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Abstract: It is often claimed that the symbolic approach to 
information processing is incompatible with connectionism 
and other associationist modes of representing information. 
I propose to throw new light on this debate by presenting 
two examples of how logic can be seen as emerging from an 
underlying information dynamics. The first example shows 
how intuitionistic logic results very naturally from an 
abstract analysis of the dynamics of information. The 
second example establishes that the activities of a large 
class of neural networks may be interpreted, on the 
symbolic level, as nonmonotonic inferences. On the basis of 
these examples I argue that symbolic and non-symbolic 
approaches to information can be described in terms of 
different perspectives on the same phenomenon. Thus, I find 
that Fodor and Pylyshyn’s claim that connectionist systems 
cannot be systematic and compositional is based on a 
misleading interpretation of representations in such systems. 

1. TWO PARADIGMS OF COGNITIVE 
SCIENCE 
There are currently two dominating paradigms 
concerning how cognitive processes can be identified. 
The first is the symbolic paradigm according to which 
the atoms of mental representations are symbols 
which combine to form meaningful expressions. 
Information processing involves above all compu-
tations of logical consequences. In brief, the mind is 
seen as a Turing machine that operates on sentences 
from a mental language by symbol manipulation. The 
second paradigm claims that cognition is character-
ized by associations. This idea goes back to the 
empiricist philosophers, but it has recently seen a 
revival in the emergence of connectionism. It has been 
often been claimed that these two paradigms are 
fundamentally at odds with one another, most notably 
by Fodor and Pylyshyn (1988). I shall argue that they 
are not. 

1.1 The symbolic paradigm 

The central tenet of the symbolic paradigm is that 
mental representation and information processing is 
essentially symbol manipulation. The symbols can be 
concatenated to form expressions in a language of 
thought – sometimes called Mentalese. A mental state 
is identified with a set of attitudes towards such 
expressions. 

The content of a sentence in Mentalese is a 
proposition or a thought of a person. The different 
propositional attitudes in the mental states of a person 
are connected via their logical or inferential relations. 
Pylyshyn writes (1984, p. 194): “If a person believes 
(wants, fears) P, then that person’s behavior depends 
on the form the expression of P takes rather than the 
state of affairs P refers to ... .” In applications within 
AI, first order logic has been the dominating 
inferential system, but in other areas more general 
forms of inference, like those provided by statistical 
inference, inductive logic or decision theory, have 
been utilized. 

Processing the information contained in a mental state 
consists in computing the consequences of the 
propositional attitudes, using some set of inference 
rules. The following quotation from Fodor (1981, p. 
230) is a typical formulation of the symbolic 
paradigm: 

”Insofar as we think of mental processes as 
computational (hence as formal operations 
defined on representations), it will be natural 
to take the mind to be, inter alia, a kind of 
computer. That is, we will think of the mind as 
carrying out whatever symbol manipulations 
are constitutive of the hypothesized 
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2 computational processes. To a first approxi-
mation, we may thus construe mental opera-
tions as pretty directly analogous to those of a 
Turing machine.” 

The material basis for these processes is irrelevant to 
the description of their results – the same mental state 
with all its propositional attitudes can be realized in a 
brain as well as in a computer. Thus, the symbolic 
paradigm clearly presupposes a functionalist 
philosophy of mind. The inference rules of logic and 
the electronic devices which conform to these rules 
are seen to be analogous to the workings of the brain. 
In brief, the mind is thought to be a computing device, 
which generates symbolic sentences as inputs from 
sensory channels, performs logical operations on 
these sentences, and then transforms them into 
linguistic or non-linguistic output behaviors. 

A further claim of the symbolic paradigm is that 
mental representations cannot be reduced to neuro-
biological categories. The reason is that the functional 
role of the symbolic representations and the inference 
rules can be given many different realizations, 
neurophysiological or others. The causal relations 
governing such a material realization of a mental state 
will be different for different realizations, even if they 
represent the same logical relations. Thus, according 
to functionalism, the logical relations that characterize 
mental representations and the information processing 
cannot be reduced to any underlying neurological or 
electronic causes. (Cf. P. S. Churchland 1986, Ch. 
9.5.) 

The outline of the symbolic paradigm that has been 
presented here will not be explicitly found in the 
works of any particular author. However, a defense of 
the general reasoning can be found, for example, in 
the writings of Jerry Fodor (1981, Introduction, and 
Chs. 7 and 9) and Zenon Pylyshyn (1984), and in their 
joint article Fodor and Pylyshyn (1988). It is also 
clear that the symbolic paradigm forms an implicit 
methodology for most of the research in AI. 

1.2 The associationist paradigm 

For Hume, thinking consists basically in the forming 
of associations between “perceptions of the mind.” 
This idea has since then been developed by the British 
empiricists, the American pragmatists (William 
James), and, in particular, by the behaviorists. Their 
stimulus–response pairs are prime examples of the 
notion of an association. Dellarosa (1988, p. 29) 
summarizes the central tenet as follows: 

”Events that co-occur in space or time become 
connected in the mind. Events that share 
meaning or physical similarity become 
associated in the mind. Activation of one unit 
activates others to which it is linked, the 
degree of activation depending on the strength 

of association. This approach held great 
intuitive appeal for investigators of the mind 
because it seems to capture the flavor of 
cognitive behaviors: When thinking, 
reasoning, or musing, one thought reminds us 
of others.” 

During the last decades, associationism has been 
revived with the aid of a new model of cognition: 
connectionism. Connectionist systems, also called 
neural networks, consist of large numbers of simple 
but highly interconnected units (”neurons”). Each unit 
receives activity, both excitatory and inhibitory, as 
input; and transmits activity to other units according 
to some function (normally non-linear) of the inputs. 
The behavior of the network as a whole is determined 
by the initial state of activation and the connections 
between the units. The inputs to the network also 
change the ’weights’ of the connections between units 
according to some learning rule. Typically, the change 
of connections is much slower than changes in 
activity values. The units have no memory of 
themselves, but earlier inputs may be represented 
indirectly via the changes in weights they have 
caused.1 In the literature one finds several different 
kinds of connectionist models (Rumelhart and 
McClelland 1986, Beale and Jackson 1990, Zornetzer, 
Davis and Lau 1990) that can be classified according 
to their architecture or their learning rules. 

Connectionist systems have become popular among 
psychologists and cognitive scientists since they seem 
to be excellent tools for building models of 
associationist theories. And networks have been 
developed for many different kinds of tasks, including 
vision, language processing, concept formation, 
inference, and motor control. (Beale and Jackson 
1990, Zornetzer, Davis and Lau 1990). Among the 
applications, one finds several that traditionally were 
thought to be typical symbol processing tasks. In 
favor of the neural networks, it is claimed by the 
connectionists that these models do not suffer from 
the brittleness of the symbolic models and that they 
are much less sensitive to noise in the input 
(Rumelhart and McClelland 1986). 

1.3 The unification program: Different perspectives 
on information 

It is generally claimed that the symbolic and the 
associationist/connectionist paradigms are 
incompatible. Some of the most explicit arguments for 
this position have been put forward by Smolensky 
(1988, p. 7) and Fodor and Pylyshyn (1988). 
Smolensky argues that, on the one hand, symbolic 
programs requires linguistically formalized precise 
rules that are sequentially interpreted (hypothesis 4a 

                                                           
1For a more formal treatment of neural networks, see 
Section 3.1. 
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3 in his paper); and, on the other hand, connectionist 
systems cannot be given a complete and formal 
description on the symbolic level (hypothesis 8).  

He also rebuts the argument that, in principle, one 
type of system can be simulated by a system of the 
other kind. Firstly, he argues, connectionist models 
cannot be “merely implementations, for a certain kind 
of parallel hardware, of symbolic programs that 
provide exact and complete accounts of behavior at 
the conceptual level” (Hypothesis 10, p. 7) since this 
conflicts with the connectionist assumption that neural 
networks cannot be completely described on the 
symbolic (”conceptual”) level (Hypothesis 8c, pp. 6–
7). Secondly, even if a symbolic system is often used 
to implement a connectionist system, “the symbols in 
such programs represent the activation values of units 
and the strength of connections” (p. 7), and they do 
not have the conceptual semantics required by the 
symbolic paradigm. Thus the translated programs are 
not symbolic programs of the right kind. 

