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1. INTRODUCTION

This article presents a series of experiments on concept
formation. These experiments compared four diffe-
rent categorisation rules. The rules presume that the
stimuli to be classified can be modelled psycho-
logically as points in a dimensional space (Shepard
1987, Gärdenfors 1990a, 1990b). Two of the rules are
based on the assumption that there are prototypical re-
presentatives of a concept, a third rule is a “nearest
neighbour” model, and the fourth is based on average
distances (Reed 1972), where distances are measured in
the dimensional space. Before giving a more precise
description of the categorisation rules and the experi-
ments, we will present the general theoretical approach
that is adopted.

1.1 Theoretical background

In this article, we take categorisation to be a rule for
classifying objects. The result of categorisation will
be a number of concepts. The concepts will generate
classifications of stimuli. In the model presented here,
where stimuli are represented as points in dimensional
spaces, a categorisation will generate a partitioning of
the space and a concept will correspond to a region of
the space.

One can find many proposals for categorisation rules
in the philosophical and psychological literature. A
classical example is Aristotle’s theory of necessary and
sufficient conditions (see Smith and Medin (1981) for a
presentation of this and other theories of concept for-
mation). His view on how concepts are determined has
had an enormous influence throughout the history of
philosophy.

As is shown by numerous experiments (e.g. Rosch 1975,

1978, Labov 1973, Mervis and Rosch 1981, Smith and
Medin 1981), the Aristotelian theory is not realistic as
a cognitive or psychological account of how people
form and use concepts. As a result of a growing dissatis-
faction with the classical theory of concepts, several al-
ternative theories have been developed within cogni-
tive psychology. The most well known is prototype
theory (e.g. Rosch 1975, 1978, Mervis and Rosch 1981,
Lakoff 1987). The main idea of this theory is that
within the class of objects falling under a concept cer-
tain members are judged to be more representative of
the concept than others. The most representative exem-
plars of a concept are called prototypical members. A
given set of prototypes for a class of concepts can be
used for generating a categorisation by the rule that a
stimulus is classified according to which prototype it
is most similar to.

However, even if prototype theory fares much better
than the Aristotelian theory in explaining how people
use concepts, the theory does not explain how such pro-
totype effects can arise as a result of learning to use our
concepts. The theory can neither account for how new
concepts can be created from relevant exemplars, nor
explain how the extensions of concepts are changed as
new concepts in the same category are learned.

The purpose of this article is to present four models
based on a “dimensional” or “geometric” approach to
categorisation, together with the experiments that we
have performed in order to test the models. The key no-
tion is that of a conceptual space consisting of a number
of dimensions which are used as the framework for va-
rious categorisation rules. A conceptual space can be
seen as a geometric structure for which several catego-
risation rules can be formulated and tested. We want to
show that a model based on conceptual spaces together
with a classification rule based on so called Voronoi
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tessellations can provide us with an explanation of how
concepts are formed and develop, at least for certain
classes of objects. The space used in our experiments is
a representation of shell shapes.

There are several related studies in the psychological
literature. Reed’s (1972) investigation of classifica-
tions of Brunswick faces uses an approach that is simi-
lar to ours, even if the “space” of faces has a very limi-
ted structure in comparison to the shell space presented
below. Similarly, Ashby and Gott’s (1988) investiga-
tions of decision rules for categorising multi-
dimensional stimuli are based on a methodology that
shares many features with ours. Some further examples
of studies of concept formation that utilise dimen-
sional notions are Pittenger and Shaw (1975) on faces,
Labov (1973) on cups, Nosofsky (1986) on semicircles,
and Nosofsky (1988) on colours.

1.2 Conceptual spaces and the geometric
categorisation models

In this subsection, we introduce the notion of a con-
ceptual space which serves as a theoretical framework
for the different categorisation models. A conceptual
space consists of a number of quality dimensions. The
dimensions that will be considered in this article are
assumed to be generated by our perceptual mechanisms,
but in a general theoretical investigation one may con-
sider quality dimensions that are of a more abstract
non-sensory character. As examples of quality di-
mensions one can mention colour, pitch, temperature,
weight, and the three ordinary spatial dimensions.

The notion of a dimension should be understood lite-
rally. It is assumed that each of the quality dimensions
is endowed with a certain topological or metric struc-
ture. This structure can be determined by psycho-physi-
cal investigations. For example, perception of weight is
one-dimensional with a zero point, isomorphic to the
half-line of non-negative numbers; and the hue of a co-
lour can be represented by a circular dimension (see e.g.
Gärdenfors 1990a, 1992).

We cannot provide a complete list of the quality
dimensions generated by our perceptual mechanisms.
Some of the dimensions seem to be innate and to some
extent hardwired in our nervous system, as for example
colour, pitch, and probably also ordinary space. Other
dimensions are presumably learned. Learning new con-
cepts often involves expanding one’s conceptual space
with new quality dimensions. Quine (1969:123) notes
that something like a conceptual space is needed to
make learning possible:

Without some such prior spacing of qualities,
we could never acquire a habit; all stimuli
would be equally alike and equally different.
These spacings of qualities, on the part of men
and other animals, can be explored and mapped
in the laboratory by experiments in condi-

tioning and extinction. Needed as they are for
all learning, these distinctive spacings cannot
themselves all be learned; some must be innate.

Let us now turn to an outline of how conceptual spaces
may be used as a basis for a theory of categorisation. A
first rough idea is to describe a concept as determined
by a region of a conceptual space S, where “region”
should be understood as a spatial notion determined by
the topology and metric of S. For example, the point in
the time dimension representing “now” divides this
dimension, and thus the space of vectors, into two
regions corresponding to the concepts “past” and
“future”.

Shepard (1987, p. 1319) gives an evolutionary argument
that supports this proposal:

An object that is significant for an individual’s
survival and reproduction is never sui generis;
it is always a member of a particular class –
what philosophers term a “natural kind.” Such a
class corresponds to some region in the indi-
vidual’s psychological space, which I call a con-
sequential region. I suggest that the psycho-phy-
sical function that maps physical parameter
space into a species’ psychological space has
been shaped over evolutionary history so that
consequential regions for that species, although
variously shaped, are not consistently elongated
or flattened in particular directions.

One way of giving Shepard’s idea a mathematical for-
mulation is the following criterion where the topo-
logical characteristics of the quality dimensions are
utilised to introduce a spatial structure on categories
(cf. Gärdenfors 1990a, 1990b):

Criterion P: A natural category is a convex
region of a conceptual space.

A convex region is characterised by the criterion that
for every pair of points v1 and v2 in the region all
points between v1 and v2 are also in the region. The
motivation for the criterion is that if some objects are
located at v1 and v2 in relation to some quality dimen-
sion (or several dimensions) and both are examples of
the category P, then any object located between v1 and
v2 on the quality dimension(s) will also be an example
of P. Criterion P presumes that the notion of
“betweenness” is meaningful for the relevant quality
dimensions. This is, however, a rather weak assumption
that demands very little of the underlying topological
structure. However, in what follows we shall work
with the stronger assumption that the dimensions we
consider have a metric so that we can also talk about dis-
tances between points in the space.

In support of Criterion P it can be shown that if proto-
type theory is combined with the idea of a metric con-
ceptual space as a framework for categorisation, then
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the representation of categories as convex regions is to
be expected. To see this, assume that some quality
dimensions of a conceptual space are given, for exam-
ple the dimensions of colour space, and that we want to
partition it into a number of categories, for example
colour categories. If we start from a set of prototypes
p1, ..., pn of the categories, for example the focal co-
lours, then these should be the central points in the ca-
tegories they represent. One way of using this informa-
tion is to assume that for every point p in the space one
can measure the distance from p to each of the pi’s. If we
now stipulate that p belongs to the same category as the
closest prototype pi, it can be shown that this rule will
generate a partitioning of the space that consists of con-
vex areas (convexity is here defined in terms of the as-
sumed distance measure). This is the so called Voronoi
tessellation, a two-dimensional example of which is il-
lustrated in Figure 1.

p1

p2
p3

p4

p5

p6

Figure 1. An example of a Voronoi tessellation of the plane
into convex sets determined by a set of prototypical points.

