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Abstract. When working with a neural network, it
is advantageous to let it extract as much information
as possible from the environment. We also want the
network to perform better at this task. One way of
achieving this is to make the perceptions of the net-
work dependent on its current knowledge. This means
that the network should be able to find structures in
structures or to make categories of categories. This pa-
per is an attempt to accomplish these goals by crafting
the units to be feature correlators rather than feature
detectors. A central component in the proposed con-
struction is the use of spontaneous (or background)
activity of the units as an important influence on the
process.

1 INTRODUCTION

The methodologyof usingneural networks to simulate
various kinds of processes is nowadays recognized in
several areas of research. One of these areas is biolog-
ical modeling, which brings together cognitive scien-
tists, neurophysiologists and biologically oriented AI
researchers. One of the main research interests in this
area is to construct models of complete agents, which
are fully equipped with sensors, motor effectors and
an appropriate set of behaviours. The present paper
belongs to this category.
The aim of the study is twofold. First, it is an attempt

to formulate a neural network theory for autonomous
agents. Second, it is an attempt to increase our un-
derstanding of the mechanisms underlying biological
networks. The approach taken, is related to the work
of Skarda and Freeman (1987) in two respects. First,
background, or spontaneous, activity is given a crucial
role in the process. Second, the system does not learn
in the traditional sense, but rather, asWerner expressed
clearly in his comments (Werner, 1987): “[T]he neu-
ral structure uses information to create its own internal
states, which acquire meaning.” A consequence of this
is that the structure in the network is not formed by the
external stimuli, but evolves from inside. This evolv-
ing process is what I recognize as the ontogenesis of a

neural network.
This perspective on a neural network introduces

some constraints. First, as the goal is an autonomous
system, the learning must be unsupervised and incre-
mental. Furthermore, the system must work with a
continous flow of input. Finally, we want to design a
system that perceives and acts in the real world, or,
at least, in the same world. That is, the task at hand
is not to construct a system that constructs abstract
categories from the input, but a system that perceives
the states of an environment and subsequently – and
continuously – acts in this environment.
I will first present some general principles that I

think the system should be based upon. Second, I will
discuss how spontaneous activity can be used in the
system. Third, I will bring up implementational issues
and, finally, the approach taken in this paper will be
compared to some excisting networks.

2 A MINIMAL NEURAL LEARNING
SYSTEM

In the spirit of Occam’s razor, we would like to con-
struct a system that is based on as few principles as
possible. This will minimize the human preprogram-
ming needed and introduce generality of the system.
We do not want to design a full system for any task
in which we use an autonomous agent; this can be
obtained by traditional programs. Rather, we want to
isolate general principles for a system that can be used
in order to evolve the system. That is, we want to con-
struct a system that, in a sense, is able to program
itself!
For the design of a self-organizing, evolving, and

minimal neural learning system I propose three basic
principles to be required:

(1) Spatial chunking,

(2) Temporal chunking, and

(3) Learning modulation

Lund University Cognitive Studies – LUCS 24 1993. ISSN 1101–8453.



By (1) we reach the traditional achievements of neural
networks. Principle (2) allows encapsulation (or cate-
gorization) of events and sequences, and, finally, (3)
is necessary as a mean to direct the learning. These
mechanisms should be operating all over the network
and hence not isolated in different modules.

2.1 SPATIAL CHUNKING

In the field of connectionism, chunking of spatially
distributed patterns, or, more generally, categorization
is a big issue. Almost all networks are constructed to
somehow categorize the input. The very output of such
a network is usually a category formed by the input
data. This is achieved by means of various techniques
– may it be supervised or self-organized.
The importance of spatial chunking, from my point

of view, is that it allows a more economic representa-
tion. This is especially important in a neural network
since the representation is distributed. By using cate-
gories, it is possible to use a smaller number of units to
represent a given situation. This means that more pat-
terns can be differentiated by the system if the number
of units is kept constant. Further, the risk that two or
more simultaneous patterns should overlap and inter-
fere with each other decreases. In other words, catego-
rization allows more information to be comprehended
by the network.
Another virtue of spatial chunking is that it allows