Fodor and Pylyshyn’s (1988) main argument for the 
incompatibility of the symbolic and the 
associationist/connectionist paradigms is that 
connectionist models, in contrast to the symbolic, lack 
systematicity and compositionality.2 By saying that 
the capabilities of a system are systematic they mean 
that “the ability to produce/understand some sentences 
[symbolic expressions] is intrinsically connected to 
the ability to produce/understand certain others.” 
(ibid., p. 37) To give a simple example, if you can 
express or represent “Abel hits Cain” and “Beatrice 
kisses David,” you can also express or represent, e.g., 
“Cain hits David” and “Abel kisses Beatrice.” 
Compositionality is a well-known principle which 
requires that symbolic expressions can be composed 
into new meaningful expressions. This principle is 
required to “explain how a finitely representable 
language can contain infinitely many nonsynonymous 
expressions.” (ibid., p. 43) Fodor and Pylyshyn’s 
arguments for why connectionist systems cannot be 
systematic and compositional will be presented (and 
criticized) in Section 4.2. 

It thus seems that there is an impenetrable wall 
between the symbolic and the connectionist 
paradigms. One of my aims in this article is to show 
that they can be unified. I will argue that the alleged 
conflict between these paradigms can be resolved by 
adopting two different perspectives on how 
information is processed in various systems.  

One perspective on an information processing system 
is to look at its dynamics, i.e., how one state of the 
system is transformed to another, given a particular 
input to the system. This perspective is the normal one 

                                                           
2They also claim that they lack productivity (Section 3.1 in 
their paper) and inferential coherence (Section 3.4), but 
these arguments seem to carry less weight for them. 

to use when describing a connectionist system. The 
other perspective is to forget about the details of the 
transition from the input to the output and only 
consider what is represented by the input and its 
relation to what is represented by the output. As will 
be shown below, this relation can often be interpreted 
as a symbolic inference, completely in accordance 
with the requirements of the symbolic paradigm. 
Thus, in a sense to be made more precise later, by 
changing from one perspective to the other, symbolic 
inferences can be seen as emerging from dynamic 
’associations’. The pivotal point is that there is no 
need to distinguish between two kinds of systems – the 
two perspectives can be adopted on a single 
information processing system. 

I will start out, in Section 2, by describing the 
dynamics of an information processing system in a 
very abstract way. Here the details of the process are 
of no importance. What counts is merely the relation 
between the input and the output. Using this simple 
structure, I shall introduce a definition of what a 
proposition is, which does not presume any form of 
symbolic structure. Nevertheless, if one looks upon 
these propositions from another perspective, it turns 
out that there is a logic to them. 

In Section 3, I will become more concrete and 
actually use connectionist systems as models of the 
dynamic processes. Again, by adopting a different 
perspective on what the system is doing, I shall show 
that it can be seen as performing logical inferences. It 
turns out that nonmonotonic inferences can be 
modelled in a natural fashion by such systems. 

In Section 4, I shall return to the alleged clash 
between the symbolic and the connectionist 
paradigms. In the light of the example from Section 3, 
I shall argue that Fodor and Pylyshyn’s criticism of 
connectionist systems is misplaced. Furthermore, I 
shall use the examples from Sections 2 and 3 to 
support the claim that there is no fundamental conflict 
between the two views. 

2. THE DYNAMICS OF INFORMATION 
AS A BASIS FOR LOGIC 
The proper objects of logic are not sentences but the 
content of sentences. Thus, in order to understand 
what logic is about, one needs a theory of 
propositions. In traditional philosophical logic, a 
proposition is often defined in terms of possible 
worlds, so that a proposition is identified with the set 
of worlds in which it is true.  

With this definition, it is easy to see how the logic of 
propositions can be generated. By using standard set-
theoretical operations, we can form composite 
propositions: The conjunction of two propositions is 
represented by the intersection of the sets of possible 
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4 worlds representing the propositions; the disjunction 
is represented by their union; the negation is 
represented by the complement with respect to the set 
of all possible worlds; etc. As is easily seen, this way 
of constructing the standard logical connectives 
results in classical truth-functional logic. The 
underlying reason is simply that the ’logic’ of the set-
theoretical operations is classical. In this sense we see 
how already the ontology used when defining 
propositions determines their logic. 

2.1 An alternative definition of propositions 

I shall now present another way of defining a 
proposition, based on the dynamics of information 
states, and show how this definition leads to a 
different perspective on logic. The construction 
presented here is adapted from Gärdenfors (1984, 
1985). 

The ontologically fundamental entities in the 
reconstruction of a propositional logic will be 
information states.3 In this section, no assumptions 
whatsoever will be made about the structure of the 
information states. However, the interpretation is that 
they represent states in equilibria in the sense that the 
underlying dynamic processes are assumed to have 
operated until a stable state is reached.4 

What can change an information state in equilibrium 
is that it receives some form of informational input5 
that upsets the equilibrium and starts the dynamic 
processes again. Here, I will avoid all problems 
connected with a more precise description of what an 
informational input is. I will simply identify an input 
with the change it induces in an information state.  

Formally, this idea can be expressed by defining an 
informational input as a function from information 
states to information states. When a function 
representing a certain input is applied to a given 
information state K, the value of the function is the 
state which would be the result of accommodating the 
input to K. This way of defining informational input 
via changes of belief is analogous to defining events 
via changes of physical states.  

If two inputs always produce the same new 
information state, i.e., if the inputs are identical as 
functions, there is no epistemological reason to 
distinguish them. Apart from information states, the 
only entities that will be assumed as primitives in this 
section are functions of this kind which take 
information states as arguments and values.  

                                                           
3Information states were called states of belief in 
Gärdenfors (1984) and (1988). 
4Cf. the 'resonant states' described in Section 3.1. 
5Informational inputs were called epistemic inputs in 
Gärdenfors (1984) and (1988). 

The most important type of input is when new 
evidence is accepted as certain or ’known’ in the 
resulting information state. Below, I will concentrate 
on this type of input.6 Input corresponding to 
accepting evidence as certain represents the simplest 
kind of expanding an information state and is one way 
of modelling learning. The information contained in 
such an input will be called a proposition. Following 
the general identification of inputs presented above, 
propositions are defined as functions from informa-
tion states to information states. This definition will 
be the point of departure for the reconstruction of 
propositional logic from the dynamics of information. 
Veltman (1991, p.1) gives an informal account of this 
definition in the following way: “You know the 
meaning of a sentence if you know the change it 
brings about in the information state of anyone who 
accepts the news conveyed by it.” 

As a first application of the definition, a central 
concept for information can now be introduced: A 
proposition A is said to be accepted as known in the 
information state K if and only if A(K) = K. 

It is important to keep in mind that not all functions 
that can be defined on information states are 
propositions. Propositions correspond to a certain type 
of informational input, to wit, when new evidence is 
accepted as certain. In order to characterize the class 
of propositions, I will next formulate some postulates 
for propositions. Before this is done, we cannot speak 
of the logic of propositions. 

2.2 Basic postulates for propositions 

First we need a definition of the basic dynamic 
structure. A dynamic model7 is a pair <K, P>, where 
K is a set and P is a class of functions from K to K. 
Members of K will be called information states and 
they will be denoted K, K', … . The elements in P 
represent the propositions. A, B, C, ... will be used as 
variables over P. It should be noted once again that 
nothing is assumed about the structure of the elements 
in K. 

It will be assumed that the informational inputs 
corresponding to propositions can be iterated and that 
the composition of two such inputs is also a 
proposition. The composition of two propositions A 
and B will be denoted A3B (remember that A3B is not 
an element of some formal language, but a function 
from information states to information states). 
Formally, this requirement is expressed in the 
following postulate: 

                                                           
6Other forms of informational inputs are discussed in 
Gärdenfors (1988). 
7Dynamic models were called belief models in Gärdenfors 
(1988). 
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(P1) For every A and B in P, there is a function 
A3B which is also in P such that, for every K in K, 
A3B(K) = A(B(K)). 

