented to the system. This causes S (1)  to
represent the sequence (*, +) which in turn is
recognized by R (1) . This activates a new
population in S(2)  that simultaneously decreases
the representation for (* ). This causes the
sampling signal from S(2)  to R-I to decrease, and
the second schema +  is sampled with less
intensity than * . At the same time the newly
activated population in S(2)  lets a different
population in R-I sample + with full intensity,
etc. The result is that the sequence (*) produces
the prediction of (+ , ") in R -I on later trails.
Note that it will only take one learning trail to
learn a sequence with this mechanism. It is also
possible for the system to work on several
sequences simultaneously if R(1)  use a MF-
architecture. Another possibility is to use several
layers of dynamical systems to handle
hierarchical structures in the input.

Example 2: Syntactic generalization

An interesting case occurs when we feed
sequences of similar schemata to the system. Say
that, we repeatedly feed the system the three
sequences, (*, +, "), (', 4, %) and (5, ), 6) where
the first schema in every sequence is similar to
every other first schema, i.e. they have some
common subschema. The same is true for the

other two schemata in the sequence. Call this
common subschema sequence (1, 2, 7). An input
of, say, (*), make the system predict the schema
sequence (+, ")) as the next two schemata. It also
predicts the sequence (2 , 7) since they are
subschemata of + and ". Suppose that IM contains
the three schemata *, 4 and 6, and * is actively
represented in STM. If the system now receives a
read-out signal, it will read out the sequence (2,
7) into F(a). This causes F(a) to represent the
two schemata [2] and [7] after each other. Let us
assume that due to the contents of IM, [2]=4 and
[7]=6. The actual sequence produced in F(a) will
be (* , 4 , 6 ). This is a straightforward
generalization from the observed sequences. Of
course the schema sequence (*, +, ") will also be
produced but the contents of IM forces it to be
ignored by F(a). Whether this is the case or not
depends on the relative importance of the
different schemata and the past experience. It
could also happen that (* , + , ") would be
produced in F(a) if the schemata 1, 2 and 7 were
very small relative to *, + and ", but in general
the more abstract sequence would be favoured
because it appears more frequently in the input. If
we consider the example again, what have been
learned by the system is a preferred sequential
ordering of the more abstract classes (1, 2, 7) and
not only the individual sequences. With the
experience of the three sequences, the system
could predict the class membership of a new
schemata, 8, in a new sequence such as (*, +, 8).
This could be the mechanism used to form
hypotheses about the semantic or syntactic class
of a word that has never before been presented to
the system.

4. COMPUTER SIMULATIONS

The rest of this paper describes a number of
computer simulations performed with the
system described above. The first four
investigates the different properties of the
constraint satisfying module (F(a)9F(b)). The
others demonstrate the capabilities of the
dynamic system. It is important to note that all
the computer simulations used exactly the same
architecture. It is also of interest to notice that
the network uses unsupervised learning. For the
simulations described below, this means that the
system did not receive any information about
what it was supposed to do. Neither did it receive
information about whether it was in the learning
phase or in the test phase. Thus, all the abilities
demonstrated below self-organizes from
observations in the environment.
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4.1 Prototype Extraction

A common experiment using neural networks
investigates their ability to find prototypes in a
data set. Since the F(a) module of the system is
constructed mainly for the construction of
associations between schemata and not for
classification, this task is especially interesting
to investigate. Two kinds of simulations were
performed.

   
Figure 14. The result of presenting one schema with
added noise to the system. The left figure shows the 10
inputs that were given to the system. The protoype bit
and the 3 bits that constitutes the schema are marked.
The right figure shows the receptive fields for each of
the nodes after learning. The first row shows the
receptive field of the schema bit. This is exactly the
schema in the input data. The left part of the diagram
describes the excitatory connections and the right part
the inhibitory connections.

A. Noise detection

In the first simulation, the system was given a set
of prototypes as input. The inputs were
represented as orthogonal binary vectors. Noise
was added to each instance of a schema. The noise
was uniformly distributed over all inputs and
consisted of bits of the vector turned from 0 to 1.
To check the learning, a prototype bit was
associated with each prototype. The prototypes
found in the data set could be recognized by
looking at the receptive fields corresponding to
each prototype bit. The prototype bit does not
influence the result of the learning but makes it
easy to recognize the prototypes if they are found
in the data. The result of the simulation showed
that all prototypes were found in the data set
independent of the sizes of the schemata and the

network. Thus, the noise was treated as noise and
did not influence learning. This result is an
obvious consequence of the learning equations
that govern learning in F(a). A scaled down
version of the simulation can be found in figure
14.

