
Lund University Cognitive Studies – LUCS 23 1993. ISSN 1101–8453.

MANAGING COMPLEXITY
BY SUPPORTING KNOWLEDGE GROWTH

IN DESIGN AND DEVELOPMENT PROJECTS

Henrik Gedenryd

Lund University Cognitive Science
Kungshuset, Lundagård
S–223 50 Lund, Sweden

E-mail: Henrik.Gedenryd@fil.lu.se

A cognitive design theory is introduced, together with a set of tools for software development, based on the theo retical
principles. The theory springs out of an analysis of the role of domain-specific knowledge, and how it develops in design and
development projects that deal with complex target domains. It is shown that expert performance depends heavily on elaborate
domain-specific knowledge. Two metaphors are introduced to explain how individuals develop their knowledge and skills:
“from novice to expert,” and “the person as an in formal scientist.” Because of the inherent complexity in large projects,
participants’ domain-specific knowledge evolves throughout their entire duration. The design process should adapt to the
conditions of knowledge growth, since the project’s success depends highly on it. Such a condition is that knowledge is
immature and incomplete for quite some time. Furthermore, the design process should continuously support the growth of
knowledge. The set of tools described addresses these is sues in software development projects. It uses demonstrational
programming methods, as well as programming-with-examples. The introduced theory affirms the cognitive value of these
techniques, and also serves as a framework for understanding iterative design.

INTRODUCTION

The arrival of human–computer interaction (HCI)
has made many end-user computer applications much
more usable than they were before. This success has
been possible because knowledge has been brought
into application design from areas beyond computer
science itself. However, there is an area of computing
where this has not happened yet—that of program-
ming and software development. The major problem
in software development is still after thirty years
that as programs grow, they become exponentially
harder to make: Consider the task of producing a
complex software system, say one that runs digital
telephone networks, with hundreds of switching
stations, and so forth. This necessarily involves very
many sub-parts with intricate relations among them,
and many different conditions and scenarios that must
be handled well. Once the software grows, the
difficulty of making it work grows not linearly, but
exponentially. This is known as the ‘complexity bar-
rier.’ A consequence is that while the computer
industry has been pumping out new machinery at an
overwhelming pace, progress in software has been
very hard-earned. In other words, we are still waiting
for exciting advances in software development
methodology. Our belief is that bringing in know-
ledge on the cognitive aspects of this issue might

work for software development, as it has done for
‘traditional’ HCI.

Computer science itself has of course approached the
complexity barrier. The prototypical scheme is that
of Software Engineering: trying to free the task from
creative and artistic aspects, thereby reducing it to an
automatic engineering process. This attempt at total
mechanization has proven unsuccessful. Partly as a
reaction to this approach, the human values in
software development have been pointed out.
Contrary to the engineering perspective, it explicitly
acknowledges that the process involves creativity and
artistry, and thereby affirms the individual as the
fundamental asset in all design and development
projects. The computer scientist best known for
having defended the ‘philanthropic’ point of view, and
who has also addressed the complexity barrier from
this perspective, is Naur (1988). Further, work on the
psychology of programming can be regarded as the
ancestor of HCI as we know it (Curtis, 1985,
Weinberg, 1971). Some early pieces of more HCI-
oriented work were Smalltalk (Goldberg and
Robson, 1989), Logo (diSessa, 1986a) and Pygmalion
(Smith, 1977, 1993). The current Boxer project at Ber-
keley aims at creating a programming language based
on principles of human cognition, and can be regarded
as a successor of the work on Logo (diSessa, 1986a,
1991). ‘Demonstrational programming’ is an HCI

2

topic-of-the-day, with a recent compilation of all
relevant work in the field in (Cypher, 1993).
However, most such projects do not address general-
purpose programming.

DESIGN ACTIVITY AS A
COGNITIVE PROCESS

The project described here concentrates on cognitive
aspects of the development process. We believe that
bringing cognitive science into shaping development
processes and tools, part of the complexity barrier
can be torn down. That is, we take human cognitive
function as the outset for our effort to improve on
design methods and tools. We want to point out the
role of knowledge in managing complexity. There are
many other important factors, like social patterns and
communication within design groups, and so forth,
but they are beyond the scope of this project. Because
of this, and for the sake of simplicity, only the cog-
nition of individual people is considered. To keep this
in mind, we will refer to the person doing design and
development as the individual from here on.