It will also be postulated that the composition 
operation is commutative and idempotent:8 

(P2) For every A and B in P and for every K in K, 
A3B(K) = B3A(K). 

(P3) For every A in P and for every K in K, 
A3A(K) = A(K). 

We can now introduce the fundamental relation of 
logical consequence between propositions: A 
proposition B is a consequence of a proposition A in a 
dynamic model <K, P>, if and only if B(A(K)) = A(K), 
for all K in K.  

The identity function, here denoted by Å, will be 
assumed to be a proposition: 

(P4) The function Å, defined by Å(K) = K, for all 
K in K, is in P. 

A proposition A is a tautology in the dynamic model 
<K, P>, if and only if A(K) = Å(K), for all K in K.  

The next postulate will be a formal characterisation of 
the information obtained when one learns that one 
thing implies another (or is equivalent to another).  

(P5) For every A and B in P, there is a function C 
in P such that  

(a) for all K in K, A(C(K)) = B(C(K)); 

(b) for any function D in P such that A(D(K)) = 
B(D(K)) for all K in K, there is a function E in P 
such that D(K) = E(C(K)), for all K in K. 

A function C which satisfies (a) and (b) will be called 
an equalizer of A and B. With the aid of (P2) it can be 
shown that there is only one equalizer of A and B in P. 
We can thus give the proposition postulated in (P5) a 
well defined name: the equalizer of A and B will be 
denoted A×B. From this we define the proposition 
A∅B which corresponds to the information that A 
implies B, by the equation (A∅B)(K) = (A×(A3B))(K). 
for all K in K. 

The negation of a proposition will be defined by first 
assuming the existence of a ’falsity’ proposition: 

(P6) In every dynamic model <K, P> there exists a 
constant function ⊥ in P, i.e., there is some K⊥ in 
K such that ⊥(K) = K⊥ for all K in K. 

                                                           
8For motivations of these and the following postulates, see 
Gärdenfors (1984). 

K⊥ will be called the absurd information state. As is 
standard in propositional logic, the negation ¬A of a 
proposition A is defined as the proposition A ∅ ⊥.  

The postulate for disjunction will be in the same style 
as the postulate concerning equalizers: 

(P7) For every A and B in P, there is a function C 
in P such that 

(a) for all K in K, A(C(K)) = A(K) and B(C(K)) = 
B(K); 

(b) for any function D in P that satisfies (a), there 
is a function E in P such that E(D(K)) = C(K) for 
all K in K. 

A function C that satisfies (a) and (b) will be called a 
disjunction of A and B.  

2.3 Completeness results 

I have now introduced postulates for operations on 
propositions that correspond to each of the standard 
propositional connectives. I will next present some 
technical results which answer the question of which 
’logic’ is determined by these postulates. 

The crucial point in my construction is that 
expressions like (A×(A3B))(K) can be viewed from 
two perspectives. Officially, the expressions like 
A×(A3B) are not sentences in a language but functions 
defined on information states. However, given that the 
postulates (P1) – (P7) are satisfied for the class of 
functions in P there is, of course, an obvious one–one 
correspondence between the propositions in a 
dynamic model and the sentences in a standard 
’propositional’ language (Å and ⊥ are sentential 
constants in this language). In other words, when (P1) 
– (P7) are satisfied, a syntactic structure ’emerges’ 
from the class of functions. This entails that we can 
consider the propositions that are tautologies in a 
given dynamic model as a class of sentences and then 
ask how the formulas which are included in all such 
classes can be axiomatized. If we really want to have 
an explicit symbolic structure, we can view 
expressions of the form A×(A3B) as names of the 
functions. The point is that the referents of the names 
are uniquely determined by the names themselves.9 In 
other words, the semantics of the language is trivial: it 
is the identity mapping. However, in this mapping the 
same object is given a double interpretation: on the 
one hand it is a symbolic expression in a formal 
language; on the other, it is a function in a dynamic 
model. 

                                                           
9It is interesting to note that the key idea behind a Henkin 
completeness proof is based on the same kind of 
identification: The objects in the Henkin models are 
determined from equivalence classes of formulas. 
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It can be shown (Gärdenfors 1985) that the logic 
generated by the postulates (P1) – (P7) is exactly 
intuitionistic logic.10 In order to derive classical 
propositional logic, we need one more postulate for 
the class of propositions in a dynamic model: 

(P8) For every A and B in P, A×B = ¬A×¬B. 

In this section, I have shown how propositional logic 
can be constructed from informational dynamics. The 
key idea for the construction is the definition of a 
proposition as a function representing changes of 
belief. The ontological basis of the construction is 
very meagre. The only entities that have been 
assumed to exist are information states and functions 
defined on information states. In order to emphasize 
this further, let me mention some things that have not 
been assumed: Firstly, it is not necessary that there be 
an independent object language that expresses the 
propositions to be studied. In contrast, the structure of 
an appropriate language emerges from the class of 
functions when the postulates are satisfied. Secondly, 
no set theory has been used; all constructions have 
been expressed solely in terms of functions. Thirdly, it 
can be noted that the construction does not use the 
concept of truth or possible worlds in any way. 

The dynamic approach to logic presented in this 
section has been generalized in a several ways by a 
number of logicians in Amsterdam. Veltman (1991) 
extends it to an analysis of the function of ’might’ and 
to default rules in general. Groenendijk and Stokhof 
(1991) provide a dynamic interpretation of first-order 
predicate logic. Their dynamic predicate logic can be 
seen as a compositional, non-representational 
discourse semantics. Apart from giving a dynamic 
analysis of quantifiers, they show in particular how 
this approach can be used to handle anaphoric 
reference. They also compare it to Kamp’s (1981) 
discourse representation theory. In Groenendijk and 
Stokhof (1990), they extend their approach to a typed 
language with λ-abstraction and use it to supply a 
semantic component for a Montague-style grammar. 
Van Eijck and de Vries (1992) use the approach of 
Groenendijk and Stokhof and extend dynamic 
predicate logic with ι-assignments and with 
generalized quantifiers. Again, their semantics is 
applied to problems of anaphoric reference. Van 
Benthem (1992) adopts a very general approach and 
discusses a number of ways of connecting a dynamic 

                                                           
10This follows essentially from the fact that any pseudo-
Boolean (Heyting) algebra for intuitionistic logic can be 
used to construct a dynamic model which is equivalent to 
the pseudo-Boolean algebra in the sense that an element is 
identical with the unit element in the pseudo-Boolean 
algebra if and only if the corresponding proposition is a 
tautology in the dynamic model (this construction is 
presented in Gärdenfors 1985). Cf. van Benthem (1992) for 
further connections between various kinds of algebras and 
dynamic models. 

approach to logic with other more traditional logical 
and algebraic theories. A special case of this is the 
dynamic modal logic DML developed in de Rijke 
(1993). 

3. NEURAL NETWORKS AS 
NONMONOTONIC INFERENCE 
MACHINES 
In physical systems one often finds descriptions of 
’slow’ and ’fast’ aspects of dynamic processes. A 
well-known example from statistical mechanics is the 
’slow’ changes of temperature as a different 
perspective on a complex system of ’fast’ moving gas 
molecules. Another example is catastrophe theory 
(Thom 1972) which is an entire mathematical 
discipline devoted to investigating the qualitative 
properties (in particular the ’catastrophes’) of the 
’slow’ manifolds generated by a dynamical system.  

The analogy I want to make in the context of the 
conflict between the symbolic and the associationist 
paradigms is that associationism deals with the ’fast’ 
behavior of a dynamic system, while the symbolic 
structures may emerge as ’slow’ features of such a 
system. In particular, inferential relations can be 
described from both perspectives. The upshot is that 
one and the same system, depending on the 
perspective adopted, can be seen as both an 
associationist mechanism and as an inferential rule-
following process operating on symbolic structures. 

