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Abstract: It was once taken for granted that learning in animals and man could be explained with a simple set of general
learning rules, but over the last hundred years, a substantial amount of evidence has been accumulated that points in a quite
different direction. In animal learning theory, the laws of learning are no longer considered general. Instead, it has been
necessary to explain behaviour in terms of a large set of interacting learning mechanisms and innate behaviours. Artificial
intelligence is now on the edge of making the transition from general theories to a view of intelligence that is based on an
amalgamate of interacting systems. In the light of the evidence from animal learning theory, such a transition is to be highly
desired.

1. INTRODUCTION

For many years, researchers within both animal
learning theory and artificial intelligence have been
searching for the general laws of learning. I want to
propose that such laws cannot be found for the
simple reason that they do not exist. Below, I will
give a number of examples of classical experiments
that have shown that a number of mechanisms are
involved in learning, none of which is general enough
to suffice in all situations. Any attempt to construct
artificial intelligence based on one or a few simple
principles is thus bound to fail.

The classical strategy in artificial intelligence has
been either to depend on an axiomatic system as in the
logical tradition (cf. Charniak and McDermott 1985)
or to base all intelligence on a simple principle such
as chunking (Newell 1990). In both cases, the
problem of intelligence is reduced to that of
searching (cf. Brooks 1991). The problem of search
control, is however, still mainly unsolved and as I
will argue below, will remain so unless artificial
intelligence makes the transition into a more
diversified view of intelligence.

Before I start the presentation, let us first see what I
mean by learning and intelligence. Both terms are, of
course, exceedingly vague and I will make no attempt
to change that situation. We have, nevertheless, some
intuitive appreciation for the meaning of the two

concepts and no harm can come from subjecting them
to closer examination1.

Konrad Lorenz defined learning as adaptive changes
of behaviour and that is indeed the reason for its
existence in animals and man (Lorenz 1977). How-
ever, it may be too restricted to exclude behavioural
changes that are not adaptive. There are in practice,
many behavioural changes that we would like to call
learning although they are not at all adaptive. We
should not forget, however, that these instances of
learning are more or less parasitic on an ability that
was originally constructed to control adaptive
changes. Hence, it seems reasonable to consider lear-
ning as a change in behaviour that is more likely than
not to be adaptive.

We now turn to the concept of intelligence.
Behaviour is usually considered intelligent when it
can be seen to be adaptive. An animal is considered
intelligent when we can see how its behaviour fulfils
its present or future needs. A squirrel that hides nuts
in apparent anticipation of the winter is thought of as
more intelligent than a lemming that throws itself
over a cliff. But when we learn that the squirrel will
continue to collect nuts even when it has hidden
infinitely more than it can possibly eat over winter,

1It is with some hesitation I introduce a concept such as
intelligence. While it was once a required ingredient of any
text on learning, today it is more often than not considered
a mortal sin.
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we begin to question its intelligence. Eventually, we
hear that it does not even remember where it has
hidden its winter supply, and the case for squirrel
intelligence is settled.

This example shows that we call behaviour
intelligence only when we see how that behaviour is
adaptive for the animal. This is precisely the idea that
“intelligence is in the eyes of the observer” (Brooks
1991). We should not, however, be fooled to believe
that intelligence is only in our eyes. If we change the
environment of the animal in such a way that its
initial behaviour is no longer adaptive, we can make
an interesting observation. If the animal persists in
its original behaviour, we no longer consider it
intelligent, but if it, on the other hand, changes its
behaviour to adapt it to the new circumstances, we
will still think of it as intelligent in some sense.
This, I think, makes intelligence equivalent to the
capacity of learning.

2. THE LEGACY OF
BEHAVIOURISM

During the reign of behaviourism it was habitually
taken for granted that all behaviour could be ex-
plained in terms of stimulus–response (S–R) associa-
tions. Based on this belief, innumerable experiments
were conducted with one singe goal in mind: to
establish the general rule for S–R formation. Once
this rule was discovered, we would know everything
there was to know about learning.

Following this line of though, it seemed reasonable
to simplify the learning situation as much as possible
until only the essential core of the task was left. In
the early experiments, researchers were using a small
copy of the garden maze at Hampton Court for their
animals (Small 1901). This maze turned out to be
much too complex2 and as time went on the mazes
became simpler and simpler until the development
culminated in the ingenious Skinner box. This device
was entirely devoid of any behavioural possibilities
except for bar pressing. While the animal in the
Hampton Court Maze could perform a large number
of actions, the rat in the Skinner box could do only
one of two things; either it could press a lever and
receive food or it could refrain from doing so.
One may object that there are many ways to press the
lever and even more ways to refrain, but all these
cases were conveniently lumped together using
operational definitions of the two cases. It was the
movement of the lever that counted as a response, not
the movement of the animal. Hence the name operant
learning procedure.