Anyone who writes programs will agree that their
personal skills cannot be replaced by sophisticated
tools or engineering methods. The same goes for
designers and other similar professions. Any of these
can therefore rightly claim that it is their knowledge
and skills that are the most valuable assets in their
projects. These intuitions justify our attempts to im-
prove on design by focussing on its cognitive aspects,
and knowledge in particular. There are, however,
theoretical arguments as well. Initially, we will
only briefly consider some of them.

Conceptual Models. First, we have theory on con-
ceptual models; the well-known claim within HCI
that the most important condition for someone to use
a tool effectively is to have a good understanding of
how it works (Norman, 1986, 1988). All of this is of
course related to research on mental models (Gentner
and Stevens, 1983, Johnson-Laird and Byrne, 1991). In
the present context, this translates into that to do
good design and development, the most important
aspect is to have thorough knowledge (i.e. “a good
conceptual model”) of the subject of work and its
context, or what we will refer to as the target
domain. This includes not just ‘shallowly’ knowing a
great deal of facts, but to ‘deeply’ comprehend the
subject. It cannot be stressed too much that having a
good conceptual model means to really understand.

Domain-Specific Knowledge. Second, we have novice–
expert studies, where it is well accepted that
differences in knowledge cause the performance
differences that have been studied. “In short, problem
solving in a domain depends heavily on the quality
and quantity of the problem solver’s domain-specific

knowledge.” (Mayer, 1992, p. 413). Here we should
understand ‘problem solving’ in a liberal way,
including open-ended, ‘creative’ activities like design.
The ‘domain’ includes not only the software product,
but also its context. That is, everything that is related
to the problem and relevant to it. This includes a
great many things. In our telephone network
example, this means knowing how such a software
system operates, what it should do, what problems it
addresses, the setting in which it will be used, the
difference between various such settings, and so forth.

Programming as Theory Building. Third and last, the
role of knowledge in software development projects
has been explicitly considered in an article by Naur.
There, among other things, he recounts a large project
where the produced material of the original team, i.e.
annotated program texts, documentation, and “much
additional written design discussion,” was handed on
to a new team that would make extensions to the
initial product. The material supplied turned out to
be inadequate for the new team to be able to do a good
job. Naur concludes that “at least with certain kinds
of large programs, … [successful work] is essentially
dependent on a certain kind of knowledge possessed
by [the project members]” (Naur, 1985). To stress
these aspects, he introduces the metaphor of
programming as theory building. Talking about
theory stresses the point made in the previous
paragraph, i.e. that domain knowledge goes far beyond
just the software itself.

Having both intuitive and theoretical support for
focussing on cognitive activity in programming and
design, how do we best characterize it? A design
process extends over a long period of time, often
several months. So, we should look at what happens
over time with respect to cognition. The best way to
characterize this is by saying that the design process is
a learning process. This is not at all a new idea; see
e.g. (Bannon and Bødker, 1991). Learning is extra
important in projects that deal with highly complex
target domains, because a great deal of time will be
spent on learning and understanding all the aspects of
knowledge we enumerated above. Thereby, much
work will be done while the individual still has
restricted and immature domain-specific knowledge,
and this must be taken into explicit account in the
work process. A central aim of the project described
here is to address the process of acquiring this
domain-specific knowledge, from the perspective of
cognitive science.

Knowledge can be seen as an ability and a potential to
act in certain ways, and learning as how this potential
changes. This is a highly abstract view of the long-
term aspects of the design process. The
complementing, concrete and short-term activity is
the situated work as it really happens, and the
corresponding cognitive processes. We may call this
the act of problem solving. This is when the

3

individual is working on the telecommunications
project. These two sides of cognition cannot be
totally separated from one another. It is through the
actual work that relevant knowledge becomes observ-
able, since the knowledge in itself cannot be observed,
and much of it is even unavailable to self-report and
introspection. Therefore, we cannot consider learning
without also saying something about situated design
activity “as it really happens.” A theory of design
knowledge must therefore consider how such know-
ledge is put to work, for instance by showing how it
materializes in the designer’s actions. Still, that is
beyond the scope of this presentation.