generalization. When a particular pattern is perceived,
it is categorized in relation to the previous learning that
has taken place in the network. This process will erase
some information carried by the pattern and introduce
new information not previously present. This general-
ization has its price however. The network might be
blind to the differences in two patterns that we (or it-
self)would like it to differentiate. The twopatternswill
be categorized in the same way and thus acted on as if
it were the same situation. This problem illustrates the
importance of (incremental) learning in the system. If a
system is initially (perceptually but not sensory) blind
to the differences between two patterns, we would like
there to be a possibility for the network to learn the
difference.

2.2 TEMPORAL CHUNKING

Given that the perception of the world does not con-
sist of independent snapshots but of a continuous flow
of patterns, we would like our system to handle such
input. Such systems, however, are few in number even
if the applications are numerous. Temporal problems
are to a great extent neglected in theoretical connec-
tionism.
As in the case of spatial patterns, we would like to

chunk temporal patterns or sequences. This would also
allow the representation to be more economical, and

we would achieve the same benefits as in the spatial
case. By categorizing spatialpatterns we achieve a de-
creased usage of the medium – space. In the case of
temporal patterns, we would like to reduce the usage
of its medium – time. How should this be done? The
traditional solution is to transfer the temporal pattern
into a spatial one by means of shift registers, unit ac-
tivity decay or time-delaying units. Those approaches,
however, have to my knowledge no support from bi-
ology. Further, it introduces limitations on the length
of the sequences that the system can handle. This abil-
ity becomes dependent on the number of such shift
registers.
The best way to approach temporal chunking is,

in my opinion, to represent time in the pattern flow
by time. This is not as obvious as it seems since this
means that temporal patterns cannot be handled by the
same mechanisms as spatial patterns.
Temporal chunking is a delicate problem, and it

should not be studied in isolation from the spatial
chunking or in isolation from learning modulation.
Temporal patterns incorporate both sequences of cate-
gories as well as transformations of patterns. The issue
of how these should be implemented is not currently
solved. The current research of the author is to a great
extent focused on this specific issue.

2.3 LEARNING MODULATION

The third principle needed in a neural learning system
concerns an ability to modulate, or direct, the learning.
As with most neural networks, the adjustments take
place at the synaptic level. All learning is manifested
by changes in the parameters of the synapses. This
approach works fine when the learning considered is
local like the learning of categories from sensor input.
Learning from behaviour, however, is a different case.
When an agent is acting in its environment, it can get
good, bad, or no feedback. It is desired to take these
values into account for the adjustment of learning at
the synaptic level. Therefore, we need a mechanism for
communication between the higher levels of abstrac-
tion in which behaviour occurs and the lower synaptic
level in which the actual learning takes place. The
learning modulation is thus related to reinforcement
learning. Notice however, that it is the system per se
that evaluates the responses from the environment as
good or bad. A particular environmental state might be
good for one system but bad for another. Furthermore,
a particular environmental state can be both good or
bad for the same system on different occasions. It is
possible to assume that the system can be in various
motivational states. If the agent is hungry, certain be-
haviours aremore appropriate than if it is not hungry. A
model of motivation should therefore be an integrated
part of the system (Balkenius, 1993).
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3 AN EVOLVING NETWORK

An evolving network must have a basis from which to
evolve. The task of the evolvement is tomove this plat-
form into more and more complex structures. In order
to achieve this, there must (a) be a way for the network
to search for new structures and (b) be a mechanism
that can maintain the progression by moving the plat-
form. The search is accomplished by neuronal spon-
taneous activity and in some respect by the network
architecture. The mechanism to secure the progress
is the long-term learning, modulated somehow by the
value that the progress gives the system (agent).
I would now like to outline some principles of a

network capable of evolving the complexity of the
categories. The network is based on two fundamental
issues, spontaneous activity (or noise) and, correlation
of activity. Note that by noise I do not mean simulated
annealing (Ackley et al., 1985), but a constant level
of spontaneous activity. It might seem strange to add
noise to a system, since noise is usually regarded as
something unwanted and bad. But noise actually has
a central function in the network is proposed here. If
noise is not added, the network will enter a state of
silence and no activity at all will take place.
Please notice that the system as a whole has not

yet been subjected to any computer simulations. A
networkusing spontaneous activityhas been simulated
though and will be described briefly in the section
below.