Thus, assuming that a metric is defined on the subspace
that is subject to categorisation, a set of prototypes
will, by this method, generate a unique partitioning of
the subspace into convex regions. Hence there is an in-
timate link between prototype theory and the analysis
of this article where categories are described as convex
regions in a conceptual space.

In the experimental investigations, we assume that the
prototype for a category is determined from the set of
exemplars of the category that a subject has seen. The
rule we employ for calculating the prototype from a
class of exemplars is that the ith coordinate pi for the
vector representing the prototype is the mean of the ith
co-ordinate for all the exemplars. Applying this rule
means that a prototype is not assumed to be given a
priori in any way, but is completely determined by the
experience of the subject. Figure 2 shows how a set of 9
exemplars, represented as differently filled circles,
grouped into three categories generate three prototypi-
cal points, represented as black crosses, in the space.
These prototypes then generate a Voronoi tessellation
of the space.

Figure 2. Voronoi tessellation generated by three clas ses of
exemplars.

Furthermore, when the subject sees a new item in a ca-
tegory, the prototype for that category will, in general,
change somewhat, since the mean of the class of exam-
ples will normally change. Figure 3 shows how this ca-
tegorisation is changed by the addition of one new
exemplar, marked by an arrow, to one of the categories.
This addition shifts the prototype of that category,
which is defined as the mean of the exemplars, and con-
sequently the Voronoi tessellation is changed. The old
tessellation is marked by hatched lines.

new

Figure 3. Change of Voronoi tessellation in Figure 2 after
adding a new exemplar.

The Voronoi tessellation generated from a set p1, ..., pn
of prototypes yields the following decision rule for
categorisation:1

Prototype Voronoi categorisation (PV): An object repre-
sented as a vector xi in a conceptual space belongs to the
category for which the corresponding prototype is the
closest, i.e., the pj that minimises the distance between
xi and pj.

A drawback of the standard Voronoi tessellation is that

1This rule is the same as the “Prototype model” in Reed
(1972).
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it is only the prototype that determines the partitioning
of the conceptual space. However, it is quite clear that
for many natural categorising systems some concepts
correspond to “larger” regions than others. For exam-
ple, the concept “duck” covers a much larger variety of
birds than “ostrich,” even though both concepts are basic
level concepts in the terminology of Rosch (1978), i.e.,
they are both members of the same categorisation of
birds.

So the question arises whether there is some way of ge-
neralising the Voronoi tessellation that can account for
varying sizes of concepts in a categorisation, but which
will still result in a convex partitioning of the under-
lying conceptual space. It can be shown (see Holmqvist
and Gärdenfors, in preparation) that such a generalisa-
tion is possible. The standard Voronoi tessellation is
based on the ordinary Euclidean metric, so that in
order to determine the lines that form the tessellation
one solves the equation

!i (vi – xi)2 = !i (wi  – xi)2

where v = (v1,...,vn) and w = (w1,...,wn) are the vectors of
two prototypical points in the conceptual space. How-
ever, instead of saying that there is only a prototypical
point for a particular concept one can introduce the no-
tion of a prototypical area and then determine a gene-
ralised Voronoi tessellation by computing distances
from such areas instead. In relation to the earlier
example, the prototypical area for ducks could then be
taken to be larger than the corresponding area for
ostriches. We model this idea by assuming that the pro-
totypical area for a concept can be described by a circle
with centre (v1 ,...,vn) and radius cv . By varying the
radius, one can change the size of the prototypical area
(for example, the cv  for ducks would be larger than that
for ostriches).

In order to determine the generalised Voronoi tessel-
lation one then solves equations of the form

!i (vi – xi)2 – cv = !i (wi  – xi)2 – cw

It can be proven (Holmqvist and Gärdenfors, in prepa-
ration) that for all choices of prototypical circles, this
equation generates a set of straight lines that will par-
tition the space into convex subsets. A simple illustra-
tion of a generalised Voronoi tessellation is given in
Figure 4. The prototype Voronoi tessellation gene-
rated from the centres of the circles, corresponding to
the prototypes, is indicated by hatched lines.

The metric generated by this kind of equation will not
be Euclidean. All points on the prototypical circle
will have distance zero from the prototype, and it turns
out that points within the circle will have imaginary
numbers as distances.

cw

W

cu
U

cv
V

Figure 4. An example of a generalised Voronoi tessellation
determined by the circles. The generalised Voronoi

tessellation is represented by continuous lines and the
prototype Voronoi tessellation by dashed lines.

Before the generalised Voronoi tessellation can be app-
lied, the values cv must be determined. A natural choice,
that we will use throughout this article, is to define cv
as the magnitude of the standard deviation of the
exemplars from the prototype. This choice entails that
the generalised Voronoi tessellation can be completely
determined from the co-ordinates of the exemplars of
the different categories.

The generalised Voronoi tessellation corresponds to
the following rule for categorisation:

Generalised Voronoi categorisation (GV): An object
represented as a vector xi  in a conceptual space belongs
to the category for which the corresponding prototypi-
cal circle is the closest.

Following Reed (1972), we will compare the results
of the two Voronoi rules PV and GV to two other cate-
gorisation rules:

Nearest neighbour categorisation (NN): An object repre-
sented as a vector xi in a conceptual space belongs to the
category to which the exemplar that is closest to xi is
included.2

Average distance categorisation (AD): An object repre-
sented as a vector xi in a conceptual space belongs to the
category to which xi has the smallest average distance to
the examples for the category.

The four rules that have been introduced here often
result in very similar categorisations. As a consequence,
it will become difficult to distinguish between them
in empirical tests of which rule best describes the
behavior of subjects in classification tasks. Figure 5
illustrates an extreme case where the four rules gene-
rate clearly separate partitionings.

2Reed (1972), pp. 385-86, calls this rule the “proximity
algorithm”.
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NN

GV

PV
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NN

Figure 5. An example of how the four categorisation rules result in extremely different categorisations of the space. The two
filled dots are exemplars of one category and the cross between them its prototype. The unfilled dots are exemplars of another
category, again with its prototype marked as a cross between them. PV, GV, NN and AD denote partitionings generated by the

four categorisation rules.

1.3 The shell space

In order to evaluate the four models presented above we
have performed a series of experiments concerning the
categorisation of shell shapes. There are several reasons
why shells constitute a useful domain for empirical
investigations:

(1) It is possible to generate a great number of fairly
realistic shell shapes in a conceptual space that is built
up from three dimensions. (This space will be de-
scribed below.)

(2) The shells can easily be drawn by a graphic pro-
gram where the only inputs are three co-ordinates in
the shell space.

(3) The pictures generated by our program are identi-
fied by the subjects as pictures of realistic 3D shells.
They are thus much more natural than most of the sti-
muli used in classification tasks in current cognitive
psychology, like e.g. the dot-patterns (Posner and Keele
1968, Shin and Nosofsky 1992) or the semi-circles
with an additional radius (Nosofsky 1986, Ashby and
Lee 1991). Not even the schematic faces used by Reed
(1972) have a very high degree of “ecological validity”
(Gibson 1979).

(4) Even though test subjects recognise the object on the

pictures as shells, they normally have no “prejudices”
concerning how shells are actually classified in bio-
logy. This means that we can “create” new categories
for the subjects by showing appropriate shells, i.e.,
more or less prototypical examples, in a desired region
of the shell space.

2. PILOT STUDIES

In order to obtain an estimate of the metric space
underlying perceptions of shell forms, we performed
three pilot studies. These studies can be seen as calibra-
tion experiments determining the scaling solution of
the underlying dimensions. The results of the experi-
ments strongly confirm the hypothesis that the psycho-
physical shell space is indeed three-dimensional with
an identifiable metric. The perceptually grounded
metric that was estimated during the pilot studies is the
one that was used in the two main experiments where
the four categorisation rules presented above are evalu-
ated. It is also the metric used below in Figures 8 and
11 where we illustrate the various classification tasks.3

3The metric is not identical to the one used in the graphics
program but a simple transformation of it.
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2.1 Stimuli

Throughout all experiments, we used depictions of
shell shapes as stimuli. A shell normally grows in a

spiralling way. The shape of the shell is, according to
Raup (1966), largely determined by three factors (see
Figure 6):

Coiling axis

Initial generating curve

Generating curve 
after one generationRE

V

Figure 6. The three dimensions V, E, and R, generating a shell shape.