KNOWLEDGE DEVELOPMENT

Concentrating on how knowledge develops in pro-
gramming projects and design activity in general,
there are some connections with other areas of
research. As we present these here, the nature of our
task will become clearer. The phrases ‘software de-
velopment’ and ‘design activity’ have already been
used somewhat inconsistently, because the cognitive
processes of knowledge development are essentially
the same in both. There are several occupations that
belong to this category: authors, film producers,
architects, engineers, and so forth, but perhaps the
most interesting kind of work is scientific research.
There, knowledge corresponds to theories, and hence
we may draw upon work in the philosophy of science
and knowledge, which is a very valuable source. There,
a great deal of work has been done on what theories
are, how they develop, and what their place is in
everyday scientific work. One very useful piece of
material that is known far outside the domain of phil-
osophy is Kuhn’s paradigm theory (Kuhn, 1972). He
even explicitly discusses cognitive aspects of
scientific theories, see e.g. pp. 44–45. A related and
very interesting issue is that of explaining human
performance by using a ‘human as informal scientist’
metaphor (Nisbett and Ross, 1980). This metaphor
outlines the activity of knowledge development in
this way: we make observations, collect them, draw
conclusions of general patterns from them, and
establish cause-and-effect relations. Thus, to
understand how knowledge develops we can expect to
draw highly upon studies of the process of doing
science. Additionally, as previously mentioned, the
article by Naur (1985) is foresightful on the
parallels between scientific activity and software de-
velopment. Also note that the project described here
itself involves knowledge development, since it is an
example of developing a scientific theory.

A good metaphor besides the ‘everyday scientist’
view of humans, is the ‘novice to expert’ metaphor of
knowledge development. It is fruitful to think of the
individual as, at the outset of a project, a novice in the
project’s target domain, developing into an expert on

the domain as work proceeds. But does not the
individual often already have extensive experience in
the target domain? Yes, that is true—but doing
something you are well familiar with is not
inspiring. Once having built a telephone switching
system, you do not want to rewrite it from scratch,
but reuse as much of it as possible. People with the
kinds of job mentioned above want to “move on,” and
develop their skills and knowledge all the time.
Ideally, they should use computers as tools to
automate routine chores, freeing time for more
stimulating tasks. Such tools should for example
empower them by allowing them to easily generalize
an existing system to suit a new set of conditions.
Reuse should not depend critically on planning it in
advance—how do you know if and how you will
recycle your work in the future? People working in
this way would thereby always be both novices and
experts at the same time: novices on the new con-
ditions, but experts on their previous work. The
terms ‘novice’ and ‘expert’ will be used
metaphorically to refer to the individual’s status in
terms of knowledge development—hence, being
expert does not mean having ten years of experience;
it only refers to the nature of the knowledge
possessed, which we will now describe.

Expert Knowledge. Expert knowledge is highly
complex and well integrated, both within itself and
with related material. It is also embraces a great
number of aspects: There are relevant concepts, a
certain terminology, prototypical examples of
problems and applications that have accumulated
through experience, effective working methods and
strategies, and so on. Much of this knowledge is tacit.
Further, understanding means that the relevant
knowledge is extensively organized and structured,
so that experts know what is central and important
to the subject, and what is auxiliary. (Again, we
emphasize the value of deep understanding as opposed
to just shallowly remembering a large number of
facts.) This has been demonstrated in problem solving
in physics (Chi, et al., 1981), and in many similar
studies. Novices classified problems by surface
features, such as ‘inclined planes.’ Experts instead at-
tended to underlying principles, such as ‘conservation
of energy,’ or ‘Newton’s Second Law.’ These
principles convey the right solution strategy, thereby
enabling the experts to move directly towards an
answer. It also definitely qualifies as a good ‘concept-
ual model’ in the previously discussed sense. The idea
of mental models was originally proposed as the
mechanism that enables humans to understand,
predict and reason about the world they live in
(Craik, 1943), or what we today would call a general
theory of human cognition. Nowadays, the term is
mostly used in more restricted senses, such as how we
conceive of calculators, or reason by deduction and in-
ference (Gentner and Stevens, 1983, Johnson-Laird and
Byrne, 1991). So expert knowledge is complex

4

enough to be well characterized as a personal theory,
and experts’ mental models are so sophisticated and
elaborate that they should be characterized as ‘sys-
tems’ of the complexity addressed by systems theory,
e.g., (Weinberg, 1975). As mentioned, important
aspects of expert knowledge are integration and
structure, since they correspond to experts’ superior
‘deep’ comprehension.