3.1 SPONTANEOUS ACTIVITY

Most connectionist networks (if not all) are driven by
their input. Without an external activation of the sen-
sors, the network remains silent. This is not the case,
however, in biological networks. In a situation where
no obvious external input is present, a recording from,
e.g., the visual cortex will reveal that the area is dis-
playing what is called spontaneous activity (Squatrito
et al., 1990; Sato et al., 1989). By using spontaneous
activity as the driving force, the system becomes inde-
pendent of external activation.The process is of course
still highly affected by external stimuli.
In Pallbo (1992; 1993), spontaneous activity was

used in a model of visual motion detection and line
extraction. This model employs no learning, but it il-
lustrates how the usage of spontaneous activity can
reduce the complexity of the computation in the in-
dividual nodes as well as simplify the architecture of
the network. In the model, the nodes are cooperating
in order to carry out the detection. Indeed, no node is
able to perform detection alone. The idea of the model
is to allow the nodes to “peek” at their neighbours and
rely on that information for their task. The nodes detect
motion at one direction only. This allows the nodes to
“peek” at those neighbours that will be signalling the
same motion some short time before themselves. A

node will signal that motion has occurred if it gets this
information from those neighboursand if someactivity
is present in the small field of the visual scene towhich
the node is connected. This model of motion detection
has been successfully tested in computer simulations
with video recordings as inputs.
The virtue of using spontaneous activity in that

model is that it allows the system to detect what is sta-
ble in the picture. Usually, motion detection involves
the search for what has changed in the picture. The
consequence is that in such approaches noise is a big
problem. The reason for this is that noise, in addition to
moving objects, is constantly changing from snapshot
to snapshot. If the search is made for stable patterns
propagating through the picture, noise is no longer a
problem. The problem is instead tofind new patterns in
motion, which is the task of the spontaneous activity.

3.2 CORRELATION

Suppose that a spontaneous activation of a node hap-
pens to be correlated with an external event. Then, the
active nodes at that point could be regarded as indi-
cating this event. The synapses that contributed to the
activation of the node will strengthen their possibility
to mediate the same information again (Fig. 1). If the
same nodes are activated again in correlation with the
same external event, then the strengths will grow even
stronger. Of course, all synapses that are contributing
to the activation at one occasion are not significant
as indicators for the event. These synapses, however,
will therefore reduce their participation in this catego-
rizationwhen the target node repeatedly gets activated
without the involvement of these synapses.
The nodes in the network should not be viewed as

feature detectors, but feature – or event – correlators.
The importance of their firing lies in that it is corre-
lated with some external or internal event (cf. Neu-
ral Darwinism, Edelman, 1987). In this manner, the
nodes’ activity encapsulate the more distributed in-
formation that indicates an event, and the representa-
tion becomes more economical. An alternative view is
that by modifying the connections in the network, the
system reprograms itself into feature detectors. This
self-programming is occurring over and over again as
the network evolves. Correct correlations that appear
spontaneously aremaintained bymeans of the synaptic
plasticity while incorrect correlation is not.

4 IMPLEMENTATIONAL ISSUES

In the previous section itwas suggested that correlation
and spontaneous activity should be the main features
of the network. In this section, I will try to go into
more details on how this could be implemented.
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Figure 1: A network with sensors (half-circles), nodes
(full-circles) and connections (arrows). The connec-
tions are established (strengthened) after that correla-
tion has beendetected.Thefigure illustrates both nodes
connected directly to the sensors as well as nodesmore
distant to the raw input data.