(1) The rate E of whorl expansion which determines
the curvature of the shell. The rate E is assumed to be a
constant defined as the quotient en+1/en between the
distance en+1 of the central point to the generating axis
and the distance en one revolution earlier. Small curva-
ture results in densely spiralled shells, while a high
curvature produces openly spiralled shapes.

(2) The rate V of vertical translation along the coiling
axis. The rate V is also assumed to be a constant. It is
defined as the quotient vn+1/vn between the vertical
distance vn+1 of the central point to the initial level on
the generating axis and the corresponding distance vn
one revolution earlier. Having no vertical translation
yields flat shells, while rapid growth results in
elongated shapes.

(3) The expansion rate R of the generating curve (the
aperture) of the shell. Our graphic program only ope-
rates with a circular generating curve, but one finds in
nature a large variation of the outline of the apertures
(which is largely determined by the shapes of the soft
body of the molluscs). The growth rate R, which is
assumed to be constant, is defined as the quotient
rn+1/rn between the radius rn+1 and the radius rn one
revolution earlier. Slow growth results in tube formed
shells. Very rapid growth produces shells that look like
in Figure 7c below.

Figure 7 shows some examples of shapes that are pro-
duced by different combinations of values for the co-
ordinates. All shell pictures here and in the following

are generated by our graphics program. The only input
to the program are the three co-ordinates.

The three dimensions V, E, and R, span a space of possi-
ble shell shapes that is suitable for testing the four mo-
dels of categorisation described above. However, the
dimensional space is defined with the aid of three
mathematical dimensions. As a preliminary step, it is
necessary to test the psychological validity of the
hypothesis that our perceptions of shells also form a
three-dimensional space. But even if the perceptual
shell space is three dimensional, it does not at all
follow that the metric of the space is the same as the
mathematical co-ordinates used by the graphic pro-
gram.4  Before we can apply the four categorisation

4It seems to us that this point is sometimes missed in the
psychological literature. For example Ashby and Gott (1988)
work with stimuli composed of two lines, one horizontal and
one vertical, joined at the upper left corner (cf. their figure 2
on p. 35). The stimuli are described by a two dimensional
vector (x,y) where x denotes the length of the horizontal
component and y the length of the vertical component.
Throughout the article, Ashby and Gott discuss the space
generated by these axes and define their decision rules using
this metric. However, from a number of observations in their
article which are problematic for them, it seems that these
co-ordinates do not produce an appropriate metric for the
perceptual space producing the categorisations. It seems to
us that if one makes a co-ordinate shift by defining x' = x/y
and y' = x "y, one obtains a metric that is much better suited
to explain the observed phenomena. The dimension x'
measures the proportions of the lengths of the two line
segments, while y' is a measure of the relative size of the
stimulus.
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models it is necessary to establish the relevant psycho-
logical metric, i.e., the scaling solution, of the shell

space.

Figure 7. Some examples of shell shapes drawn by the graphic program together with their generating co-ordinates (rate of whorl
expansion, vertical growth, growth of radius of aperture).

This methodology is completely in line with
Shepard’s (1987, p. 1318) recommendations for how
psychological laws should be obtained:

Analogously in psychology, a law that is invari-
ant across perceptual dimensions, modalities,
individuals, and species may be attained only by
formulating the law with respect to the appro-
priate abstract psychological space. The pre-
viously troublesome variations in the gradient
of generalisation might then be attributable to
variations in the psycho-physical function that,
for each individual, maps physical parameter
space (the space whose co-ordinates include the
physical intensity, frequency, and orientation of
each stimulus) into that individual’s psycholo-
gical space. If so, a purely psychological func-
tion relating generalisations to distance in such

a psychological space might attain invariance.

2.2 Calibration of Stimuli

The three dimensions given by Raup’s (1966) model
are not the most natural ones from a perceptual point
of view. When estimating the vertical and horizontal
growth rates of shells, we don’t look at the centre of the
generating circle. Instead we focus on its extreme
points in the vertical and horizontal direction, loosely
speaking the height and width of the shell. This means
that the vertical and horizontal expansion rates should
instead be described by the following values:

V' = V + R – 1

E' = E + R – 1
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This shift of co-ordinates will not change the distances
between the points in the space. Using the space gene-
rated by the dimensions V', E', and R, we wanted to
check whether further transformations of the dimen-
sions were necessary to obtain a satisfactory description
of subjects’ perceptions of shell forms. The transfor-
mations we tested for each of the dimensions were in-
stances of Stevens’ power law d'(x) = k(d(x))b.5  Since
there were three dimensions (V', E' and R), we should
estimate the values of six parameters kV' , kE', kR and
bV' , bE', bR.

2.3 Pilot study 1

Method, design and procedure

In the pilot studies, subjects were given two types of
questions :

(i) Similarity judgements

Subjects were presented with three shell drawings
(produced by our program) on a sheet of A4 paper. Each
shell was presented from two views, one side and one
top view. Subjects were asked to judge whether the
shell in the middle was more similar to the shell to the
left than to the one to the right.

Subjects answered these questions by putting an X on a
20 cm long line along the bottom of the paper. The
endpoints of the line represented the two outer shells,
while the line indicated the perceived perceptual dis-
tance between those two shells. The X drawn by a sub-
ject was to mark the perceptual position of the middle
shell in relation to the two outer shells.

(ii) Classification judgements

In addition to the similarity questions, subjects were
also asked to provide classification judgements. Sub-
jects first saw two groups of pictures of exemplars of
shells (three or four shells in each group). They were
then shown a picture of a new shell and asked to classify
this shell into one of the two groups. In pilot study 1,
each classification question involved two groups of
exemplars, drawn from a total of four groups of exem-
plars.

The classification judgements serve as tests of the pre-
dictions of the different categorisation rules discussed
above. These tests will be the focus of the two main
experiments described in Sections 3 and 4.

All subjects received 25 different similarity questions
and 14 classification questions. All shell forms that we

5An alternative method would have been to use multi -
dimensional scaling (Shephard 1962a,b, 1987). However, this
would have involved asking the subjects to make
comparisons of the relative similarity of pairs of shell figures,
instead of the question concerning triples of shells that was
used in our pilot studies.

used were drawn from a large number of points that we
picked out from all over the shell space. In both the
similarity and the classification questions, subjects
were asked to indicate the similarities on a continuous
scale.

Subjects were tested singly. Before starting, the subject
was given instructions about the tasks. The shells were
then presented on ordinary sheets of paper. First we pre-
sented the 25 similarity questions and then the 14 clas-
sification questions, both in a random order. We did
not put any time limits on the subjects, nor did we
measure the time it took them to complete the test.

Subjects

Thirteen subjects (colleagues and friends) participated
in this first pilot study. They were not paid for parti-
cipation.

Response coding

Answers to similarity questions were interpreted in the
following way: Assume that a subject placed the X
representing the middle shell 3 cm from the endpoint
representing the left shell. We then let the middle of
the scale be 0, with endpoints –10 and 10, and this dis-
tance answer be coded as –7. With this encoding, we
calculated the average for each similarity question of
test sheet distances over test subjects.

The hypothesis was that this average of the distances on
the test sheet should correlate with the corresponding
distances in the shell space. We therefore calculated the
distance dleft  in the shell space between the middle and
left shells and the distance dright  between the middle
shell and the right shell. The distance value in the
shell space was then calculated as dleft  – dright . This
averaged test sheet distances for the similarity questions
was then correlated against corresponding shell space
distances6 .

Answers to classification questions were analysed in the
same way, with one exception. In classification ques-
tions, we did not have single left and right shells but
instead a group of exemplar shells for the left and
right categories. Therefore, when we used the four
models PV, GV, NN and AD to calculate the distances
from the middle shell to each of the two categories in
the shell space. These two distances could then be used
to calculate the proportion value that we needed.