Novice Knowledge. The individual’s knowledge at
the outset of a project can be described as ‘novice
knowledge.’ It is characterized by the opposites of the
aspects of expert knowledge. Hence, it is ‘shallow,’
consisting of loose bits of information that are not
well integrated, neither between themselves, nor
with related knowledge. On the contrary, it is typical
of the novice not even to know what other knowledge
is related and relevant. The bits that exist are the few
notions that the individual has yet come upon. These
are too few to allow any kind of systematic
organization. Therefore, it is also impossible to know
what pieces of information are most relevant and
characteristic, in order to extract the most important
aspects of a problem. Accordingly, novices cannot
systematically explore their target domains. They
cannot even formulate the relevant questions, or state
their goals more than loosely. Thus, a telecommuni-
cations novice cannot formulate a problem statement
for a switching application—stating a goal adequate-
ly requires knowing what is important and relevant
for such a switcher, and what is not. By necessity, a
novice’s problem statement would be superficial and
concentrated on the shallow aspects of the network
system. Remember how novices characterized physics
problems by surface features, while experts
concentrated on relevant aspects. (Novices’
understanding corresponds to what diSessa calls
‘distributed models’ (1986b, 1991).)

From Novice to Expert. In order to do a successful
job, our individual has to acquire good domain know-
ledge, distinguished chiefly by great integration and
elaborate structure. To do this, it is necessary to find
pieces of information, tie them to each other, and
elaborate the developing structure by carving out
details. If a single most important part of knowledge
development should be selected, a preliminary review
of theory suggests building good, well integrated
structure. In this way the individual will be able to
tell what is important and what is not, among other
things. Until this thorough grasp of the problem is
established, there is no way of knowing whether
progress is being made, etc. The primacy of mature
knowledge structure has also been established
empirically (Fix, et al., 1993).

SUPPORTING KNOWLEDGE
GROWTH

In order to improve the processes of design and de-
velopment to suit knowledge development, we need
new models for these processes. These models should
adapt to, support, and ideally even augment know-
ledge development. By adopting the view that design
and development is a kind of theory building, we get a
natural connection between knowledge development
and contemporary HCI-work. The original idea about
mental models was that people use them as theories
by which they understand their world (Craik, 1943).
Seen this way, knowledge growth in design and de-
velopment is an example of personal theory building
(Nisbett and Ross, 1980): In the beginning, our in-
dividual observes some telephone network systems,
collects memories in the form of examples and so
forth. As work progresses, the task becomes to estab-
lish patterns out of these examples, such as general
properties and behaviors of telephone networks. This
general knowledge also makes up the structure and
organization of knowledge. General patterns reveal
what network aspects are very common, and therefore
highly relevant. Rare details are less important. Thus,
abstract patterns in knowledge make up the structure
and organization of the domain knowledge, since they
establish relevance and so forth. Ultimately, the
individual tries to establish cause and effect relations
that let events be predicted: Dialling a number causes
a line to be hooked up, which in turn means that
proper charges must be calculated, and so on.

The principal truism here is that we cannot know any-
thing before we know it. How ever banal this
principle may sound, we often fail to follow its
consequences. A typical mistake is to try to make a
complete, detailed problem statement or goal specifi-
cation prematurely in a project. That will not be
possible until quite late, since making expert
formulations requires having expert knowledge. An-
other example is that far too many existing software
development environments violate this principle by
requiring “a complete system.” Such environments
require considerable effort to be spent on achieving
basic or even rudimentary functionality, so that when
the work can finally start to be tested and evaluated,
the important insights that are made are long overdue.
Often quite severe flaws are discovered. Imagine that
a basic switching system must be finished before
work on special communication services can be tested
and evaluated. An oversight discovered then may
require a major redesign of the basic system that has
already been completed. This will require that piles
of produced work have to be thrown out and redone.
An almost proverbial observation states what is well
known to everyone that has written a program beyond
the most trivial kind (Brooks Jr., 1975, p. 116):

5

Plan to throw one [version] away; you will, anyhow.