B. Prototypes with variables

The distribution of the noise in the second
simulation depended on the prototype in such a
way that it could be considered to be different
variable instantiations of the prototypical
schema. This means that each prototype had its
own noise that occurred together with that
prototype only. The alteration of the noise
changed the prototypes learned by the prototype
bits to include the prototype together with the
noise. Again, this is a consequence of the learning
equations for F(a). The learned prototype is such
that each instance of the schema has a large
influence on the prototype bit (figure 15).

4.2 Schema Restoration

Schema restoration is a task in which the system
is given a schema as input and has to figure out if
some part of it is missing or should not be there.
Simulations were performed on a number of
network sizes and for different number of
schemata of different sizes. The schema
prototypes learned by the system were entirely
randomly generated. Noise was added to the
inputs at the test trails by switching bits from 1
to 0 or from 0 to 1. The simulation showed that
even with a reasonable small number of
prototypes with sizes that were approximately
an eighth of the network size almost no schemata
were restored correctly with as little as 3%
noise. The reasons for this bad behaviour have to
do with the generation of schemata and the ideas
behind the learning equations. Since the
prototypical schemata are randomly generated
there is almost no structure to be found. This
makes the coding of constraints hard. A second
problem relates to the learning equations. As a
result of them, a bit that is changed from 0 to 1 is
treated differently from a bit that is changed
from 1 to 0. In the first case, pieces of added
information is given to the system. The single bit
can be in conflict with the rest of the input. In
most cases, it certainly is because it did not
belong to the input schema. This single bit will
strongly inhibit the rest of the input and move
the system away from the correct prototype. In
the second case, when a bit is missing in the input
it can be easily corrected by the rest of the input.
No interference occurs since a missing bit does
not cause any activity in the system. As a result,
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we would expect the system to be bad at
restoration but very good at associating to
missing information. This is studied in the next
simulation.

Figure 15. The resulting receptive fields after
exposition to one schema with varying variable
instantiations. The prototype bit responds to all
possible instantiations of the schema.

4.3 Schema Association -
Naming

Schema association is a task in which the system
learns a set of pairs of schemata. On later trails
the network has to recall both schemata in the
pair when one of them is given as input. Two
kinds of simulations were done: random
associations and structured associations.

In the first kind of simulation, the system was
taught random schemata of a certain size (SS). In
the test phase, parts of the schemata previously
learned were presented. The task for the network
was to recall the missing parts of the presented
schemata. Simulations were performed with
different network sizes (N) and with different
number of schemata (NS). The amount of the
schemata that were missing was also varied (PD).
The system performed this task fairly well. Even
when as much as 60% of the schemata were
missing, 79% of the them were recalled correctly,
in average (N=100, NS=32, SS=16). When the
schemata were smaller compared to the network
size, the result was even better.

The second simulation was a so called naming or
identification test. Two sets of schemata were
constructed. The first, NAME, contained the
schemata for different names. They were

represented as a set of orthogonal vectors. The
second set, THINGS, contained a number of
schemata for things that corresponded to the
names in NAME. The things were represented as
random binary vectors. Tests were made after
different number of expositions to the pairs of
schemata. The performance proved to be
excellent. The associations in both directions
between NAME and THINGS were correct 100%
of the time after as little as one exposition to
each pair in the training data. An interesting
variation of the test is when the input pairs are
not exactly the same every time they are
presented. Two kinds of such deviations from the
prototypical pairs were introduced.

A. Differentiated schemata for things

The first kind of deviation distorts the schemata
for things a little on each learning trail. This
corresponds to observations of a set of things
that are members of the same class and called the
same name. This transforms the naming task to a
prototype extraction task (simulation 4.1).

B. Wrong name

The second error that can be introduced is to use
the wrong name for things in some of the
expositions. Again, the performance of the
system is very good. The number of errors made
depends on how often the wrong name is paired
with a certain thing. If the erroneous names
stands for things with schemata similar to the
presented schemata, more expositions to the
correct pair is necessary before the error is
corrected. But the system will forget the
erroneous namings in the long run and start to use
the correct name for a thing. How systematic the
errors are is also important. If they are
completely random, almost no effect can be
found on the system if many expositions are
performed.