It should be noticed that the distances depend on the
metric chosen. In our case the metric varied with the
values of the vector (kV' , kE', kR, bV' , bE', bR) of con-
stants for the three instances of Stevens’ power law that
were used. As we correlated the proportion values we
also varied the vector so as to maximise the correlation

6Throughout all experiments, we used the standard Pearson
r-correlation.
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coefficient. This was our way of estimating the cali-
bration of the stimuli (as we noted above), which was
necessary for the correct calculation of distances as we
compared the four categorisation models.

Results

Using the space generated by the dimensions V', E' and
R, with the non-transforming power vector
(1,1,1,1,1,1), we obtained a correlation coefficient of
0.70. However, by replacing these dimensions with the
transformations generated by varying the b-coefficients
only, the correlation could be improved considerably
so that the vector (1, 1, 1, 0.88, 1, 0.58) yielded a correla-
tion of 0.86. The three b-coefficients confirmed our
intuitions about the relative prominence of the three
dimensions.

At this early stage, we performed only a preliminary
analysis of the answers to classification questions made
by the subjects. The results suggest that Nearest neigh-
bour categorisation (NN) and Generalised Voronoi
categorisation (GV) produced better predictions than
Prototype Voronoi categorisation (PV) and Average
distance categorisation (AD): Out of the fourteen clas-
sification questions, NN predicted eight of the modal
answers among subjects and GV predicted seven clear
cases and three borderline cases (where there was no
clear modal response).

Discussion

We learned from this pilot study that the top view of
the shells did not contribute much information about
the shell shapes. Since they also made the interpretation
of shapes more difficult because the subjects had to
integrate two pictures of a shell to make a judgement,
we decided to only use the side view of the shell in the
following studies.

Furthermore, letting subjects mark their answers on a
continuos scale gave less information than we had
hoped for. The subjects tended to cluster their answers
around three or four points along the scale, thus
making it tantamount to a discrete set of answer
options. We therefore replaced the continuos line with
discrete alternatives in the following studies.

2.4 Pilot study 2

Method, design and procedure

The motivation for the second study was to make a
more precise determination of the vector of constants
in the three power laws. To this end, we aimed at choo-
sing examples of similarity judgements that, on the

basis of the results of the first study, would be as
informative as possible. The different pairs of shells
were distributed over the entire shell space and along
all three dimensions, but also diagonally through the
space. We used 14 different similarity questions. No
classification questions were asked.

The shells were again presented on ordinary A4 sheets
of paper, but this time each shell was presented only
from the side view as in Figure 8. The other difference
from pilot study 1 was that in this study, subjects were
asked to indicate the similarities in a 3-alternative
forced choice response as in Figure 8.

Subjects

Ten people, consisting of a mixture of colleagues and
computer science students, mostly male, served as sub-
jects. None was paid for their participation.

Response coding

In calculating the results, we basically used the same
correlation between averaged test sheet distances and
shell space distances as in pilot study 1. The difference
was that in this study, answers were discrete. We there-
fore had to replace the average test sheet distances with
an average of the subjects’ 3-alternative answers, each of
which was coded as –1, 0 and 1.

Results

As a consequence of aiming at making the similarity
judgements as informative as possible about the psycho-
physical constants, we only obtained a correlation of
0.30 using the space generated by the dimensions V', E'
and R, without any transformation. However, the trans-
formations of this space generated by the optimal vec-
tor (1, 1.55, 1, 1.72, 1, 0.99) gave a correlation as high as
0.92.

Discussion

The result strongly confirms our hypothesis that it is
possible to identify an underlying perceptual shell
space of shell forms with sufficient accuracy. Since
small changes of the optimal vector resulted in clearly
smaller correlation coefficients, we decided to use the
calibrated shell space generated by this vector in the
main experiments.

Pilot study 2 revealed the calibration of the three
dimensions V', E' and R, but it was still not certain that
the dimensions are orthogonal. This would be tested in
pilot study 3.
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Figure 8. Example of judgements of similarities. Subjects were asked to check one of the squares.

2.5 Pilot study 3

In order to further establish the validity of the percep-
tual shell space that has been identified, we wanted to
check whether the dimensions V', E' and R are ortho-
gonal to one another. If the dimensions are orthogonal,

they give linearly independent contributions to the
perceptions of shell forms. This means that each of the
dimensions can be modified independently of the
others. The operationalisation of the orthogonality
test can best be explained with the aid of Figure 9.

y

x
(x1, y0)(x0, y0)

(x0, y1)

d1
d2

y

x
(x1, y0)(x0, y0)

(x0, y1)

d1 d2

Figure 9. Operational test of orthogonality.
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To show that the axes x and y (with a given metric) are
orthogonal to one another, subjects are asked to com-
pare the similarity of an object with co-ordinates (x0 ,
y1) to objects with co-ordinates (x0 , y0) and (x1 , y0 )
where x1  is relatively close to x0 . If the axes are ortho-
gonal as in the left part of Figure 9, then (x0 , y1 )
should be judged to be more similar to (x0,  y0) than to
(x1, y0) since d1 is smaller than d2 . However, if the axes
are not orthogonal as in the right part of the figure,
this may not hold since the distance d2 between (x0 , y1)
and (x1 , y0) may then be smaller than the distance d1
between (x0, y1) and (x0, y0).

Method, design and procedure

In this pilot study, we used 24 different similarity
judgement questions but no classification questions.
The similarity questions were all of the form indi-
cated in Figure 9, but the metric of the two axes were
given by the dimensions V', E' and R.

We used the same procedure as in pilot study 2. The
shells were presented on ordinary A4 sheets of paper,
and each shell was presented only from the side view, as
in Figure 8. Also in this study, subjects were asked to
indicate the similarities using a 3-alternative forced
choice.

Subjects

The subjects were 10 computer science students, all
male, between ages 20 and 28. Again, no one was paid
for participation, nor did we put any time limits or
measure the time subjects used.

Response coding

The analysis in pilot study 3 was identical to the analy-
sis made in pilot study 2.

Results

Using the uncalibrated space generated from V', E' and
R, we obtained a correlation coefficient of 0.72 be-
tween the subjects answers and the distances in that
space. However, we had not calibrated the similarity
questions in the test with respect to the vector that was
estimated in pilot study 2. This defect may explain the
comparatively low correlation. By investigating the
power law transformations of this space, we found that
the vector (1, 1.35, 1, 1.5, 1, 1) gave a maximum correla-
tion of 0.80.

Discussion

Even if this result is not identical with the results in
pilot study 2, the general pattern of parameters is the
same. This result suggests that the dimensions, with the
metrics estimated in pilot study 2, have a sufficient
degree of orthogonality to be treated as independent
perceptual dimensions.

2.6 General Discussion

The data obtained from the three pilot studies suggest
that we have identified a psychological space for simi-
larity judgements of shell shapes. The orthogonality
of the dimensions in this space is reasonably supported
and the metric of the space is sufficiently well identi-
fied. On the basis of the results obtained, we felt con-
fident in proceeding to the main classification expe-
riments.

One complication should be mentioned, though.
During the pilot tests (as well as during the main expe-
riments) we took notes of the spontaneous comments
from the subjects after they had finished the similarity
judgements. One frequent comment was that when jud-
ging the similarity of different shells, or when classi-
fying them, they looked for whether the shell was
“closed” or “open” in the sense that a shell was “closed”
if the aperture overlaps with the previous whorl of the
shell (cf. the A-shells in Figure 12) and “open” if it was
separated from it (cf. the B-shells in Figure 12). This
gestalt feature7  of the shells was added as a fourth di-
mension in the power law analysis in pilot study 1.
The resulting vector is (1, 1, 1, 0.90, 1, 0.60, 0.015,
0.68), where the two last numbers are the k- and b-
parameters of the “openness” dimension. This resulted
in a correlation coefficient of 0.862 which is almost
identical with the correlation obtained without the
openness dimension. Furthermore, the values for the
other dimensions were very close to the previous values
where the openness dimension was not included. Con-
sequently, we did not include this factor in our subse-
quent analysis.