This expresses the need to do practical work on your
ideas, in order to learn about your task, to test your
ideas, and to find out what you do not know. It is also
the most drastic argument we have for our claim that
knowledge is the important factor in all design and
development projects, formulated by a genuine
authority on the matter. However, it is not the final
saying on the issue—it merely expresses an
adaptation to the tools available. In concentrating on
knowledge growth, it is precisely our task to address
this problem. Good tools must facilitate learning and
understanding, and do this by allowing the individual
to work on the task in a manner that matches the
prevailing level of knowledge. Early on, the informal
scientist is still conducting observations and collect-
ing example data. At this stage when knowledge is
scant, it must be possible to work on be example
cases, instead of on general and complete rules and
principles—anything else is premature and a waste of
time. Further, there must be no requirements for the
pieces to fit together. We may call it support for pre-
structured work. This is what would allow work on
our hypothetical telephone network system to begin
with trying out the various services before deciding
on the core system’s overall design principles. By
necessity, there must be an interaction between on the
one hand working on small, concrete parts, and on the
other hand developing the fundamental and general
principles.

Good understanding depends fundamentally on how
material is represented ‘externally’: for example in
network maps, figures of system structure,
functionality check lists, visualization of system
functions and graphs of network traffic, etc. (see Cox
(1993) for an extended discussion). The role of
external representations for cognition has been
established in many fields, for example in deductive
reasoning (content-specific reasoning), in learning and
education, and in situated action (“knowledge in the
world”) (Johnson-Laird and Byrne, 1991, Larkin and
Simon, 1987, Mayer, 1992, Norman, 1988). An im-
portant example is, of course, direct manipulation
interfaces. All phases of development depend heavily
on good representation. Tools should support great
flexibility in choosing visual representations and
manipulation techniques, since it is essential that
external representations match how the individual
thinks about them, thereby reducing semant ic
distance (Norman, 1988) At the very least, it should
be as easy to have graphical representation with direct
manipulation, as having textual representation with
keyboard input. This would allow our individuals to
work on computer representations that resemble how
they conceptualize them, say connections displayed on
maps instead of in tables with the computer’s
representations (internal names, reference numbers,
etc.).

While it is important to work on the various pieces of
knowledge you have, sooner or later you have to start
fitting these pieces together. Without organization
there is no theory, only a bundle of ideas. As discussed
above, building a coherent structure is the most
valuable aspect of all for knowledge to develop.
Therefore, while working on the bits that are known,
it is essential to frequently take a step back so as to
maintain and develop a notion of the overall
structure. When ideas are starting to join together for
the individual, the task becomes to build this
organized structure that is to the personal theory
what the framework is to a house. This phase is a
mighty leap on the road to becoming an expert, and
corresponds to the phase of establishing a paradigm in
Kuhn’s (1970) sense: Once it is in effect, the rest is
just to fill in the missing details into the framework,
which is fairly straightforward to do, since the
overall structure has been put together. A good set of
tools supports both building the framework and
filling in out the details. The former would be
something similar to mind-mapping tools, or more
generally, sketch-pads. Since mind-maps, sketches, and
personal notes in general are highly individual and
they are very important external representations,
tools for this purpose must be highly flexible.
Firstly, everyone has their own personal style in
these matters, and secondly, no two projects have
similar requirements: making a telephone network
system is different from making an accounts-
receivable package. The idiosyncrasies of both people
and projects are the reason why fourth-generation and
CASE tools are often felt to be too restricted to be
practically useful, since they lack in flexibility. It is
important to remember that pen and paper are
superior in respect to flexibility, and are unlikely to
be superseded by computers as the designer’s primary
thinking tool. However, since the design material is
produced on computers in the cases we are considering
here, it becomes impractical to keep them organized
by using paper and pen. This is a respect that could
give computerized organization tools an advantage
over the former: For it to happen, the collected exam-
ples, tests, and data should be equal members in the
emerging structures that the individual sketches on.
Testing procedures, network capacity estimation for-
mulas, and everything else produced on computer
would integrate seamlessly with documentation,
design discussion and sketches. Then, such tools could
become an important complement to the notebook.
This goes as much for any kind of computer-assisted
development such as mechanical, architectural and
graphical design, authoring books (and computer
media, of course) and so forth, as it does for software
development.