4.1 THE SYNAPTIC LEVEL

The learning is takingplace at the synaptic level. A sin-
gle synapse might, or might not, contribute to a unit’s
activation. It is not sufficient that just one synapse con-
tributes to the activation of a unit.Many synapses must
cooperate in order to cause an activation. Therefore
this task can be viewed as a multi-agent cooperative
learning problem, and hence, we can employ methods
from the field of game theory.
Let us take the perspective of a single synapse.

Its environment consists of the pre- and postsynaptic
nodes. The synapse will knowwhenever the presynap-
tic node is activated, and the synapse can act by either
mediating this signal to the postsynaptic node, or re-
main silent. The probability of the behaviour that the
synapse will perform depends on the previous learning
at the synapse. A useful model is stochastic learning
automata (Tsetlin, 1973; Narendra and Thathachar,
1974; Barto, 1989) illustrated in Figure 2.
The presynaptic node acts as a trigger to activate

the synapse. When activated, it must decide whether
to stimulate the postsynaptic node or not. This is deter-
mined by a stochastic variable , where

and is a
variable affected by learning. After the synapse has
been triggered and either transmitted a signal to the
postsynaptic node or remained silent, it can read the
state of that node through a response signal. With this
information, the automaton can either strengthen the
possibility to do what it did, decrease it, or just leave
the probability unchanged. What change to make is
dependent on both the learning strategy and whether

Stochastic Learning Automaton

ResponseTrigger Action

Postsynaptic

neuronneuron

Presynaptic

Figure 2: The model of a synapse as a stochastic learn-
ing automaton.

the synapse is excitatory or inhibitory. It is not within
the scope of this paper, however, to go into the details
of these variations. Rather, it is the task of practical
experiments to find out what learning rule to use.
An extension to the learning taking place in the

synapse is to split into two parameters (cf. Balke-
nius, 1992). We could have , where
is changed on a short term basis and on a long term
basis. would increase more than on every oc-
casion, but also decrease faster. This way we achieve
a short term memory and a long term memory. The
network would be highly affected by recent activity
without forgetting learning that has taken place over a
long time span.

4.2 THE NEURAL LEVEL

From the perspective of the synapse, the neuron was
reduced to a more or less passive environment. What
each neuron does is simply to add its input, and if the
sum exceeds a critical amount, then the neuron fires,
otherwise not.
Even if this behaviour is simple, we as observers can

interpret the activity of the neurons as if they actually
did compute some more sophisticated function (like
motion detection). This is also how their activity will
be interpreted by other neurons. Each neuronwill look
upon the others as holders of information. The neu-
ron will in a sense search for those neurons that give
relevant information for the computation done by the
neuron, that is, neurons that are firing prior to itself,
or, neurons that fire in correlation with it.
The neurons in the network would remain silent

with this arrangement if itwere not for the spontaneous
activity. By this feature, the network becomes activated
even if the activation in most cases is nonsense. But
the network follows the rule that it is better to do

The long and short termmemory discussedhere are not intended
as a psychologicalmodel of memory.
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anything than to do nothing; sometimes just anything
will be right. This anything will later evolve to be
more and more meaningful as the quality increases
in the categories found. This is why the spontaneous
activity is the motor of the network.

4.3 THE ARCHITECTURAL LEVEL

In the example of motion detection above, the archi-
tecture is crucial for the performance. If the excitatory
lateral connections are not placed on only one side of
the neurons, but on both, the neurons transform into
line extractors. If these connectionswould be symmet-
ric all-around the neuron, we would not get much of
selectivity at all.
What we should learn from this case study is that

not only the spontaneous activity and the learning are
important for the evolvement of the network but also
the architecture of the connections. Most probably,
it is not possible to find a general architecture that
will fit under all circumstances for all problems. This
is especially true for those parts of the network that
are closest to the sensors. At networks more distant
from the sensors, we probably have to deal more with
temporal encapsulation and a more general approach
might be possible.
Another feature that should be present in the archi-

tecture is variation. Since we want different neurons,
or groups of neurons, to evolve into different detectors
(or information holders), this divergence must orig-
inate in variation of some kind. Variation of course,
is also present in the input data and, not least, in the
spontaneous activity. But for some computations to
emerge, variation in the architecture is necessary (re-
member again the case of motion detection).