3. EXPERIMENT 1

The goal of the two main experiments was to evaluate
the four classification rules that were presented in sec-
tion 1.2, i.e., Nearest Neighbour categorisation (NN),
Generalised Voronoi categorisation (GV), Prototype
Voronoi categorisation (PV), and Average Distance ca-
tegorisation (AD). The preliminary results from pilot
study 1 suggest that the best predictors are NN and GV.

The two main categorisation experiments were based
on different set-ups. In the first experiment (to be des-
cribed in this section), all the exemplars that were used
to induce a category for a subject were visible on sheets
of papers during the classifications of new test shells,
so that exemplars and test shell could be directly com-
pared. We later assumed that such a set-up would favour
the NN model, which functions by comparing test
shells to the exemplars. In contrast, the second experi-

7We call it a gestalt feature, because the values for the three
generating dimensions determine whether the shell is
”closed” or ”open”.
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ment (described in Section 4), required subjects to
learn the category from the exemplars which were pre-
sented on a computer screen. These exemplars were not
shown when the new shells to be classified were pre-
sented.

We expected that the closer a shell lies to a border
between two categories in the psychological space the
more diversity we will find in the classification
answers from the subjects. In order to model this intui-
tion, we defined, for each of the four categorisation
models, a predicted response frequency for a given cate-
gory x. Each of the four models provides a distance
measure that determines the distance from the stimulus
shell x to any category n. For PV, dPV(x,n) is the dis-
tance between x and the prototype for category n. For
GV, dGV(x,n) is the distance between x and the prototy-
pical circle for category n.8 For NN dNN(x,n) is the
distance between x and the nearest shell in category n.
For AD, finally, dAD (x,n) is the average distance be-
tween x and the instances of category n.

If dM (x,n) is the distance function for one of the four
models, we then define the predicted response fre-
quency pM(x,n), i.e., the predicted number of times that
subjects will answer that the shell represented by x
will belong to category n, by the following equation:9

  
pM (x,n) =

dM (x,n)#1

dM (x,i)#1
i$

The main method of evaluating the predictive power
of one of the four models is then to compute the corre-
lation between the predicted response frequency and the
actual frequency.

Our goal is not to evaluate the overall absolute pre-
dictive power of the four models, but to find instances
of shells where the four models would predict diffe-
rent responses. Since the models in many cases predict
the same classification, we had to be careful in selec-
ting the shells to use as stimuli in the classification
tasks. The borderlines between categories generated by

8As noted in Section 1.2, this distance is not real-valued if x
is located inside the circle.
9This equation was chosen because it has the following
properties:
(i) pM(x,n) % 1 when dM(x,n) % 0, i.e., if x is the prototype
for a category it should be classified as such by 100% of the
subjects.
(ii) If dM(x,n) = dM(y,n), then pM(x,n) = pM(y,n), i.e., if two
objects are equally far from a prototype, they are equally
likely to be classified with that prototype.
(iii) If dM(x,n) = dM(x,m), then pM(x,n) = pM(x,m), i.e., if an
object is equally far from two prototypes, it is equally likely
to be classified with either prototype.
(iv) pM(x,n) % 0.
(v) !xpM(x,n) = 1.
Where prototypes are used in PV and GV, exemplars are
used in NN and AD.

the different models are in general very close to one
another. Consequently, the difference between the pre-
dicted response frequencies are not very large.
Furthermore, the points in the psychological space
where the models yield different predictions some-
times correspond to comparatively unnatural shells. A
consequence of this is that the stimuli are difficult to
classify for the test subjects. Hence we did not expect
any accuracy in the predictions of the models, only that
the relative differences would be so large that we could
distinguish between the models.

For example, Figure 10 illustrates a two-dimensional
cross-section of the psychological space used to generate
the shells for trial T15 (and T25 in experiment 2).
The co-ordinates for shells of two categories A and B
that were shown to subjects are indicated by a’s and b’s
with indices and the shells that the subjects were asked
to classify are indicated by Greek letters.10 The boun-
daries between the categories induced by the four dif-
ferent models on the basis of the A- and B-shells are
shown by lines. As can be seen, none of the test shells is a
“clear case” for any of the models since they all lie
close to the border lines.

Subjects

A total of 40 subjects, mainly students from the techni-
cal university in Lund, took part in the experiment,
being paid 50 SwCr (about US$ 7) for their participa-
tion. We only noted the age and sex of the subjects.
They performed their task without any time con-
straints. The experiment took between 30 minutes and
one hour.

Method, design and procedure

The experiments consisted of ten trials, each contai-
ning four or five classification questions. The sets
were presented in random order. In the trials where
only two categories were involved, one sheet of paper
(size A4) with four exemplars of one category of shells,
the “A-shells” was put on one side (randomised left or
right) of a central sheet, and one sheet with four pic-
tures of another category, the “B-shells”, was put on the
other side. These two sheets remained in the same place
throughout a trial. The sizes of the pictures of the
shells generated by the computer program were ad-
justed so that all illustrations were of roughly the same
size.

For each of the ten trials, between four and five pic-
tures of test shells to be classified were then presented
in a random order to the subjects. Each test shell was
printed on a separate sheet which was put, one by one,
between the A- and the B-shells. The subjects were
given a 2-alternative forced choice to classify each test
shell as an A- or a B-shell.

10The actual shapes of the A- and B-shells are illustrated as
the classes “GRE” and “FLA” in Figure 13 below.
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Figure 12. Example of classification of shells (trial T13). Subjects were asked to check one of the squares.

In three of the ten trials, there were examples of three
categories, “A-shells”, “B-shells” and “C-shells”.11 As
before, there were four exemplars of each category. In
these trials, the sheet with A-shells was put on one side,
the sheet with B-shells was put on the other side, and the
C-shells above the middle sheet which contained a test
shell to be classified as an A-, B-, or C-shell.

The purpose of these trials was to study the effects of
adding a new category to a classification trial. In order
to investigate this, two of the trials (T17 and T18)
were designed so that half of the subjects were pre-
sented with two groups of shells (T17.2 and T18.2), A-
shells and B-shell, together with a set of test shells,
while the other half of the subjects were presented with
the same test shells, but in the context of three sets of
exemplars, which consisted of the same A- and B-shells
as for the other group, but also of a new category of C-
shells (T17.3 and T18.3). They were then asked to clas-
sify the test shells by a 3-alternative forced choice. The

11As will be described below, the trials involving three
categories differed for different groups of subjects.

layout of the exemplars and the test shells in T17.3 is
presented in Figure 11.

All in all, there were 32 test shells in trials with two
categories (T11 – T18.2), 8 test shells in trials T17.3
and T18.3 and 10 test shells in the pure three-category
trials T19 and T1A, i.e. 50 different tests.

For each test shell in all of the trials, the subjects were
required to make a 2-alternative (or 3-alternative)
forced decision, indicating whether the shell on the
middle sheet is an A-shell or a B-shell (or a C-shell).
They were given free time to make their decision,
which consisted of checking one of the relevant boxes
on the middle sheet. The experimental set-up is illus-
trated in Figure 12.

Before the experiment, the subjects were given a prac-
tise trial, using categories that were different from
those used in the classifications of the main experi-
ment. They were also allowed to ask questions after
this exercise trial.
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Results

For each test shell x, let f(x,A) be the actual frequency
of subjects that classified x as an A-shell. For all trials,
these frequencies, both for experiment 1 and experi-
ment 2, are presented in the appendix together with a
figure describing the location of exemplar shells and
test shells in the shell space. For each model M among
the four we studied, this number was compared to the
predicted answer frequency pM (x,A). For each model,
we computed the average squared sum of errors SSE =
!x(pM(x,A) – f(x,A))2/n, where n is the number of test
shells involved. Since we were studying trials with
both two and three categories, we present in table 2 be-
low, apart from the value SSE for all test shells, also
the value SSE2 which gives the average value for classi-
fications involving two categories and SSE3 which co-
vers classifications with three categories. The column
“binary” in Table 1 accounts for the number of cases
out of the 50 different tests when the category predicted
by a model was different from what the majority of the
subjects answered.12 For all columns in Table 1, the
smallest values indicate the best predictive value of a
model.