Finally, there is the last phase of projects, when
theory has been established and most issues seem clear
and simple, although work is not yet finished. This is
similar to what Kuhn calls ‘puzzle-solving,’

6

scientific research within the normal paradigm: no
revolutionary breakthroughs come out of it, but it
still requires respectable skill. On this stage, work
often becomes routine and boring, so here tools may
help by enabling experts to automate repetitious and
predictable tasks in the manner discussed above. Thus,
they may produce meta-tools that are not part of the
finished product, but yet of great value—and even
necessary in all larger projects. Such tools could be
used for automatically generating phone-calls during
tests, automatic data consistency and error checks,
statistics gathering for net traffic, and so forth. Also,
working on meta-tools is a good way of analyzing
one’s data and constructing suitable, general patterns.

As discussed, important insights may cause a lot of
produced material to become useless. This is
especially true late in the process, when knowledge
becomes very good, and the really good ideas and deep
insights start to arrive. This is when iterations occur,
in terms of modern design theory: Iterating means
going backwards, redoing work to accommodate to
n e w knowledge that one has acquired: ‘This
implementation is no good, redo it.” etc. (See figure
1.) During implementation or test, etc., realizing that
more knowledge must be generated is another kind of
iteration—requiring work to ‘go back’ to earlier
stages in the iterative sequence: “First we’ll have to
figure out how to handle this unexpected kind of
overload.” In either case, effort has been wasted, and
therefore iterations should be minimized. This is why
all parts of the project ideally should run in parallel,
being at similar levels of progress to as high an
extent as possible. This reduces the risk of en-
countering problems in parts that are lagging behind,
and that will cause long proceeded work in other
areas to be discarded. This does not only mean parallel
work on different modules of the product, but also on
different activities such as planning, implementation,
testing and evaluation. If any of these lag behind the
others, a problem encountered there may cause major
iterations to become necessary. Likewise, one line of
work running ahead of the others may have to be dis-
carded as the others advance. Instead, the ideal way to
work is by letting the different sub-tasks interact:
implementing this generates a new idea, testing that
yields an important design hint, and so on.

the
iterative

design cycle

implement

ev
alu

ate
tes

t

ideas

plan
design

the
iterative

design cycle

ideas
plan

design
implement

test
evaluate

Figure 1: parallel and iterative development

We may thus summarize: Work on the product
should not run ahead in any part, but all aspects
should be brought forward in parallel, thereby
allowing them to interact. Theory and understanding,
however, must continuously strive forward and
preferably lie substantially ahead of practical work,
since knowledge is such a fundamental prerequisite
for successful progress on the product itself.
However, practical work is very important for
gaining necessary insight and should be conducted to
interact with the advance of theory. Therefore, when
practical work and hands-on experience produces
understanding, the material output is wasted—but
the effort is not, since it yielded knowledge and in-
sight. Time may only be wasted when it is spent on
producing material and does not develop understand-
ing—unless the understanding later turns out to be
irrelevant, but that problem has already been
discussed.

In any case, the basic lesson learned is that the role of
domain-specific knowledge and knowledge
development should be explicitly considered in
design projects that are large and/or deal with a
complex problem domain, and we have suggested
some important techniques, such as parallel progress.
Because of the complex nature of the projects we
address, we do not believe that any reasonable
empirical studies can strengthen our theoretical
claims.

An important part of the project described here
concerns exploiting the ideas in experimental
implementations of programming tools. There is

7

only room here for a brief outline of the main
directions of work, which includes a set of tools and a
‘metaphysics,’ or representational model, that
materializes as an ‘abstract machine.’