In this section I shall elaborate on this double 
interpretation for the case when the system is a neural 
network.11 Pictorially, the ’fast’ behavior of a neural 
network are the ’associations’ between the neurons in 
the network, i.e., the transmission of the activity 
levels within the network. In other words, what the 
network does is to locate minima in a ’cognitive 
dissonance function’ (which, e.g., can be identified as 
maxima in Smolensky’s (1986) harmony functions). I 
want to argue that the corresponding ’slow’ behavior 
of many networks can be described as the results of 
the network performing inferences in a precisely 
defined sense, and with a well-defined logical 
structure. It turns out the these inferences are, in a 
very natural way, nonmonotonic. 

It should be emphasized that there is a different, even 
slower, process in a neural network, namely the 
learning that occurs from new instances being 
presented to the system and which causes the 
connections between the neurons to change. As is 
argued in Gärdenfors (1992), this kind of change 
within a neural network corresponds to another kind 
of inference, to wit, inductive inferences. In this 

                                                           
11This section is, to a large extent, borrowed from 
Balkenius and Gärdenfors (1991). 
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7 paper, however, I will not consider learning processes 
in neural networks. 

3.1 Schemata and resonant states in neural networks 

First of all we need a general description of neural 
networks. One can define a neural network N as a 4-
tuple <S,F,C,G>. Here S is the space of all possible 
states of the neural network. The dimensionality of S 
corresponds to the number of parameters used to 
describe a state of the system. Usually S=[a,b]n, 
where [a,b] is the working range of each neuron and n 
is the number of neurons in the system. We will 
assume that each neuron can take excitatory levels 
between 0 and 1. This means that a state in S can be 
described as a vector x = <x1,...,xn> where 0 ≤ xi ≤ 1, 
for all 1 ≤ i ≤ n. The network N is said to be binary if 
xi = 0 or xi = 1 for all i, that is if each neuron can only 
be in two excitatory levels. 

C is the set of possible configurations of the network. 
A configuration c � C describes for each pair i and j 
of neurons the connection cij between i and j. The 
value of cij can be positive or negative. When it is 
positive the connection is excitatory and when it is 
negative it is inhibitory. A configuration c is said to 
be symmetric if cij = cji for all i and j. 

F is a set of state transition functions or activation 
functions. For a given configuration c � C, a function 
fc � F describes how the neuron activities spread 
through that network. G is a set of learning functions 
which describe how the configurations develop as a 
result of various inputs to the network.  

By changing the behavior of the functions in the two 
sets F and G, it is possible to describe a large set of 
different neural mechanisms. In the rest of the section, 
I will assume that the state in C is fixed while 
studying the state transitions in S. This means that I 
will not consider the effects of learning within a 
neural network. 

In Balkenius (1990) and Balkenius and Gärdenfors 
(1991) it is argued that there is a very simple way of 
defining the notion of a schema within the theory of 
neural networks that can be seen as a generalization of 
the notion of a proposition. The definition proposed 
there is that a schema α corresponds to a vector 
<α1,...,αn> in the state space S. That a schema α is 
currently represented (or accepted) in a neural 
network with an activity vector x = <x1,...,xn> means 
that xi ≥ αi, for all 1 ≤ i ≤ n. There is a natural way of 
defining a partial order of ’greater informational 
content’ among schemata by putting α ≥ β iff αi ≥ 
βi for all 1 ≤ i ≤ n. There is a minimal schema in this 
ordering, namely 0 = <0,...,0> and a maximal element 
1 = <1,...,1>. 

In the light of this definition, let us consider some 
general desiderata for schemata. Firstly, it is clear that 

depending on what the activity patterns in a neural 
network correspond to, schemata as defined here can 
be used for representing objects, situations, and 
actions. 12  

Secondly, if α ≥ β, then β can be considered to be a 
more general schema than α and α can thus be seen 
as an instantiation of the schema β. Τhe part of α not 
in β, is a variable instantiation of the schema β. This 
implies that all schemata with more information than 
β can be considered to be an instantiation of β with 
different variable instantiations. Thus, schemata can 
have variables even though they do not have any 
explicit representation of variables.13 Only the value 
of the variable is represented and not the variable as 
such. In general, it can be said that the view on 
schemata presented here replaces symbols by vectors 
representing various forms of patterns. 

Thirdly, it will soon be shown that schemata support 
default assumptions about the environment. The 
neural network is thus capable of filling in missing 
information. 

The abstract definition of schemata presented here fits 
well with Smolensky’s (1986) analysis of schemata in 
terms of ’peaks’ in a harmony function. And in 
Smolensky (1991a, p. 202) he says that his treatment 
of connectionism  

”is committed to the hypothesis that mental 
representations are vectors partially specifying 
the state of a dynamical system (the activities 
of units in a connectionist network), and that 
mental processes are specified by the 
dynamical equations governing the evolution 
of that dynamical system.”  

Some interesting examples of schemata are found in 
Rumelhart, Smolensky, McClelland and Hinton 
(1986) who address, among other things, the case of 
schemata for rooms. The network they investigate 
contains 40 neurons representing microfeatures of 
rooms like has-ceiling, contains-table, etc.14 There are 
no neurons in the network representing kitchens and 
bedrooms, but various rooms can be represented 
implicitly as schemata of the network; the peaks of the 
harmony function correspond to prototypical rooms. 

At this point, I want to emphasize that the definition 
of schemata given here is the simplest possible and is 
introduced just to show that even with elementary 
means it is possible to exhibit the compositional and 

                                                           
12For some examples of this, cf. Balkenius 1992. 
13Smolensky’s (1991b) solution to the problem of variables 
is more complicated and to some extent ad hoc. On the 
other hand, he can handle asymmetric relations and some 
embedding features that cannot be given a simple analysis 
on the present approach. 
14The network is presented on pp. 22–24 in Rumelhart, 
Smolensky, McClelland and Hinton (1986). 
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8 systematic structure desired by the adherents of the 
symbolic paradigm. The definition applies to any 
neural network falling under the general description 
above. However, for networks that are designed for 
some special purpose, it is possible to introduce more 
sophisticated and fine-structured definitions of 
schemata that better capture what the network is 
intended to represent.  

There are some elementary operations on schemata as 
defined above that will be of interest when I consider 
nonmonotonic inferences in a neural network. The 
first operator is the conjunction α•β of two schemata 
α = <α1,...,αn> and β = <β1,...,βn> which is defined 
as <γ1,...,γn>, where γi = max(αi,βi) for all i. If 
schemata are considered as corresponding to 
observations in an environment, one can interpret α•β 
as the coincidence of two schemata, i.e., the 
simultaneous observation of two schemata. 

Secondly, the complement α* of a schema α = 
<α1,...αn> is defined as <1–α1,...,1–αn> (recall that 
1 is assumed to be the maximum activation level of 
the neurons, and 0 the minimum). In general, the 
complementation operation does not behave like 
negation since, for example, if α = <0.5,...,0.5>, then 
α* = α. However, if the neural network is assumed to 
be binary, that is if neurons only take activity values 1 
or 0, then * will indeed behave as a classical negation 
on the class of binary-valued schemas.  

Furthermore, the interpretation of the complement is 
different from the classical negation since the 
activities of the neurons only represent positive 
information about certain features of the environment. 
The complement α* reflects a lack of positive 
information about α. It can be interpreted as a schema 
corresponding to the observation of everything but α. 
As a consequence of this distinction it is pointless to 
define implication from conjunction and complement. 
The intuitive reason is that it is impossible to observe 
an implication directly. A consequence is that the 
ordering ≥ only reflects greater positive informational 
content. 

Finally, the disjunction αΗβ of two schemata 
α = <α1,...,αn> and β = <β1,...,βn> is defined as 
<γ1,...,γn>, where γi = min(αi,βi) for all i. The term 
’disjunction’ is appropriate for this operation only if 
we consider schemata as representing propositional 
information. Another interpretation that is more 
congenial to the standard way of looking at neural 
networks is to see α and β as two instances of a 
variable. αΗβ can then be interpreted as the 
generalization from these two instances to an 
underlying variable. 