Model SSE2 SSE3 SSE Binary
PV 0.30 0.22 0.27 20

GV 0.42 0.24 0.36 20

N N 0.21 0.22 0.21 8,5

AD 0.35 0.26 0.32 15

Table 1. SSE values for the four models with respect to
classifications involving two categories (SSE2), classi fications

involving three categories (SSE3), all classifications (SSE),
and classifications different from that of the majority of

subjects (binary).

These results suggest that NN has the best predictive
power, while GV has the worst. However, the differen-
ces are not significant at the 5% level (t-test). Also, as
will be seen in Table 2 below, different classification
trials resulted in very different degrees of fit for the
different models.

It should be remembered that we selected test shells that
were close to the border lines between the categories
that were generated by the four different models. One
hypothesis that we formed at this stage was that when
classification is “difficult,” i.e., when the test shell is
perceived to be as similar to the A-shells as to the B-
shells, subjects tend to focus on the A- or B-shells that
are most similar to the test shell, which means that they
employ the NN model so that the other models would

12This means treating the trial as a binary classification and
ignoring the magnitude of the values pM(x,A) and f(x,A)
respectively. The advantage of the binary classification is that
it is independent of the assumptions connected with
pM(x,A).

not be applicable.
In this experiment the subjects could see the different
examples of A- and B-shells during all trials. This is
an advantage for the NN model since it benefits from
visible examples. An easily accessible strategy (which
may be unconsciously used by the subjects) is that in or-
der to classify a test shell as an A- or a B-shell, a subject
identifies the example among the displayed A- and B-
shells that is most similar to the test shell and then clas-
sifies the test shell according to this example. In expe-
riment 2, subjects could not see the examples of A- and
B- shells when they were asked to classify test shells.
Hence, the similarity judgements necessary for the
NN model could not be based on direct visual infor-
mation.

In order to operationalise the degree of difficulty in-
volved in the classifications, we compared the degree
of unanimity among the subjects. In the eight (out of
twelve) classification tests where only two categories
(A- and B-shells) are considered, the unanimity can be
measured as the deviation from 50% B-responses to the
performances of the models. The polarity value for a
test shell x is thus defined as |0.5 – f(x,B)|. This
measure is only applicable for the trials that contained
two categories. It seems difficult to define a polarity
measure for the remaining four classification trials
where three categories are involved.

Restricting ourselves to the eight classification trials
that contained two categories, we can then calculate the
correlation between the polarity values and the SSE
values for the four models. The results are presented in
the following table:

Trial P V GV NN AD Polar-
ity

T11 0.18 0.04 0.63 0.51 0.33

T12 0.56 0.95 0.09 0.25 0.20

T13 0.14 0.01 0.10 0.30 0.21

T14 0.40 0.12 0.27 0.59 0.28

T15 0.34 1.01 0.09 0.24 0.26

T16 0.22 0.74 0.07 0.13 0.12

T17.2 0.38 0.44 0.21 0.36 0.20

T18.2 0.20 0.08 0.23 0.43 0.44

Corr. –0.28 –0.53 0.54 0.66

Table 2. SSE values of the four models for the eight trials in
Experiment 1 and the polarity values for the trials.

Correlations between SSE values for the four models and
the polarity values are also shown. For each trial, the best

value, i.e., the lowest SSE value, has been underlined.

As can be seen GV is best in four cases while NN is best
in the other four. In the remaining four classification
trials, GV gives the best predictions for one, NN for
one, and in two cases there is no clear winner. Hence,
PV and AD failed to provide the best predictions for
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any of the classification trials.13

The correlation values represent the correlation be-
tween the polarity column and the corresponding
columns for each of the four models. Low polarity is
an indication that the subjects have some form of dif-
ficulty in deciding to which category a test shell be-
longs. One source of difficulty is that some classes of
example shells formed “unnatural” categories in the
sense that the examples within a such a class showed a
great variation in shapes (cf. the B-shells in Figure
1114). Another source of difficulty was that the test
shells that were presented were located close to the clas-
sification borderlines generated by the different
models. If polarisation is high, this means that neither
of these difficulties should have occurred.

Regarding the trials having variants with three cate-
gories, i.e., trials T17.3 and T18.3, the results strongly
support that the relations between the A- and B-category
remained stable after the addition of the C-shells. If
the relative proportions of subjects that classify the test
shells as A- and B-shells respectively are correlated
between the two and three category versions of T17 and
T18, the correlations are 1.00 for T17 and 0.91 for
T18.

Discussion

Since GV (and PV) presume category formation, while
NN and AD only presume individual examples, one
should therefore expect that high polarisation should
be correlated with good predictions from GV (and
PV). As can be seen from table 2, the correlation values
strongly support this hypothesis.

In concluding this section, we note that experiment 1
gave us valuable information concerning the pre-
dictive success of the four categorisation models. The
relative accuracy of the prediction gave further support
for our assumption that the shell space that we had
identified in the pilot studies has great explanatory
power when the classification behaviour of the subjects
is analysed. The experiment also helped us form new
hypotheses for further testing.

One cognitively important limitation of the experi-
mental layout used in experiment 1 is that the subjects
always had visual access to the different examples of A-
and B-shells that we wanted them to use to form the
concepts “A-shell” and “B-shell.” Since the examples
are in front of the subjects during the whole test phase,

13In trials T11, T13, T15, and T18.2, the differences
between the best and the second best model are significant
at the 5% level. However, in all trials the differences
between the best and the worst model are significant at the
5% level.
14Our speculation as to why subjects had difficulties with
this trial was that the distinction between the categories was
determined by the diameter dimension, which seems to be
difficult to perceive.

there was nothing that forced them to remember or in
any other way internalise the examples. As noted above,
this may explain why the NN model could predict a
comparatively high proportion of the test shells, since
the availability of externally given exemplars made it
easy to employ the model.

Furthermore, we wanted to further test the hypothesis
that when classification is “difficult” in the sense that
the test shell is perceived to be as similar to the A-shells
as to the B-shells, subjects tend to focus on the A- or B-
shells that are most similar to the test shell. Thus, NN
should have a comparative advantage over GV in the
“difficult” classification trials, while we expected GV
to perform well in “normal” trials.

4. EXPERIMENT 2

Subjects

Forty people from Lund, mainly students from the
technical university, were recruited to the experiment.
They were paid 50 SwCr (about US$ 7) for their parti-
cipation, which took between half an hour and an hour.
The participation was anonymous – we only noted the
age and sex of the subject.

Method, design and procedure

This time the shells were presented on a computer
screen and not on paper sheets. We partly reused the
trials of experiment 1 and partly rebuilt them. The
experiment was run in two phases. First, examples of A-
and B-shells (and sometimes C-shells) were presented to
the subject and he/she was trained to remember the
exemplars so that they could be correctly classified.
The purpose of this identification learning was to
induce the subjects to create some form of internal
representation of the two categories.15

Only after this phase was completed, the subject would
see and classify new test shells in the same way as in
experiment 1, but now the test shells were presented
alone on the computer screen, without the presence of
the exemplars from the learning phase. Our hypothesis
was that since this experimental set-up blocked the
visual availability of the different examples, we
would obtain a better evaluation of the predictive
power of the four categorisation models, in particular
the results of GV and NN.

The program was run a Macintosh IIci with a 21”
black and white screen. Before the experiment, the sub-
jects were given instructions on the screen and a prac-
tice trial involving both phases in order to familiarise

15Our methodology is similar to that of Nosofsky (1988),
except that he did not show any new stimuli in the test
phase (which he calls the transfer phase).
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them with the program. Then a total of six concept
formation trials were presented in random order. Five
of the trials contained two concepts and the remaining
one (T26 below) contained three concepts. In each trial
five or six test shells were presented. The total number

of test shells was 34. Some of the trials from experi-
ment 1 were repeated in order to check whether the two
experimental methods resulted in significant diffe-
rences in the subjects’ responses.

Figure 13. Picture of a screen during the presentation of the two classes of exemplars.