2To complex for the researchers, that is, the animals did not
have any troubles. In fact, when rats are given a choice, they
prefer to explore complex mazes instead of simple ones.

Based on the fundamental belief that all behaviour in
all species could be explained in terms S–R
associations it was entirely immaterial whether we
would study rats in the Skinner box or humans
learning university mathematics. The process in-
volved would be the same. Of course, it was much
more practical to study rats in the laboratory and
that is how the research proceeded.

One may ask if the animals had any choice other than
to learn an S–R association? What else was there to
learn? The experimentalists had removed all other
possibilities for learning based on the presupposition
that they did not exist. Consequently, they had
eliminated all possibilities of disproving their under-
lying assumption. Years of effort were devoted to
the simplest form of learning conceivable. It is the
irony of the whole approach that we still, almost 100
years after Pavlov’s and Thorndike’s initial experi-
ments, do not know exactly what rules govern the
formation of the supposed S–R association.

3. THERE IS NOTHING
GENERAL ABOUT LEARNING

What would happen if we arranged for other types of
learning than pure stimulus–response formation?
What if we construct tasks where learning of simple
associations does not suffice? Let us look at some
experiments.

One of the very first experiments to question the
view that responses were learned was conducted by
Macfarlane in 1930. He trained rats to swim in a
maze in order to obtain food placed on the goal
platform. When the rats had learned their way in the
maze, it was drained of water and the rats were again
placed in the start box. It turned out that they could
still approach the goal with almost no errors even
though they were now running instead of swimming.

Whatever they had learned, it could not have been the
response of performing some specific swimming
motion associated with the stimuli at each place in
the maze. According to Tolman, the rats had not
learned a series of responses but instead the spatial
layout of the maze. This ‘cognitive map’ could then
be used to get from the start to the goal in any of a
number of ways. While this experiment certainly
shows that something more abstract than a S–R
association was learned, we cannot resolve the
question as to whether it is anything like a cognitive
map or not. For this, we need more evidence.

Another of Macfarlane’s experiments was again
supposed to show that animals learn a map of the
maze and not a response chain. In this experiment,
animals were trained to find a goal box in a simple T
maze. Once the rats had learned the place of the food,
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the maze was turned 180° and the food removed as
shown in figure 1. As a result, the arms of the maze
were interchanged. If the rats had learned to make the
response of turning right at the choice point, they
would continue to do so even after the maze was
turned. If they, on the other hand, had learned the
spatial location of the food they would now turn the
left. And so they did. Again it could not have been the
response that had been learned.

It has later been shown that under some
circumstances the rats will continue to turn right.
Here, we will not consider what determines which
strategy the animals will use. The important
observation is that in some cases, they will use a place
strategy.

start

start

Train Test

foodempty emptyempty

Figure 1. Mazes for a place-learning experiment

Mackintosh (1983) distinguishes between three types
of possible learning mechanisms in simple T-mazes.
If the two arms of the maze are physically different,
the animal can use this property to associate the
correct arm with the food. If the two arms are
identical, a place learning strategy could be used
instead as in the Macfarlane experiment. Finally, if
no cues at all are available, say if the maze is placed in
a dark room, the animal could learn simply to turn in
the correct direction at the choice point.

Morris (1981) has shown that rats can learn to swim
towards a platform hidden in opaque water although
there is no visual stimulus to approach. In this case,
the animals obviously use a place strategy. Somehow
various stimuli in the room are used to identify the
position of the hidden platform. This is perhaps the
most elegant example of place learning demonstrated
so far. While many objections can be raised against
the interpretation of Macfarlane’s experiment, in the
case of Morris water tank, the presence of place
learning is beyond doubt.
Numerous experiments exist were an animal learns
to perform a specific action such as turning right at
the choice point in order to receive a reward. The
Skinner box discussed above is a special case of this
learning type. This is certainly some sort of response
learning, but whether a stimulus is involved, we do
not know.

In the light of these experiments and many others
like them, what can we say about stimulus–response
learning? All three types of learning can be observed
if the task at hand makes demand on them. We have
seen that something much more complex than a
response is often learned and that a stimulus need not
even be present at times. But does the list stop here or
are there other types of learning as well?

We will not pursue this question here but simply
conclude that if there is one  general learning
mechanism, it needs to be much more advanced than
stimulus–response learning. Perhaps the reason that
it has been so hard to find the learning mechanism in
animals is simply that it does not exist. This leaves
us with two possibilities. Either there is no learning
at all or there are a number of interacting learning
mechanisms.