It is trivial to verify that the De Morgan laws 
αΗβ = (α*•β*)* and α•β = (α*Ηβ*)* hold for these 
operations. The set of all schemata forms a 
distributive lattice with zero and unit, as is easily 

shown. It is a boolean algebra, whenever the 
underlying neural network is binary. In this way we 
have already identified something that can be viewed 
as a syntactic (and compositional) structure on the set 
of vectors representing schemata. 

How does the structure on states of networks, 
generated by the operators •, Η, and * relate to the 
postulates (P1) – (P7) in Section 2? For each schema 
α, it is trivial to define a function on activity states x = 
<x1,...,xn> of a network, corresponding to giving α as 
an input, by putting α(x) = α•x, for all x in S. Then if 
we put 3 = •, £ = Η, Å = 0 and ⊥ = 1 it is easy to 
verify that postulates (P1) – (P4) and (P6) – (P7) 
hold. On the other hand, there does not seem to be any 
operator on vectors that is an equalizer. The candidate 
from classical logic, i.e., (α•β)Η(α*•β*), does not 
satisfy the requirements of (P5) in general. However, 
in the special case when the network is binary, this 
construction works and all of the postulates (P1) – 
(P8) are satisfied. 

3.2 Nonmonotonic inferences in a neural network 

A desirable property of a network that can be 
interpreted as performing inferences of some kind is 
that it, when given a certain input, stabilizes in a state 
containing the results of the inference. In the theory of 
neural networks such states are called resonant states. 
In order to give a precise definition of this notion, 
consider a neural network N = <S,F,C,G>. Let us 
assume that the configuration c is fixed so that we 
only have to consider one state transition function f = 
fc. Let f0(x) = f(x) and fn+1(x) = f� fn(x). Then a 
state y in S is called resonant if it has the following 
properties: 

(i) f(y) = y      (equilibrium) 

(ii) If for any x [ S and each ε > 0 there exists a  
δ > 0 such that |x–y| < δ, then |fn(x)–y| < ε 
when n ≥ 0      (stability) 

(iii) There exists a δ such that if |x–y| < δ, then 
limn∅∞ fn(x) = y     (asymptotic stability). 

Here |.| denotes the standard euclidean metric on the 
state space S. A neural system N is called resonant if 
for each x in S there exists a n > 0, that depends only 
on x, such that fn(x) is a resonant state. 

If limn∅∞ fn(x) exists, it is denoted by [x] and [.] is 
called the resonance function for the configuration c. 
It follows from the definitions above that all resonant 
systems have a resonance function. For a resonant 
system we can then define resonance equivalence as 
x~y iff [x]=[y]. It follows that ~ is an equivalence 
relation on S that partitions S into a set of equivalence 
classes. 

It can be shown (Cohen and Grossberg 1983, 
Grossberg 1989) that a large class of neural networks 
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9 have resonance functions. A common feature of these 
types of neural networks is that they are based on 
symmetrical configuration functions c, that is, the 
connections between two neurons are equal in both 
directions.  

The function [.] can be interpreted as filling in default 
assumptions about the environment, so that the 
schema represented by [α] contains information about 
what the network expects to hold when given α as 
input. Even if α only gives a partial description of, for 
example, an object, the neural network is capable of 
supplying the missing information in attaining the 
resonant state [α]. The expectations are determined by 
the configuration function c, and thus expectations are 
’equilibirum’ features of a network in contrast to the 
transient input α. 

I now turn to the problem of providing a different 
perspective of the activities of a neural network which 
will show it to perform nonmonotonic inferences. A 
first idea for describing the nonmonotonic inferences 
performed by a neural network N is to say that the 
resonant state [α] represents the expectations of the 
network given the input information represented by α. 
The expectations can also be described as the set of 
nonmonotonic conclusions to be drawn from α. 
However, the schema α is not always included in [α], 
that is, [α] ≥ α does not hold in general. Sometimes a 
neural network rejects parts of the input information – 
in pictorial terms it does not always believe what it 
sees.  

So if we want α to be included in the resulting 
resonant state, one has to modify the definition. The 
most natural solution is to ’clamp’ α in the network, 
that is to add the constraint that the activity levels of 
all neurons is above αi, for all i. Formally, we obtain 
this by first defining a function fα via the equation 
fα(x) = f(x)•α for all x [ S. We can then, for any 
resonant system, introduce the function [.]α (for a 
fixed configuration c [ C) as follows: 

[x]α = limn∅∞fαn(x)  

This function will result in resonant states for the 
same neural networks as for the function [.].  

The key idea of this section is then to define a 
nonmonotonic inference relation � between schemata 
in the following way:  

α � β iff [α]α ≥ β 

This definition fits very well with the interpretation 
that nonmonotonic inferences are based on the 
dynamics of information as developed in Section 2. 
Note that α and β in the definition of � have double 
interpretations: From the connectionist perspective, 
they are schemata which are defined in terms of 
activity vectors in a neural network. From the other 
perspective, the symbolic, they are viewed as formal 

expressions with a grammatical structure. Thus, in the 
terminology of Smolensky (1988), we make the 
transition from the subsymbolic level to the symbolic 
simply by giving a different interpretation of the 
structure of a neural network. Unlike Fodor and 
Pylyshyn (1988), we need not assume two different 
systems handling the two different levels. In contrast, 
the symbolic level emerges from the subsymbolic in 
one and the same system.  

Before turning to an investigation of the general 
properties of � generated by the definition, I will 
illustrate it by showing how it operates for a simple 
neural network. 

Example: The network depicted below consists of 
four neurons with activities x1,...,x4. Neurons that 
interact are connected by lines. Arrows at the ends of 
the lines indicate that the neurons excite each other; 
dots indicate that they inhibit each other. If we 
consider only schemata corresponding to binary 
activity vectors, it is possible to identify schemata 
with sets of active neurons. Let three schemata α, β, 
and γ correspond to the following activity vectors: 
α=<1 1 0 0>, β=<0 0 0 1>, γ=<0 1 1 0>. Assume that 
x4 inhibits x3 more than x2 excites x3. If α is given 
as input, the network will activate x3 and thus γ. It 
follows that [α]α ≥ γ and hence α � γ. Extending the 
input to α•β causes the network to withdraw γ, i.e., no 
longer represent this schema, since the activity in x4 
inhibits x3. In formal terms α•β ¸ γ. 

α

β

γ

x4

x3x2

x1

“

 
One way of characterizing the nonmonotonic 
inferences generated by a neural network is to study 
them in terms of general postulates for nonmonotonic 
logics that have been investigated in the literature 
(Gabbay 1985, Makinson 1993, Kraus, Lehmann and 
Magidor 1991, Makinson and Gärdenfors 1991, 
Gärdenfors and Makinson 1993).  

It follows immediately from the definition of [.]α that 
� satisfies the property of Reflexivity: 

a � a 

If we say that a schema β follows logically from α, in 
symbols α 7 β, just when α ≥ β, then it is also trivial 
to verify that � satisfies Supraclassicality: 

If α 7 β, then α � β 
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10 
In words, this property means that immediate 
consequences of a schema are also nonmonotonic 
consequences of the schema. 