4.4 THE MODULAR LEVEL

In order to achieve a complete system, it is helpful
to organize the network into modules of subnetworks.
(cf. the areas of the cerebral cortex in mammals). We
canhaveperceptual, effectual and associativemodules.
We can also have primary and secondary modules.
Themodules interact through (topological) projections
(Fig. 3).
The arrangement of the network in modules allows

the introduction of a mechanism that can constrain the
communication between them, that is, a selectional or
motivational system. This can either be implemented
by letting this system affect the communication di-
rectly or by modulating the level of spontaneous ac-
tivity inside the modules. By decreasing the level of
spontaneous activity, the nodes in the module will be
less able to ignite a detection. The details of such a
system, however, are subjects of future research.

Figure 3: A simple modular network connected to per-
ceptors and effectors. The perceptual module projects
onto the effectual module.

5 A COMPARISON WITH
TRADITIONAL NEURAL
NETWORKS

Neural networks in general are well known for their
ability to self-organize. For solving a specific task, the
network is trained through learning by example. The
same initial network can be trained for several distinct
problems and the approach is thus very general.
The problem with neural networks is that the com-

plexity that can be achieved in the categorization is
very restricted. A single output, single hidden layer
feedforward network is capable of learning any ar-
bitrary mapping (White, 1990), and this general-
izes straightforwardly to themulti-outputmulti-hidden
layer case according to White. This is fine, but works
only for supervised networks. For unsupervised net-
works, the situation is worse. Further, it is not a mere
mapping from one domain to another that we strive
for, but a system that can produce and organize long
sequences of behaviour.
The general problem for unsupervised networks is

the absence of a mechanism that will bring the self-
organization beyond the simple categorization done on
the raw input. It is desired that the network should be
able to perceive new data in the light of its current
knowledge, i.e., to evolve its complexity.
The limitations of most neural networks of today

can be summarized in the following:

Thenetworks support communication and learn-
ing between layers of nodes, but not between
modules. Hence, there is no guideline for how
the network should be extended into more com-
plex systems without an external observer inter-
fering and supervising the internal representa-
tion of the system.

The interaction between various scale levels are
either absent or managed by an external al-
gorithm targeted to a specific level. This has
the consequence that higher levels that could
emerge, do not have any possibility to affect the
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other levels. Hence, such higher levels will not
emerge.

The learning algorithm is typically complex.

In the following sections, I will bring up a few related
networks and point out their specific weak (or strong)
points.

5.1 KOHONEN NETWORKS

AKohonen network (Fig. 4),or self-organizingmap, is
a topologically ordered feedforward network in which
all input nodes are connected to all output nodes (Ko-
honen, 1989). The weights are set to random values
at initialization. When an input pattern is presented,
one of the output nodes will be most activated. The
connections to this node, and nodes in its immediate
neighbourhood, get their strengths adjusted in order
to give an even stronger response to the same pattern
in subsequent trials. This is repeated for a large set
of patterns, and if the size of the neighbourhoods and
the weight adjustments are decreased during learning,
the output nodes will become organized into clusters.
Close nodes will therefore respond to similar patterns.
The lateral interaction of the nodes in a neighbour-
hood can be realized under the assumption that later
interaction between the cells are mainly inhibitory. In
the computer simulations, however, this interaction is
usually implemented externally to the network.

Figure 4: A one-dimensional Kohonen network with
two-dimensional input. All input nodes are connected
to every output node.