As already suggested, there is a stress on supporting
‘pre-structured’ work. Inspirations are exploratory
programming systems like Smalltalk and Lisp, and
rapid prototyping tools. Both allow playing around
with ideas, too often overlooked as an important
catalyst for discovery. (Do you think that children’s
play is just for fun and without impact on their de-
velopment?) Our approach is a set of high-level tools
for knowledge discovery, or what we might call “the
informal scientist’s laboratory.” These tools are
based on direct manipulation and demonstrational
techniques, thereby supporting directness, concrete-
ness and interactivity; important factors for good
problem solving (Mayer, 1992). Spreadsheets are
perhaps the most successful examples of what such
tools are like (Kay, 1984). Also, Shneiderman’s
survey of “Information Exploration Tools” gives a
good idea of what such a set would contain
(Shneiderman, 1992, ch. 11). The challenge lies in
finding a small set of tools and techniques that are
sufficiently general, and further that these may be
brought into higher levels of sophistication as work
progresses. This way of working is well suited for
techniques of ‘programming with examples’ (Cypher,
1993, Smith, 1977). Early on, observation and data
collection is complemented by working out examples
for what should happen. Later, as knowledge is elabo-
rated, these examples can be extended and worked out
in greater detail, thereby becoming ‘real programs.’

The ‘metaphysics’ is an important part of our
approach, that materializes as an ‘abstract machine’—
a paradigm for computer processing. A computational
metaphysics must contain models for representation,
processing, generalization and abstraction: Lisp
represents by symbols and lists, processes in a
functional style, and generalizes by symbolic
variables; Pascal has data structures (records),
sequential algorithms and mathematics-style
variables; and Prolog has basically the same represen-
tations as Lisp, but instead processes with production
rules, and generalizes by unification—and so forth.
Our strategy is to build a programming metaphysics
that suits humans’ cognitive processing as much as
possible, thereby striving to reduce the semantic and
articulatory distances of programming (Norman,
1986, 1988). Using the ideas about humans as
informal scientists as our starting point, we adopt
Craik’s general argument that mental models com-
prise our informal theories, and substantiate it with
techniques from systems theory (Craik, 1943, Nisbett
and Ross, 1980, Weinberg, 1975). We believe that the
techniques of systems theory are invaluable to anyone
that conducts systematic studies and development of
more complex nature. Their universal character
matches our concerns about reducing the need for

mastering idiosyncratic programming techniques (see
figure 2). If our ideas become successful, knowing
how to program becomes having a good command of
how to build models systematically—general-
purpose knowledge valuable to most professionals—
instead of a mandatory undergraduate course far
removed from the needs of those who study
industrial or graphic design, chemistry, architecture,
human factors, and so forth…

systems
modelling

skills

programming skills

Figure 2: general-purpose vs. domain-specific skills

SUMMARY

This description of knowledge development, with our
theory and the accompanying implementations, has
focussed on explaining the theoretical parts, since
these may be of direct value to designers and develop-
ers. This has necessarily been on the expense of
thoroughness on the implementational side. Anyway:
The starting point of the research described here was
to consider design and development as a cognitive
process, leading us to concentrate on aspects of
knowledge. We have shown that domain-specific
knowledge is a primary determinant of expert
performance in problem solving and design. In
projects dealing with highly complex domains, as
HCI and other software development projects
usually are, domain knowledge is so complex that it
takes participants a very long time to master it.
Taking these two observations together, it becomes
clear that the design process should be adapted to the
conditions of knowledge growth. We have presented a
theory of knowledge development, together with a
model of the design process that is based on this
theory. Also, our accompanying experimental
implementations have been briefly considered. The
latter address in particular the knowledge
development issues in software design and develop-
ment. We hope to have shown the role of knowledge
and the value of addressing cognitive aspects of design
and development processes.

REFERENCES

Bannon, L. J. & Bødker, S., (1991), “Beyond the
interface: encountering artifacts in use”. In J. M.
Carroll (ed.) Designing Interaction: Psychology at
the Human-Computer Interface, Cambridge
University Press, Cambridge, UK.

8

Brooks Jr., F. P., (1975), The Mythical Man-Month:
Essays on Software Engineering, Addison–
Wesley, Reading, MA.