If we turn to the operations on schemata, the 
following postulate for conjunction is also trivial: 

If α � β and α � γ, then α � β•γ     (And) 

More interesting are the following two properties: 

If α � β and α•β � γ, then α � γ     (Cut) 

If α � β and α � γ, then α•β � γ    
(Cautious Monotony) 

Together Cut and Cautious Monotony are equivalent 
to each of the following postulates:  

If α � β and β 7 α, then α � γ iff β � γ  
(Cumulativity) 

If α � β and β � α, then α � γ iff β � γ  
(Reciprocity) 

Cumulativity has become an important touchstone for 
nonmonotonic systems (Gabbay 1985, Makinson 
1993). It is therefore interesting to see that the 
inference operation defined here seems to satisfy 
Cumulativity (and thus Reciprocity) for almost all 
neural networks where it is defined. However, it is 
possible to find some cases where it is not satisfied: 

Counterexample to Reciprocity: The network 
illustrated below is a simple example of a network 
that does not satisfy Reciprocity (or Cumulativity). 
For this network it is assumed that all inputs to a 
neuron are simply added. If we assume that there is a 
strong excitatory connection between α and β, it 
follows that α � β and β � α since α and β do not 
receive any inhibitory inputs. Suppose that α = 
<1 0 0 0> is given as input. From the assumption that 
the inputs to x3 interact additively it follows that γ 
receives a larger input than δ, because of the time 
delay before δ gets activated. If the inhibitory connec-
tion between γ and δ is large, the excitatory input 
from β can never effect the activity of x3. We then 
have α � γ and α ¸ δ. If instead β = <0 1 0 0> is given 
as input, the situation is the opposite, and so δ gets 
excited but not γ, and consequently α ¸ γ and  
α � δ. Thus, the network does not satisfy Reciprocity. 

βα

γ

x4

x3x2

x1

δ

 
A critical factor here seems to be the linear 
summation of inputs that ’locks’ x2 and x3 to inputs 
from the outside because the inhibitory connection 
between them is large.  

Extensive computer simulations have been performed 
with networks that obey ’shunting’ rather than linear 
summation of excitatory and inhibitory inputs (see 
Balkenius and Gärdenfors 1991). They suggest that 
reciprocity is satisfied in all networks that obey this 
kind of interaction of the inputs. 

Shunting interaction of inputs is used in many 
biologically inspired neural network models (e.g., 
Cohen and Grossberg 1983, Grossberg 1989) and is 
an approximation of the membrane equations of 
neurons. A simple example of such a network can be 
described by the following equation: 

xi(t+1) = xi(t) + δ(1–xi(t))Σjd(xi(t))cji+ + 
δxi(t)Σjd(xi(t))cji– 

Here δ is a small constant, cij+ and cij– are matrices 
with all cij+=cji+≥0, and all cij–=cji–≤0; d(x)≥0 and 
d'(x)>0. The positive inputs to neuron xi are shunted 
by the term (1–xi(t)) and the negative inputs by xi(t). 
As a consequence, the situation where one input locks 
another of opposite sign cannot occur, in contrast to 
the linear case above. In other words, a change of 
input, that is a change in Σjd(xi(t))cji+ or 
Σjd(xi(t))cji–, will always change the equilibrium of 
xi. The fact that one input never locks another of 
opposite sign seems to be the reason why all the 
simulated shunting networks satisfy Reciprocity. 

For the disjunction operation it does not seem 
possible to show that any genuinely new postulates 
are fulfilled. The following special form of transitivity 
is a consequence of Cumulativity (cf. Kraus, 
Lehmann, and Magidor 1991, p. 179): 

If αΗβ � α and α � γ, then αΗβ � γ 

This principle is thus satisfied whenever Cumulativity 
is. 

The general form of Transitivity, i.e., if α � β and β 
� γ, then α � γ, is not valid for all α, β, and γ, as can 
be shown by the first example above. Nor is Or 
generally valid: 

If α � γ and β � γ, then αΗβ � γ (Or) 
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Counterexample to Or: The following network is a 
simple counterexample: x1 excites x4 more than x2 
inhibits x4. The same is true for x3 and x2. Giving 
α = <1 1 0 0> or β = <0 1 1 0> as input activates x4, 
thus α � γ and β � γ. On the other hand, the neuron 
x2 which represents schema αΗβ has only inhibitory 
connections to x4. As a consequence αΗβ ¸ γ. 

α β

γ

α⊕β

x4

x3

x2

x1

 
In summary, following Balkenius and Gärdenfors 
(1991), it has been shown that by introducing an 
appropriate schema concept and exploiting the higher-
level features of a resonance function in a neural 
network it is possible to define a form of 
nonmonotonic inference relation. It has also been 
established that this inference relation satisfies some 
of the most fundamental postulates for nonmonotonic 
logics.  

The construction presented in this section is thus an 
example of how symbolic features can emerge from 
the subsymbolic level of a neural network. However, 
the notion of inference presented here is clearly part 
of the associationist tradition, since it is based on 
other primitive notions than what is common within 
the symbolic paradigm. Sellars (1980, p. 265) 
discusses six conceptions of the status of material 
rules of inference. The notion presented here fits well 
with his sixth:  

Trains of thought which are said to be 
governed by “material rules of inference” are 
actually not inferences at all, but rather 
activated associations which mimic inference, 
concealing their intellectual nudity with stolen 
“therefores”. 

4. SYMBOLIC AND SUBSYMBOLIC: 
TWO PERSPECTIVES ON THE SAME 
PROCESS  
With the two examples from Sections 2 and 3 in 
mind, I now want to turn to the current discussion 
within cognitive science concerning the relation 
between symbolic and subsymbolic processes. It 
should be clear that what is normally considered to be 
a subsymbolic process fits well with the associationist 
paradigm outlined in Section 1. The main thesis of 
this article is that the symbolic and subsymbolic 
approaches are not two rival paradigms of computing, 

rather they are best viewed as two different 
perspectives that can be adopted when describing the 
activities of various computational devices.15 
Smolensky (1991a) formulates the same idea as 
follows: 

”Rather than having to model the mind as 
either a /symbolic/ structure cruncher or a 
number cruncher, we can now see it as a 
number cruncher in which the numbers 
crunched are in fact representing complex 
/symbolic/ structures.” (pp. 215–216) 

”The connectionist cognitive architecture is 
intrinsically two-level: Semantic interpretation 
is carried out at the level of patterns of activity 
while the complete, precise, and formal 
account of mental processing must be carried 
out at the level of individual activity values 
and connections. Mental processes reside at a 
lower level of analysis than mental 
representations.” (p. 223) 

In the light of this thesis let us look at some of the 
major discussions concerning the relation between 
symbolic processing and connectionism, namely, 
Smolensky (1988, 1991a), Fodor and Pylyshyn (1988) 
and Fodor and McLaughlin (1990). 

4.1 What is the proper treatment of connectionism? 

Smolensky’s (1988) ’proper treatment of 
connectionism’ (PTC) seems quite closely related to 
my position. When he argues that the symbolic and 
the subsymbolic paradigms are incompatible, as I 
outlined in Section 1.3, my interpretation is that he 
says that the two perspectives cannot be adopted to 
one level only. As we shall see below, this seems to 
be exactly what Fodor and Pylyshyn (1988) try to do. 

There are several aspects of Smolensky’s analysis that 
are similar to the one presented here. For instance, at 
the end of the article he describes his position as 
’emergentist’.16 And, as mentioned in Section 3.1, his 

                                                           
15In Gärdenfors (1992) I argue that in order to understand 
inductive reasoning, and thereby cognition in general, one 
must distinguish between at least three levels: the symbolic 
(there called linguistic), the conceptual, and the 
subconceptual level. The distinction between the conceptual 
and the subconceptual levels is not important for the 
purposes of the present paper; they can both be seen as 
subsymbolic. (However, as pointed out in Gärdenfors 
(1992), Smolensky (1988) confuses the symbolic and the 
conceptual levels). 
16Also cf. Woodfield and Morton's (1988) commentary and 
the Author's Response on p. 64. In Smolensky (1991a, p. 
202) he writes: “In giving up symbolic computation to 
undertake connectionist modeling, we connectionists have 
taken out an enormous loan, on which we are still paying 
nearly all interest: solving the basic problems we have 
created for ourselves rather than solving the problems of 
cognition. In my view the loan is worth taking out for the 



 

 
12 

12 analysis of schemata is congenial with the one 
presented there. Furthermore, at a first glance at least, 
his description of inference on the subsymbolic level 
seems to be quite similar to the account presented in 
Section 3.2: 

”A natural way to look at the knowledge stored 
in connections is to view each connection as a 
soft constraint. ... Formalizing knowledge in 
soft constraints rather than hard rules has 
important consequences. Hard constraints have 
consequences singly; they are rules that can be 
applied separately and sequentially – the 
operation of each proceeding independently of 
whatever other rules may exist. But soft 
constraints have no implications singly; any 
one can be overridden by the others. It is only 
the entire set of soft constraints that has any 
implications. Inference must be a cooperative 
process, like the parallel relaxation processes 
typically found in subsymbolic systems. 
Furthermore, adding additional soft constraints 
can repeal conclusions that were formerly 
valid: Subsymbolic inference is fundamentally 
nonmonotonic” (1988, p. 18). 