Each trial was divided into two phases. In the first
learning phase, a subject was presented with four
exemplars each of two (or sometimes three) categories
of shells and s/he was asked to try to remember the
examples so that they can be correctly classified. Instead
of calling the categories “A” and “B” as in the previous
experiment, the groups of examples were now labelled
with randomly generated Swedish nonsense syllables
(cf. Figure 13).16 When the subject judged that he/she
could recognise the exemplar shells, he/she clicked on
a “ready” button on the screen. The program automati-
cally measured the time between the appearance of the
shells and the pressing of the button. (A “help” button
was also present on the screen.)

Then the examples that the subject had just studied
were presented one by one, in randomly ordered blocks
consisting of one picture each of the example shells.
The subject’s task in this phase is forced choice recog-
nition with feedback. The subject was instructed to de-

16The syllables were generated by Sigurd’s (1983) phonotax
algorithm for Swedish which resulted in strings that are
clearly pronounceable, but usually have no meaning, like
”hunk”, ”skuns”, ”smesk”.

termine what kind of shell was shown (without seeing
the original pictures). This was done by clicking on a
response button that was named with the same nonsense
syllables as before, and which were placed on the same
side of the screen as the corresponding examples (cf.
Figure 14). A ”HELP” button was also present here.
The response time of the subject was measured by the
program. The subject was informed by the program
whether or not the response was correct. This was done,
with a one second delay, by displaying the words “not
correct”17 in big letters on the screen. The identifica-
tion learning procedure continued until the subject
showed an error rate of less than 10%. However, all
subjects were required to go through at least two blocks
each containing all example shells. After passing this
error rate, a subject was considered to have learned the
example shells sufficiently well.

17In Swedish: ”INTE RÄTT”.
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Figure 14. Picture of the computer screen during the learning phase

In the second phase of a trial, the test phase, the subjects
were presented with a series of test shells that were
always different from the example shells. The order of
the test shells were randomised. The subject was asked
to classify the test shell as one of the two (or three) cate-
gories that had been studied in the learning phase. The
set-up of the screen was the same as in Figure 14. Again
the response time was measured.

Performance measures

As in experiment 1, many of the classification trials
were “difficult” in the sense that some classes of
example shells (the A-, B- and C-examples) formed un-
natural categories. Similarly, another source of diffi-
culty was that the test shells that were presented were
located close to the classification borderlines gene-
rated by the different models.

The use of a computer for the presentation and classi-
fication trials enabled us to measure several factors that
we judged to be correlated to the difficulty of the
trials. First of all, we hypothesised that the unnatural-
ness of a class of examples would be reflected in the
difficulty of learning to correctly classify these
examples in the first phase of a trial. In order to opera-
tionalise this we measured two variables: (1) Learning
rounds, which was defined as the number of presenta-

tions of the example shells that had to be made before a
subject passed the 90% correctness level. (2) Learning
time, which is the time a subject spent studying the
screen with the two or three classes of examples before
pressing the “ready” button. (3) Learning errors, which
was defined as the total number of classification errors
during the learning phase.

Furthermore, we supposed that both the unnaturalness
of a class of examples as well as the closeness to the
category borderlines would have an effect on the sub-
jects’ performance during the test phase of a trial. This
was measured by the following two variables: (4) Clas-
sification time, i.e., the time it took for a subject to clas-
sify a test shell as an A- or B-shell (or C- shell) after it
was presented on the screen. (5) Polarity, which is the
same measure as was used in experiment 1. All responses
and reaction times were measured automatically by the
program and stored on a log file which was then used
for statistical analysis.

Results and discussion

Again, the answer frequencies are presented in the
appendix together with a figure describing the loca-
tion of exemplar shells and test shells in the shell
space.
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P V GV NN AD
Trial SSE Bin. SSE Bin. SSE Bin. SSE Bin.
T21 0.33 1 0.33 1 0.40 1 0.33 1

T22 0.07 1 0.09 1 0.31 2 0.15 2

T23 0.44 1 0.81 2 0.12 0 0.29 2

T24 1.20 2 0.64 0 0.85 0 1.54 3

T25 0.58 2 0.58 2 0.47 1 0.68 2

T26 1.66 2 1.62 2 1.50 0 1.23 2

Average: 0.70 0.67 0.59 0.70

Table 3  SSE values and binary choice error (Bin.) with respect to the four models for the six categorisation trials of experiment 2.

SSE

First of all, when evaluating the results the predictive
accuracy of the models should be compared. This was
done by calculating the average SSE values for each
trial. The results are given in table 3. The columns
“Bin” refer to the number of binary choice errors, i.e.,
the number of cases when the category predicted by the
model was different from what the majority of the
subjects answered. As in Table 1, low numbers mean
accurate predictions.18

It should be noted again that the absolute values of the
errors are not so important since we have not striven to
make a “representative” selection of categorisation
trials and test shells in order to “confirm” some of the
models. On the contrary, our choices have been made
according to falsificationist principles so that we have
tried to select trials that would test the limits of the
models. Hence it is the relative results of the models
that are interesting. Nevertheless, the predictive values
of the models were quite good. Out of the 34 test
examples PV made the same classification prediction
as the majority of the subjects in 25 cases, GV in 26
cases, NN in 30 and AD in 22 cases.

Performance analysis

Our general hypotheses was that NN performed better
than GV when the categorisations were “difficult”.
Thus the results of the models should be compared to
the performance measures that were introduced above.
Table 4 contains the results. Note that polarity is not
defined for T26 which contained three categories.

18In trials T23 and T24, the differences between the best
and the second best model are significant at the 5% level. In
T22 and T25 the differences between the best and the worst
model are significant at the 5% level. In T21 no differences
are significant.

Trial L.
Rounds
19

L.
Time

L.
Errors

Cl.
time

Pola-
rity

T21 2.00 26 1 3.2 0.09

T22 2.75 83 31 4.0 0.30

T23 2.60 108 39 4.6 0.33

T24 2.35 41 8 2.2 0

T25 2.50 68 31 2.8 0.14

T26 3.30 143 156 4.8 *

Table 4. Performance measures and polarity for the six
categorisation trials of experiment 2.

Already a quick glance at the table shows that the
measures are strongly correlated. The correlations
between the first four measures are given in the fol-
lowing matrix:

L. Round L. Time L. Error Cl. time
L.
Rounds

1 0.94 0.92 0.70

L. Time 1 0.88 0.85

L. Error 1 0.69

Table 5. Correlations between the four performance
measures of experiment 2.

As can be seen, the correlation between the three lear-
ning variables is very high. Each of these will thus
function as a reliable indicator of the difficulty for
the subjects in forming the categorisations from the
learning examples presented to them.

Polarity values could not be calculated for the sixth
trial so the correlation values between this variable and
the others are based on the first five trials only, as pre-
sented in Table 6.

19As mentioned above, all subjects were required to go
through at least two rounds, before starting on the test phase.
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L.
Rounds

L. Time L. Error Cl. time

Polarity 0.71 0.89 0.83 0.90

Table 6. Correlations between polarity and the four
performance measures for the five first trials of experiment

2.

Also these correlations are high. which strengthens the
value of the five measures as indicators of the difficul-
ties of the classification of the test shells.

Now a central result for our investigation is the corre-
lations between, on the one hand, the SSE of GV and
NN, which can be seen as measures of the predictive
powers of the two models, and, on the other hand, the
five performance values. Table 7 provides the
results.20

Measure P V GV NN AD
L.
Rounds

–0.26 0.29 –0.01 –0.24

L. Time –0.37 0.36 –0.48 –0.45

L. Error –0.38 0.37 –0.36 –0.44

Cl. Time –0.73 –0.10 –0.90 –0.82

Polarity –0.73 0.07 –0.67 –0.79

Table 7. Correlations between the SSE of the four models
and the performance measures together with the polarity

value.

These figures suggest that there is a general negative
correlation between the difficulty of the classifica-
tions trials and the degree of misfit of PV, NN, and
AD. In other words, these models have a smaller misfit
when the trials are difficult. The converse is true of
GV, although the correlations are not quite as strong in
this direction. As can be seen from the classification
time and the other measures in Table 4, the trials T21,
T24, and T25 are clearly less difficult than T22, T23,
and T26. If we call the first group the “easy” trials and
the second the “difficult,” then the average SSE values
for the four models are as in Table 8.