Chi, M. T. H., Feltovich, P. J. & Glaser, R., (1981),
“Categorization and representation of physics
problems by experts and novices”, Cognitive
Science, 5, 121–152.

Cox, R. & Brna, P., (1993), “Reasoning with external
representations: Supporting the stages of
selection, construction and use”. In W o r l d
Conference on Artificial Intelligence in
Education 1993, Edinburgh, Scotland.

Craik, K., (1943), The Nature of Explanation,
Cambridge UP, Cambridge, UK.

Curtis, B. (ed.), (1985) Human Factors in Software
Development, IEEE Computer Society Press,
Washington, DC.

Cypher, A. (ed.), (1993) Watch What I Do:
Programming By Demonstration, MIT Press,
Cambridge, MA.

diSessa, A. A., (1986a), “Models of computation”. In
D. A. Norman and S. W. Draper (ed.) User
Centered System Design: New Perspectives on
Human–Computer Interaction, Lawrence Erlbaum
Associates, Hillsdale, NJ.

diSessa, A. A., (1986b), “Notes on the future of
programming: Breaking the utility barrier”. In D.
A. Norman and S. W. Draper (ed.) User Centered
System Design: New Perspectives on Human–
Computer Interaction, Lawrence Erlbaum
Associates, Hillsdale, NJ.

diSessa, A. A., (1991), “Local sciences: Viewing the
design of human–computer systems as cognitive
science”. In J. M. Carroll (ed.) Des ign ing
Interaction: Psychology at the Human–Computer
In t e r face , Cambridge University Press,
Cambridge, UK.

Fix, V., Wiedenbeck, S. & Scholtz, J., (1993),
“Mental representations of programs by novices
and experts”, Proceedings of ACM INTERCHI’93
Conference on Human Factors in Computing
Systems, 74–79.

Gentner, D. & Stevens, A. L. (ed.), (1983) Mental
Models, Erlbaum Associates, Hillsdale, NJ.

Goldberg, A. & Robson, D., (1989), Smalltalk–80:
The Language, Addison–Wesley, Reading, MA.

Johnson-Laird, P. N. & Byrne, R. M. J., (1991),
Deduction, Lawrence Erlbaum Assoc., Hillsdale,
NJ.

Kay, A., (1984), “Computer software”, Scientific
American, (March):52–59.

Kuhn, T. S., (1972), The Structure of Scientific Revo-
lutions, Unversity of Chicago Press, Chicago, IL.

Larkin, J. H. & Simon, H. A., (1987), “Why a diagram
is (sometimes) worth ten thousand words”,
Cognitive Science, 11, 65–100.

Mayer, R. E., (1992), Thinking, Problem Solving,
Cognition, Freeman, New York, NY.

Naur, P., (1985), “Programming as theory building”,
Microprocessing and Microprogramming, 15,
253–261. Also in (Naur, 1988).

Naur, P., (1988), Computing: A Human Activity,
ACM Press, New York, NY.

Nisbett, R. & Ross, L., (1980), Human Inference
Strategies and Shortcomings of Social Judgment,
Prentice–Hall, Englewood Cliffs, NJ.

Norman, D. A., (1986), “Cognitive engineering”. In
D. A. Norman and S. W. Draper (ed.) User
Centered System Design: New Perspectives on
Human–Computer Interaction, Lawrence Erlbaum
Associates, Hillsdale, NJ.

Norman, D. A., (1988), Design of Everyday Things,
Basic Books, New York, NY.

Shneiderman, B., (1992), Designing the User
Interface: Strategies for Effective Human–
Computer Interaction, Addison–Wesley
Publishing Co., Reading, MA.

Smith, D. C., (1977), Pygmalion: A Computer
Program to Model and Stimulate Creative
Thought, Birkhauser Verlag, Basel, Switzerland.

Smith, D. C., (1993), “Pygmalion: an executable
electronic blackboard”. In A. Cypher (ed.) Watch
What I Do: Programming by Demonstration, MIT
Press, Cambridge, MA.

Weinberg, G. M., (1971), The Psychology of
Computer Programming, Van Nostrand Reinhold,
New York, NY.

Weinberg, G. M., (1975), An Introduction to General
Systems Thinking, Wiley & Sons, New York, NY.