However, one worry I have with this description of 
the activities of a connectionist system is that 
Smolensky still sees it as performing inferences even 
on the subconceptual level.17 This point is made very 
clearly in Dellarosa’s (1988, p. 29) commentary: 

”It is a belief of many cognitive scientists 
(most notably, Fodor 1975) that the 
fundamental process of cognition is inference, 
a process to which symbolic modelling is 
particularly well suited. While Smolensky 
points out that statistical inference replaces 
logical inference in connectionist systems, he 
too continues to place inference at the heart of 
all cognitive activity. I believe that something 
more fundamental is taking place. In most 
connectionist models, the fundamental process 
of cognition is not inference, but is instead the 
(dear to the heart of psychologists) activation 
of associated units in a network. Inference 
’emerges’ as a system-level interpretation of 
this microlevel activity, but – when represen-
tations are distributed – no simple one-to-one 
mapping of activity patterns to symbols and 

                                                                                        
goal of understanding how symbolic computation, or 
approximations of it, can emerge from numerical 
computation in a class of dynamical systems sharing the 
most general characteristics of neural computation.” 
17Fodor and Pylyshyn (1988, pp. 29–30) too, make 
inferences the engine of cognition: “It would not be 
unreasonable to describe Classical Cognitive Science as an 
extended attempt to apply the methods of proof theory to 
the modeling of thought (and similarly, of whatever mental 
processes are plausibly viewed as involving inferences; 
preeminently learning and perception).” 

inferences can be made. From this viewpoint, 
the fundamental process of cognition is the 
activation of associated units, and inference is 
a second-order process.” 

Thus Smolensky is wrong in talking about 
’nonmonotonic inferences’ on the subsymbolic level, 
since there are no inferences on this level; claiming 
this is basically a kind of category error. However, as 
has been argued in the previous section, he is right in 
that the inferences that emerge from the subsymbolic 
processes on the symbolic level are fundamentally 
nonmonotonic. 

It should be noted that two perspectives on computing 
that are discussed here are not only applicable to 
neural networks. Also the behavior of a traditional 
computer with a von Neumann architecture can be 
given a ’subsymbolic’ interpretation and need not be 
seen as merely symbol crunching. The subsymbolic 
perspective is adopted when one describes the general 
properties of the physical processes driving the 
computer; for example when describing the electric 
properties of transistors. This is the perspective that 
one must adopt when the computer is defective, in 
which case the processing on the symbolic level does 
not function as expected.18  

A consequence of the fact that one can adopt two 
perspectives on all kinds of computing devices is that 
every ascription of symbolic processing to some 
system is an interpretation of the subsymbolic 
activities. The Turing paradigm of computation 
neglects this distinction since a computer is thought to 
uniquely identify some Turing machine; and Turing 
machines are clearly described on the symbolic 
level.19 The reason this identification works is that 
traditional computers are constructed to be ’digital’, 
i.e., on the subsymbolic perspective the outcomes of 
the electronic processes are very robust with respect 
to disturbances so that particular currents can be 
identified as either ’1’s or ’0’s. However, the 
identification may break down as soon as the 
computer is malfunctioning. 

It follows that the notion of ’computation’ can be 
given two meanings. The first, and to many the only 
meaning is computation on the symbolic level in the 

                                                           
18In this context, the subsymbolic perspective is related to 
adopting the ’physical stance’ in the terminology of Dennett 
(1978), while the symbolic level then corresponds to the 
’design stance’. The analogy is not perfect since the 
subsymbolic perspective on the function of a computer need 
not be tied to a particular physical realization, but can be 
kept at the level of general functional properties of e.g., 
transistors, independently of what material they are made 
from. The same argument, of course, applies to neural 
networks, the subsymbolic level of which can be described 
independently of their physical level. The upshot is that the 
subsymbolic perspective falls ’between’ the design stance 
and the physical stance. 
19Cf. the quotation from Fodor (1981) in Section 1.1. 
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13 sense that is made precise by ’Turing computable’. 
According to Church’s thesis this kind of computation 
is all there is on the symbolic level. The other sense of 
computation only becomes apparent when one adopts 
a subsymbolic (connectionist or more general 
associationist) perspective. From this perspective 
’computation’ means ’processing representations’, 
where the representations have a fundamentally 
different structure compared to those on the symbolic 
level. And processing on this level does not mean 
’manipulating symbols’, but must be characterized in 
other ways. Some kinds of processing of 
representations on the subsymbolic level generate 
structures that can be interpreted meaningfully on the 
symbolic level. However, there are also many kinds of 
processes that cannot be interpreted on the symbolic 
level as performing any form of Turing computation. 
For instance, the notion of ’analog’ computation only 
makes sense on the subsymbolic level. Hence, the 
class of computational processes on the subsymbolic 
level is much wider than the class of processes 
corresponding to Turing computations. Thus, 
Church’s thesis does not apply to this sense of 
’computation’. 

4.2 The compatibility of symbolism and 
connectionism 

Let me finally return to Fodor and Pylyshyn’s (1988) 
argument against the systematicity and composi-
tionality of connectionism. Their main conclusion is 
that since cognition is compositional and systematic 
and since connectionist systems lack those properties, 
while ’Classical’, i.e., symbolic, systems have them, it 
is only symbolic systems that can represent cognitive 
processes.  

First of all, it should be noted that they assume that, 
even if there are several levels of analysis, all 
’cognitive’ levels are representational: 

”Since Classicists and Connectionists are both 
Representationalists, for them any level at 
which states of the system are taken to encode 
properties of the world counts as a cognitive 
level; and no other levels do.” (Fodor and 
Pylyshyn 1988, p. 9) 

According to them, this assumption about a unique 
representational level puts a strait-jacket on 
connectionist methodology: 

”It is, for example, no use at all, from the 
cognitive psychologist’s point of view, to show 
that the nonrepresentational (e.g. neurological, 
or molecular, or quantum mechanical) states of 
an organism constitute a Connectionist 
network, because that would leave open the the 
question whether the mind is such a network at 
the psychological level. It is, in particular, 
perfectly possible that nonrepresentational 

neurological states are interconnected in the 
ways described by Connectionist models but 
that the representational states themselves are 
not” (p. 10). 

So, the key question becomes: How do connectionist 
systems represent? Fodor and Pylyshyn summarize 
the disparity between symbolic (’Classical’) and 
connectionist systems as follows: 

”Classical and Connectionist theories disagree 
about the nature of mental representation; for 
the former, but not for the latter, mental 
representations characteristically exhibit a 
combinatorial constituent structure and a 
combinatorial semantics. Classical and 
Connectionist theories also disagree about the 
nature of mental processes; for the former, but 
not for the latter, mental processes are 
characteristically sensitive to the combinatorial 
structure of the representations on which they 
operate” (1988, p. 32). 

Their main argument for why connectionist systems 
exhibit neither compositionality (i.e., combinatorial 
constituent structure) nor systematicity (i.e., 
sensitivity to this combinatorial structure in processes) 
is based on their interpretation of how networks 
represent. It is at this point that they seem to be 
confusing the symbolic and the connectionist 
(associationist) perspectives. On p. 12 they state that 
“[r]oughly, Connectionists assign semantic content to 
’nodes’ [neurons] ... – i.e., to the sorts of things that 
are typically labeled in Connectionist diagrams; 
whereas Classicists assign semantic content to 
expressions – i.e., to the sort of things that get written 
on the tapes of Turing machines and stored at 
addresses in von Neumann machines.”  