4.4 Constraint Satisfaction

The static schema system was constructed to
perform constraint satisfaction and we would
expect it to behave very well on such task. This is
indeed the case and can be seen from the result of
this last simulation with the static system. The
task was similar to the naming task described
above. The difference was that a simple
environment was simulated for the system to
observe.

The environment consists of four persons (John,
Sam, Ann and Mary) that can perform four
activities (Kick, Hit, Kiss and Love). Each of the
persons can be either the agent or the patient of
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each of these activities. Each person is represented
as a binary vector with a certain bit for each
person and some bits (4) that are similar to all
persons. This makes it possible for the system to
recognize both similarities and differences among
people. The coding of the different entities in the
world can be seen in figure 16.

Figure 16. The representation of the environment. Each
row represents an item in the environment. A filled
area represents an activity value of 1 while an empty
area corresponds to 0. The 4 first are the four persons,
the 4 next are the activities, the next 2 represent
whether a person is active or not, and the eight last
represent the eight words used. What the individual
dots represent does not matter as long as they contain
enough information, i.e. similar items have similar
codings and distinc item have distinc coding.

The result of the simulation is show in figure 11.
A rich structure has been learned. This structure
completely describes the observed environment.
The schemata that can occur in the system are
exactly those of the observed environment. This
demonstrates the ability of F (a) to form
constraints between the different schemata.
When the structure of the environment can be
described by such constraints, the storage capacity
of the system is very high. The theoretical limit
is 2N, if N is the network size. This is of course
an environment were exactly everything occurs.
All combinations cannot be constructed by the
sytem, but the number of stored states can be as
large as 2N if the environment has a certain
structure.

Figure 18 shows the connections in figure 17 in an
alternative way. The different nodes have been
sorted into groups according to their distribution
in the input patterns. Nodes that excite each other
are connected with lines.We can see that a name of
a person will come to excite both the general
person schema and a specific person schema for
that person. The network can also be used the
other way around. A person specific schema will

activate the general person schema as well as the
name schema of that person..

Figure 17. The connections in F(a)  after presentation of
the environment. To the left in each row are the
strengths of the excitatory conections from the
corresponding poulation. To the right, the inhibitory
connections from each population are shown. If we
consider each node an out-star, the pattern shown to the
left of each row indicates the pattern that will be read
out if we activate the corresponding population.For
example, node 8 will excite nodes 1 through 4, node 8
and node 20 while the other nodes will be inhibited.
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Figure 18. The configuration of F(a)  when the
structure of the environment is learned. The dotted
frames represent competetive clusters among the
schemata. Such clusters were formed for name
schemata, activity schemata, person schemata and role
schemata. This captures the structure of the simulated
environment exactly. Lines show cooperational
interaction among schemata. They are directed where
shown. Each persons schema activates the
corresponding name schema. The same is true for verb
schemata. Role schemata excites both the person
schema and the verb schema since a role was always
assigned to a person when he was involved in an action.
For the same reason, it also excites all other schema
but not as strongly. On the other hand the role nodes
does not receive any connections from the person or
verb schema since they do not contain any information
about the roles. Not only does the network code the
structure of the environment but also who is most
likely to do what. In the figure shown here, everything
was equally likely to happen. If this had not been the
case, we would expect connections between the person
and the verb schemata nodes.

4.5 Taxonomic Classification
of Sequences

The set of word schemata from simulation C and
D was given to the system. The word order was
varied and the dynamic system was allowed to
learn the different orderings. This causes a map of
the different orderings to be constructed in R(1) .
Nodes close to each other code similar word
order. The type of mapping is demonstrated by
table 1.

4.6 Prediction

The dynamic system is capable of recognizing and
predicting sequences. The task in D was
performed again using 'real' sentences with three
words to describe the situations observed in the
environment. The learning task made extensive

use of intermediate memory to temporarily store
samples of the environment.

Node Word sequence
1 John kisses Mary
2 John kisses Ann
3 John hits Ann
4 John hits Sam
5 Sam hits John
: :

Table 1. A part of the map formed in R(1)  as a result of
observing different sentences. Similar sequences are
coded by nodes that are close.