Trials P V GV NN AD
Easy 0.70 0.52 0.57 0.85

Difficult 0.70 0.84 0.61 0.54

Table 8. SSE values for the four models with respect to two
groups of trials.

The general conclusion is that GV performs well as a

20This table is based on the results from trials T21 - T25
only. The three-category trial T26 was excluded since the
SSE values are not comparable to those of the two-category
trials.

model of the subjects’ behaviour when the categories
are comparatively natural while NN and AD seem to
be the best models when the examples presented to the
subject are difficult to weld into a category.21

Error analysis

We conclude the analysis of experiment 2 by some spe-
culations about the difficulty to internalise a category
based on the distribution of its exemplars. In the test
we logged the errors that the subjects made when tested
on their internalisation of a category. From these data
it is clear that not all exemplars are equally easy to
learn. Some of the test shells are placed on a position in
the shell space that for the subjects must feel less natu-
ral for that category than other positions. A clear
example of this is given by T25 (cf. Figures 10 and 13)
where the learning errors made by test subjects for dif-
ferent exemplars are as follows:

T25: A: a1: 8, a2: 1, a3: 0, a4: 4

B: b1: 6, b2: 1, b3: 1, b4: 11

The figures strongly suggest that the exemplars 1 and 4
in both categories are more difficult to incorporate in
the category, while exemplars 2 and 3 are more clearly
core exemplars of the two categories. In Figure 10, we
saw that GV also misclassified two exemplars, viz. a1
and b4, exactly the same exemplars which were most
often misclassified by test subjects in the learning
phase. In contrast, NN, by definition misclassifies no
learning exemplars, which is clearly not the way test
subjects behaved. This speaks against NN as being the
classification method that best describes the behaviour
of the subjects.

Test subjects did not make many misclassifications in
the “easy” trial T24:

T24: A: a1: 0, a2: 0, a3: 2, a4: 0

B: b1: 0, b2: 0, b3: 4, b4: 2

Still, the problematic positions are the “fronts” where
the two exemplar extensions meet (cf. Figure 15),
while the concept cores are on the “backsides”.

In the difficult trial T23, the errors made by test sub-
jects show no pattern of difficult versus core areas in
the exemplar extension, which suggests that they have
general problems with picking out the characteristics
of the categories.

T23: A: a1: 6, a2: 8, a3: 5

B: b1: 9, b2: 8, b3: 3

21However, none of the differences in Table 8 are
significant at the 5% level.
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In trial T26, with its three categories, test subjects
made the largest number of misclassifications during
the learning phase.

T26: A: a1: 5, a2: 5,  a3: 6, a4: 5

B: b1: 47, b2: 10, b3: 10, b4: 9

C: c1: 14, c2: 24, c3: 11, c4: 10

In T26, the A category seems the easiest to internalise.
The B category is torn between categories A and C; 34
of the misclassifications of b1  placed the exemplar in
the A category, all of b3  and b4  placed them in the C
category. The C category is difficult do distinguish
from the B category; all C misclassifications but two
placed the exemplars in the B category. It is interesting
to notice once again that GV misclassifies b1 , the
exemplar which was most often misclassified by test
subjects.

This analysis of the learning errors made by the sub-
jects suggests that GV is the model that best predicts
their behaviour, even though the model does not always
give the best predictions of their classifications of the
test shell.

5. GENERAL DISCUSSION

The two main experiments were based on different
modes of presenting the exemplars of the categories
and they used different methods for testing the catego-
risations. In experiment 1, the subjects could see the
exemplars of the different categories while classifying
the test shells, but in experiment 2, they were trained to
correctly classify the category exemplars before classi-
fying the test shells which were then presented without
the presence of the exemplars.

Since some of the classes of exemplars were the same in
the two experiments (T11 was identical to T22, T12
the same as T23, and T13 the same as T24) it is of some
interest to compare the results of the subjects’ classifi-
cations of the test shells in the two experiments. In
total there are 12 test shells (out of 32 test shells of two-
category trials in experiment 1 and 29 in experiment
2) that were used in both experiments where we can
directly compare the classification frequencies.

One might perhaps expect that since it was more diffi-
cult to classify test shells in experiment 2 than in expe-
riment 1 where the exemplars were visible, the SSE
values should have been larger in experiment 2. How-
ever, an investigation of the responses reveals somewhat
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conflicting differences between the two experiments.
On the one hand, the SEE values did increase for all
models (by 37% for PV, 13% for GV, 21% for NN,
and 24% for AD) when we look at the average over the
12 shells that were classified in both experiments. On
the other hand, the SSE values decreased for all models
for T11/T22 and T12/T23. It was only the large in-
crease in T13/T24 that accounted for the increase in
the overall average of the SSE values.

Furthermore, we expected, for the same reasons, that the
polarity of the responses would decrease in experiment
2, i.e., that subjects would be less unanimous in their
classifications. This was indeed true for T11/T22 and
T12/T23, but for T24 the unanimity was drastically
greater than for the identical T13.22 We have no
explanation of this fact.

The general conclusion to be drawn from the two
experiments is that none of the four models is superior
to the others in explaining the subjects’ classifications
in all situations. However, in the process of testing the
models, we have discovered that the difficulty in form-
ing new categories and remembering them can vary
enormously. We have used a number of performance
measures (learning rounds, learning time, learning
errors, and classification time) that serve as good indi-
cators of the difficulty of forming a category from
some exemplars. The strong correlation between these
measures support their validity.

If the level of difficulty of a categorisation trial is
taken into account a clearer pattern in the performance
of the four models can be discerned. If the exemplars
used to generate a category form a “natural kind” so that
categorisation is “easy”, then the Generalised Voronoi
model is the best predictor of the test results. On the
other hand, if categorisation is “difficult”, as measured
by the indicators used above, then the Nearest Neigh-
bour model seems to perform best.

The main purpose of this article has been to present
and test some models of concept formation in dimen-
sional spaces. We have tried to establish that the shell
space is an example of such a dimensional space which
is particularly interesting for investigations of human
concept formation since the stimuli that are generated
by our graphic program have a high degree of ecologi-
cal validity in comparison to other kinds of stimuli
that have been used in categorisation experiments. Per-
haps the most important finding of our experiments is
that the level of “difficulty” of categorisation, as
measured by the indicators we have identified, has been
shown to play a crucial role for the performance of the
models. This notion merits further attention in future
studies of categorisation.

Leaving the shell shapes used as stimuli in this article,

22The great polarity in T24 is the main source of the large
increase in the SSE values.

a central question is whether the methods and models
used here can be applied also to other kinds of stimuli.
We believe that they have a great potential for further
applications. One argument in favour of this is that
Shepard (1987) and others have convincingly demon-
strated that for many different cognitive domains it is
possible to identify, with high reliability, an under-
lying psychological space. And as regards many of the
stimuli used in categorisation studies, e.g. faces in
Reed (1972) and Pittenger and Shaw (1975), cornered
lines in Ashby and Gott (1988), cups in Labov (1973),
semicircles in Nosofsky (1986), and colours in
Nosofsky (1988), the models studied here should be
readily applicable.
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APPENDIX

In this appendix we show the psychological spaces of
trials that were used in the two main experiments. Each
space includes:

1) The dimensions V', E' and R of the space. Sometimes
one dimension was kept fixed on one value.

2) The positions of exemplar shells which are always
dots. The filling of the dot as well as the indices show
what category the exemplar was assigned to.

3) The positions of the calculated prototypes (for the
PV and GV models) which are marked as crosses. The
index tells what category the prototype belongs to.

4) The positions of test shells are marked as diamonds
with Greek letter indices.

5) The border lines between those regions in the
psychological space that the four models PV, GV, NN
and AD assign to each of the two or three categories in
the trial.

6) A table of the recorded answers, where for each test
shell we note the percentage of subjects who assigned it
to the categories involved in the trial.

Observe that in several cases the psychological spaces
were similar for the two main experiments, with only
one or two test shells differing.
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Figure A8. Trials T18.3 and T18.2 of experiment 1.
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Figure A9. Trial T19 of experiment 1 and trial T26 of experiment 2.
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Figure A10. Trial T1A of experiment 1.
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the depiction.