Fodor and Pylyshyn’s paradigm example of such an 
assignment is presented on pp. 15–16, where they 
consider the difference between a connectionist 
machine handling an inference from A&B to A and a 
symbolic machine doing the same thing. They assume 
that the connectionist machine consists of a network 
of “labelled nodes” that looks as follows (their Figure 
2): 
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1

2 3

A&B

A B  
In this network “[d]rawing an inference from A&B to 
A thus corresponds to an excitation of node 2 being 
caused by an excitation of node 1” (p. 15).20 The 
fundamental mistake in this example is that disjoint 
nodes are assumed to represent different expres-
sions.21 This assumption conflates representations on 
the symbolic level (which is where representations of 
expressions and inferences belong) with represen-
tations on the connectionist level (where representa-
tions of associations are handled). Smolensky (1991a, 
p. 206) argues concerning Fodor and Pylyshyn’s 
example that  

”it is a serious mistake to view this as the 
paradigmatic connectionist account for 
anything like human inferences of this sort. 
The kind of ultralocal connectionist represen-
tation, in which entire propositions are 
represented by individual nodes, is far from 
typical of connectionist models, and certainly 
not to be taken as definitive of the connec-
tionist approach.” 

Given this assumption, it is no wonder that Fodor and 
Pylyshyn can then argue that networks don’t exhibit 
compositionality and systematicity.  

The best way to rebut their argument is to provide a 
constructive counterexample, i.e., an example of a 
connectionist system representing things with a 
compositional and systematic structure. This is readily 
available from the account of representation and 
inference in neural networks presented in Section 3. 

                                                           
20A closely related example is given on pp. 47–48 in their 
paper. 
21They provide a similar argument on p. 49: “What is 
deeply wrong with Connectionist architecture is this: 
Because it acknowledges neither syntactic nor semantic 
structure in mental representations, it perforce treats them 
not as a generated set but as a list.” However, in fairness it 
should be acknowledged that Fodor and Pylyshyn (1988, p. 
12 footnote 7) consider the possibility of having aggregates 
of neurons representing expressions: “But a subtler reading 
of Connectionist machines might take it to be the total 
machine states that have content, e.g. the state of having 
such and such a node excited.” Even though this comes 
close to the schema representation presented in Section 3.1, 
they also claim that “[m]ost of the time the distinction 
between these two ways of talking does not matter for our 
purposes” (ibid.). It certainly does, as shall be argued 
shortly. 

There it is schemata that represent. Schemata pick out 
certain patterns of activities in the nodes of a 
connectionist system. As is shown in Section 3.2, it is 
trivial to define some elementary operations on 
schemata. These operations immediately endow a 
compositional structure on schemata and the 
components of schemata can be related and combined 
in a systematic way (unlike the one-node 
representations in Fodor and Pylyshyn’s examples).22 
For example, if the schemata α•β and γΗδ are both 
represented in a particular state of a network, one can 
meaningfully ask whether schemata like α•δ or 
γΗβ are also represented in that state (the latter 
always is). Admittedly, the compositional structure is 
not very spectacular from a cognitive point of view, 
but what more can be expected from such a simplistic 
construction?23 Furthermore, what is at stake here is 
not the richness of the representations, but the mere 
possibility of endowing connectionist systems with a 
compositional structure of representations.  

To be sure, the schemata do not have an explicit 
symbolic structure in the sense that somewhere in the 
network one finds expressions referring to the 
schemata (or something representing such 
expressions). Fodor and Pylyshyn (1988, p. 33) seem 
to think that any productive representational system, 
i.e., a finitely generated system capable of 
representing an infinite number of object, must be a 
symbol system (cf. Bernsen and Ulbæk 1992a,b). 
However, according to the definition of schemata 
given in Section 3.2, a network with a finite number 
of nodes can implicitly represent an infinite number of 
schemata.24 And that is sufficient to establish the 
productivity of this kind of representation. A similar 
point is made by Smolensky in his (1991a). 

                                                           
22Cf. Smolensky (1991a, p. 211): “Thus in the distributed 
case, the relation between the node of /the figure above/ 
labeled A&B and the others is one kind of whole/part 
relation. An inference mechanism that takes as input the 
vector representing A&B and produces as output the vector 
representing A is a mechanism that extracts a part from a 
whole. And in this sense it is no different from a symbolic 
inference mechanism that takes the syntactic structure A & B 
and extracts from it the syntactic constituent A. The 
connectionist mechanisms for doing this are of course quite 
different than the symbolic mechanisms, and the 
approximate nature of the whole/part relation gives the 
connectionist computation different overall characteristics: 
we don’t have simply a new implementation of the old 
computation.” 
23Another type of example is provided by Bernsen and 
Ulbæk (1992a,b), who deal with systematicity in 
representations of spatial relations. 
24If the neurons can only take a finite number of activity 
levels, the references of the schemata, described as vectors 
of activities, will only constitute a finite class. However, the 
same applies, for example, to classical propositional logic 
generated from a finite number of atomic sentences: Even if 
the language contains an infinite number of formulas, their 
references, i.e., the propositions expressed (i.e., truth-
functions), are finite in number. 
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Fodor and McLaughlin (1990) have challenged the 
proposal that vectorial representations in 
connectionist systems can exhibit systematicity and 
productivity. The gist of their argument seems to be 
the following (p. 200): 

”… the components of tensor product and 
superposition vectors differ from Classical 
constituents in the following way: when a 
complex Classical symbol is tokened, its 
constituents are tokened. When a tensor 
product vector or superposition vector is 
tokened, its components are not (except per 
accidens). The implication of this difference, 
from the point of view of the theory of mental 
processes, is that whereas the Classical 
constituents of a complex symbol are, ipso 
facto, available to contribute to the causal 
consequences of its tokenings – in particular, 
they are available to provide domains for 
mental processes – the components of tensor 
product and superposition vectors can have no 
causal status as such. What is merely 
imaginary can’t make things happen, to put 
this point in a nutshell.” 

However, the notion of causality Fodor and 
McLaughlin presumes here is very odd, to say the 
least – they assume that ’tokenings’ of symbols 
completely decide the causal structure of the mental 
processes. The subsymbolic processes can, according 
to them, have no causal role since they are not 
tokened. To me this seems like saying that the 
tokenings of ’123’, ’∞’, ’45’, and ’=’ on a pocket 
calculator are the only causes of a tokening of ’5535’ 
appearing in the window, while the underlying 
electronic processes, not being tokened, can play no 
causal role. 

On the contrary, if we want to analyse the causality of 
mental processes, we should focus on the subsymbolic 
level or even the underlying physical processes, while 
the emerging symbolic structures will, in themselves, 
not be causally efficacious.25 Consequently, I believe 

                                                           
25Smolensky (1991a, pp. 222–23) makes this point in the 
following way: “The Classical strategy for explaining the 
systematicity of thought is to hypothesize that there is a 
precise formal account of the cognitive architecture in 
which the constituents of mental representations have 
causally efficacious roles in the mental processes acting on 
them. The PTC view denies that such an account of the 
cognitive architecture exists, and hypothesizes instead that, 
like the constituents of structures in quantum mechanics, the 
systematic effects observed in the processing of mental 
representations arises because the evolution of vectors can 
be (at least partially and approximately) explained in terms 
of the evolution of their components, even though the 
precise dynamical equations apply at the lower level of the 
individual numbers comprising the vectors and cannot be 
pulled up to provide a precise temporal account of the 

that Fodor and McLaughlin’s attempt to save the 
argument that the connectionist approach is not a 
viable explanation of mental processes is a dead end. 

In summary, Fodor and Pylyshyn (and McLaughlin) 
have put blinders on themselves by only considering a 
special type of representations in connectionist 
systems. Given the ensuing narrow field of vision, 
they can argue that connectionist systems cannot 
represent what is required for modelling cognition. 
However, I have argued that once one is allowed to 
view a wider class of representational possibilities, 
like, e.g., the schemata of Section 3.2, the limitations 
they point out are no longer there (this is not to say 
that there are no limitations). 
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