The architecture of Kohonen networks reveals that
the categories formed in this system aremade from raw
data. Hence, the complexity of the categories (clusters)
formed in this network is restricted. In order for the
network to be useful, the input data is usually prepro-
cessed in a suitablemanner to bring forth the structures
that one wants the network to detect. The network can
be used in the application of complex neural networks,
but just as a part of it. The theory of this network,
however, gives no support when the maps are used as
modules in a more complex system. The learning rule
is restricted to one map and does not generalize itself
in a straightforward manner to a modular version.
Moreover, Kohonen networks can be criticized for

their external control of the parameter that decreases

the size of the topological neighbourhood. This is not
accurate if we desire biological realism. The division
into a learning phase and a using phase lacks biolog-
ical realism as well. This makes incremental learning
impossible in this kind of network.

5.2 ART NETWORKS

AnART network is a sensory feature detector (Fig. 5).
The network is able to learn new categories fast with-
out forgetting previously learned categories (Carpenter
and Grossberg, 1993). An ART network is basically
organized into two layers, one input layer for repre-
senting sensory features and one output layer that rep-
resents categories. Principally, the network is a self-
organizing feature map with the addition of feedback
connections. These connections allow the activity in
the network to reach a resonant state in which learning
occurs.

Figure 5: An ART network consists primarily of two
layers plus some additional subsystems (not shown)
used to deal with category mismatch. The formation
of categories in the upper layer does not benefit much
from earlier experience which is why the networkdoes
not evolve in its complexity.

There is no interactionwithin the output layer except
for lateral inhibition. Hence, the process of forming
new categories cannot benefit from those previously
learned by the network. The categories formed in an
ART network are invariable categories that are a direct
result of the raw input data. The output nodes are,
however, not totally independent. If a new input pattern
is similar to a previously learned category, it will be
categorized as this old category. If it is not sufficiently
similar, a new category is formed.
An advantage of ART networks worth mentioning

is its capability of incremental learning. Further, sev-
eral ART3 networks can be connected in serial and/or
in parallel. There is, however, no means for evolving
the complexity in the network. Therefore, ART net-
works primarily lend themselves to adaptive neural
machineries to which it is very suitable.
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5.3 BOLTZMANN MACHINES

Some readers might object that a network along the di-
rection of this paper is just a version of the Boltzmann
machine network (Ackley et al., 1985; Hinton and Se-
jnowski, 1986). This is, however, incorrect. First of
all, the aims of these two networks are different.When
the Boltzmann machine is given an input, it strives
for reaching a stable (final) state. When this state is
reached, it is read off by a (to the network) exter-
nal observer. The Boltzmann machine methodology
makes use of noise in a manner very different from
the approach taken in this paper. When the Boltzmann
machine is given an input, it heads for the closest local
minimumwithin the context of stable patterns. The de-
signer of the net, however, would prefer the network
to stabilize itself at the global minimum. Therefore,
noise, or energy, is added to force the network out
from the local minima. The hope is that by slowly de-
creasing the energy (simulated annealing) the network
will reach the global minimum.
The approach taken in this paper does not primarily

use noise as a mean to get out of local minima. There
should be no such thing as a stable state in a biologi-
cally plausible network. Rather, noise is the originator
of all detection occurring, that is, the activity patterns
grow from noise bymodulation from the sensory input.
Further, the Boltzmann machine operates in modes,
which is not the case here. A second problem is that
the learning is not incremental. The two networks are
thus rather different.

5.4 ELMAN NETWORKS

One approach to dealing with temporal structures is
the modified backpropagation network constructed by
Elman (1990) (Fig. 6). The activity of the hidden layer
is fed back as input to the network in the next iteration.
This gives the network a form of temporal memory.
The hidden layer can use nodes for coding the previous
patterns presented to the network. Elman reached a
good amount of success with this network.
The Elman network is capable of some evolvement

of its categories, which makes it interesting. It can,
for instance, encapsulate sequences by means of the
recurrent connections. Further, these connections al-
low the network to form categories of categories. The
main drawback of Elman networks, however, is that
it – like the backpropagation network – is supervised.
The self-organization that takes place in the hidden
units is affected by this. The structures that are found
are those that the supervisor has decided to be relevant.
Any remaining hidden structures will not be found.
The procedure in which the network is used is to

present a sequence consisting of several spatial pat-
terns. The desired output is presented to the network
and the weight adjustments are made. Typically, a lot
of such sessions are required before the network sta-

Figure 6: The architecture of an Elman network. The
activity of the hidden layer is fed back to the input
layer.

bilizes, which leads us to two objections: (1) The ses-
sions are independent. The network is restarted from
session to session and, hence, is not a continuous sys-
tem in the sense previously used in this paper. (2) The
learning is not incremental. All these limitationsmake
the network unsuitable for our purposes.