P+V V+P
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Act Pat
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Act PatP V

(1)

(1)

(1)

(2)

(2)

Figure 19. The pathways constructed through the
dynamical system as a result of the self-organizing
process. Only two pathways are shown. If the person
schema is activated first and the verb schema later, R(1)
will recognize this sequence and predicting the role
agent to the person. If instead the person schema is
activated last and the verb schema first the role patient
is predicted. This shows that the network has learned
some elementary facts about word order.

A typical input was a three word sequence such as
"John loves Mary" together with two samples of
the environment representing John • Loves •
Agent and Mary • Loves • Patient. Note that the
sentence input was given in real time and not
presented as a single pattern. The dynamic system
had to recognize the different ordering of the
inputs and learn to assign roles accordingly.
When about half of the possible sentences had
been shown, the system was tested with word
inputs alone. The task for the system was to
construct the corresponding semantic
information. This was accomplished in all cases.
The result of the self-organization in the
dynamical system can be seen in figure 13. The
word order Person • Verb is associated with the
Agent schema and the word order Verb • Person
is associated with the Patient schema. This is a
very simple example of what can be done with
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the system, but it nevertheless shows that real
time parsing is possible in a neural network and
can be taught from examples. It is obvious that
the mechanisms described here work for longer
sequences too. Only the size of the dynamical
system limits the number of different sequences
that can be learned. It is also possible to put a
second dynamic system on top of the first in
order to recognize hierarchial structures.

4.7 Production

Finally, the system from simulation F was given
only the environmental information as input
together with a production signal. This had the
desired effect and the sentences were read out
with the correct word order (Table 2).

This example shows that production of sentences
can be generated by the same mechanism that
perfom the parsing. The content of CS i s
resposible for the prediction of the sequence.
Depending on CS  different sentences can be
produced. If the desired information is not in CS,
it is recalled from IM if possible. Simulations
have been performed in which the contents of CS
had to select either an active or a passive sentence.
This too was accomplished very easily. Note that
the system did not learn every sentence in
advance. The syntax observed could be
generalized to new situations in which the
system had never received any sentences.

5. CONCLUSION

This paper has shown how it is possible to
construct a neural network that is capable of self-
organizing the processing of schemata and
sequential information. The basic building blocks
of this system are the constrain satisfying

network which incorporates categorisation,
association and learning and the dynamic system
capable of recognizing and producing sequences in
the constraint satisfying network. The dynamic
system also suggests that a neural network could
be further developed to handle more complex
information by using further levels of sequence
categorizers. The system could also be modified
in other ways to enhance some of its capabilities.

In general, the system can be considered to have
two main types of components. One is the
categorizing parts of the modules that recognize
different types of information, either static or
sequential, and the other is the associative parts
that makes the information from the categorisers
useful in some other part of the network. We can
thus recognize two types of processes: those that
generate information and those that make use of
that information. The constraint satisfying
network described in this paper is an ideal
mechanism for building the correct associations
from the categorisers to other parts of the
network. These mechanisms can be used in a
number of different applications that involve
static and sequential information. Processing of
linguistic information has been used as an
example, but it is likely that the mechanisms
involved in many other cognitive processes are of
a similar kind.

Some directions for the development of a high
level description of neural systems that can be
used as the basis for a schema system have also
been introduced. This level is more suitable for
the description of language learning and
processing since it is more general and does not
necessarily involve a specific neural model. These
ideas has been further developed in Balkenius
(1991, 1992).

Time Input Prediction Result Read-Out Sequence Prediction Syntactic Production

t 1 Mary•Kiss•Pat Mary•Kiss•Pat — —

t 2 John•Kiss•Ag John•Kiss•Ag — —

t 3 — John •Kiss•Ag (P•Ag, V, P•Pat) P•Ag

t 4 — John•Kiss•Ag (V, P•Pat) V

t 5 — Mary •Kiss•Pat — P•Pat

Table 2. Read-out of a sentence after the environmental inputs have been presented. At time t0 and t1, two observations
of the environment are presented. In this case the two schemata for ‘Mary is beeing kissed’ and ‘John kisses’. At time t2
a production signal is received by the dynamic system. This causes a read-out of the predicted sequence at S(2)  to occur.
The read-out excites first the person that is agent then the verb and at last the patient is recalled from IM  to be read
out into CS. The syntactic production at R-O is the result of the prediction from S(2) .
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