6 DISCUSSION

When we model biological organisms, we are striving
to re-create a highly complex system. Neural networks
are, however, generally simple. If we do not allow the
network to evolve, it will remain simple and not reflect
the complexity of the system it is intended to model.
Most approaches to the extraction of more complex
networks involve phylogenesis, but no ontogenesis.
The popular approach to use genetic algorithms to
evolve a neural architecture to solve a particular prob-
lem belongs to this field. With such approaches, we
will construct highly advanced insectoids, but avoid
the essence of cognition. The approach of this paper
does not take us all the way to a cognitive system –
far from it – but I hope that it is at least is in the right
direction.

6.1 THE SYSTEM AS A SOCIAL
ORGANIZATION

The cooperative learningmodel used for the suggested
network invites us to view the network as a social orga-
nization. The synapses are the individuals, the neurons
are groups of tightly associated individuals, and so on
(Fig. 7). The synapses have two options available; ei-
ther they cooperate with other synapses to activate
or deactivate a neuron, or they defect. The group be-
haviour, embodied by the neuron, will highly affect
the individual decision. Further, the group is associ-
ated with other groups, and their behaviour will affect
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the group (neural) behaviour that again affects the in-
dividual. A social network will emerge.

Figure 7: The network viewed as a social hierarchy.
The circles at the bottom represent the synapses. The
level above represents neurons. Even higher, we find
groups of neurons, etc.

It has been shown that organizational structure in so-
cial groups can spontaneously emerge from the inter-
actions of the groupmembers (Glance and Huberman,
1993). This is especially evident in fluid organizations
in which the individual can move within the organiza-
tion.Obviously, the synapses in our neural network are
unable to physicallymove. Higher up in the hierarchy,
though, the case is different. A specific neuron can
(functionally) move from one group to another, and
an entire group of neurons can shift their cooperation
or dissolve over time. The structure is still, however,
somewhat constrained by the neural architecture.
To view the system as a social hierarchy illustrates

one way in which several levels can emerge. By us-
ing stochastic learning automata to model the synap-
tic plasticity, a mean for indirect interaction between
those levels has been introduced. These global inter-
actions of numerous levels have been argued to be
a primary characteristic of complex systems (Havel,
1993a; Havel, 1993b).
The synapses strive for optimizing their own be-

haviour, which is (for excitatory connections) to trans-
mit signals only when the neuron subsequently be-
comes activated. This should be contrasted to many
other learning algorithms for neural networks inwhich
an external observer decides what the optimal param-
eter settings are. Such algorithms seldom have a per-
spective ofmore than one (emergent) level, which con-
strains the whole system (section 5).

6.2 DRAWBACKS AND UNSOLVED ISSUES

As was pointed out previously, the actual implemen-
tation of temporal chunking is still obscure. One of
the most important tasks of the future research of this
model is to bring clarity into this issue. Is it an attribute
of the synapses or the architecture? Is it a consequence

of the spatial chunking? Should it be explicitly de-
signed, or more implicitly to emerge from the self-
organization?
The main problem when simulating this kind of

model in computers is the computational cost. The ap-
proach requires a large number of neurons to be used.
This means that an even larger number of synapses
must be modelled. Further, the spontaneous activity
as well as the stochastic learning automaton demands
random number generation, which is also computa-
tional expensive. Without support from custom de-
signed hardware, real-time simulation is not possible
using the computers of today (or tomorrow). The in-
terest in this approach lies therefore primarily in the
theoretical domain.
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