4. INNATE MECHANISMS AND
THEIR RELATION TO
LEARNING

To assume that there is no learning seems absurd in
light of the experiments described above. It may
nevertheless be interesting to consider to what
extent animals can behave without learning.
Although learning has been found in almost all
animals where one has looked for it, it is also well
known that most behaviours do not solely depend on
this ability. This is what makes a cat different from a
dog and mice different from men. At this point, we
must enter the area of species-specific behaviour.

Such behaviours are perhaps most well known
through the use and abuse of the word instinct.
Everything specific to a species was once called an
instinct. Eventually the world was extended to
explain all animal behaviour and was at the same
time rendered meaningless. A more useful concept is
that of innate releasing mechanisms as introduced by
Tinbergen and Lorenz.

A classic example of such a mechanism, originally
from von Uexküll, is the bite reaction of the common
tick (Ixodes rhicinus). As described in Lorenz,
(1977), “the tick will bite everything that has a
temperature of +37 °C and smells of butyric acid”.
There is no learning involved in this behaviour.
Instead, an innate releasing mechanism is used that
reacts on a specific sign stimulus that starts a fixed
motor pattern. Perhaps this type of innate releasing
mechanisms can be used to explain almost all animal
behaviour. Perhaps what we believe to be intelligence
is only an amalgamation of such fixed behaviours.
Can it be that learning only plays the role of
adjusting these fixed behaviours to minor changes in
the environment or body of the animal? Is learning
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simply a process of parameter setting in an
essentially fixed cognitive system?

There is a strong tradition within linguistics that
consider the acquisition of grammar as an instance of
parameter setting of the above type. Though I do not
personally subscribe to this view in the context of
language acquisition, this could certainly be the case
in many other situations. Most fixed motor patterns
would obviously profit from some degree of
adaptation. This, of course, would no longer make
them fixed.

A system of this kind that has been much studied in
recent years is the vestibulo-ocular reflex (VOR) of
many animals (Ito 1982). The role of this reflex is to
keep the image on the retina steady when the animal
moves. The reflex system is controlled by an
essentially fixed system that monitors the position
and acceleration of the head and flow of the retinal
image and tries to compensate for it by moving the
eyes. While the behaviour is entirely fixed, its high
demands on the control circuits involved makes
learning necessary. This is an example of an
essentially fixed motor pattern that is constantly
fine tuned. We may call a system of this kind a
parametrized motor pattern.

Another example can be found in the ‘imitation’
behaviour of newborn childs. Almost immediately
after birth, a child will imitate a number of facial
gestures such as sticking the tongue out or opening
the mouth (Melzoff and Moore 1977). While this
phenomenon is often referred to as a very early
ability to transform a visual cue to motor control it
may as well be governed by something very similar
to a sign stimulus. In either case, this ability develops
over the years into something much more complex
and is thus another example of an innate ability that
show some degree of adaptation.

A related mechanism is the smiling ‘reflex’ that also
can be shown in neonates (Johnson & Morton 1991).
A newborn child smiles towards any visual pattern
that shows some critical similarities with a human
face. As the child grows older, the patterns that elicit
this reaction will gradually change and will need to
be more and more similar to real faces. Again, we
have a behaviour that is innate but changes as a result
of experience.

This phenomenon is similar in many respects to
imprinting in animals. The animal has some innate
conception of what will constitute an appropriate
stimulus for the reaction but this innate template is
enhanced by learning. In the case of imprinting and
the well known following behaviour of, for
example, geese, the learning process is very fast. The
first moving object that the goose sees will be
imprinted and thereafter constantly followed.

In other cases, for instance in song learning, the
process is much slower and requires considerable
practice (Marler 1970). The bird has an innate
template that describes the approximate song of its
species but the precise song must be learned from
listening to other birds. If a bird is reared in an
environment where it cannot hear the song of its own
species, it will instead imitate the song most similar
its template. If it does not hear any song sufficiently
similar to this template, singing will not develop
much.

There are currently two influential ideas that are of
great importance for the relation between innate
abilities and learning. The first is the concept of
preparedness introduced by Seligman (1970) and the
second is the existence of species-specific defence
mechanisms as proposed by Bolles (1970).

Seligman challenges what he calls the assumption of
equivalence of associability. This is precisely the
assumption that was the driving force behind the
behaviourist tradition. It has turned out, however,
that some associations are easier to learn than others.
(See Seligman 1970, and Garcia and Koelling 1966,
for examples.) Seligman suggests that we may
understand associability in terms of a dimension of
preparedness (Figure 2). An animal is said to be
prepared for associations that are easily formed while
it is contraprepared for associations that are hard or
impossible to learn, that is, it is prepared not to learn
the association. In the arbitrary experiments of the
behaviouristic tradition, the animal is typically
unprepared for the task. Ethologists, on the other
hand, do typically study situations in nature were the
animals are well prepared. This can make the
difference between perfect learning in one trial and
no learning in 1000 trials.

PreparedContraprepared Unprepared

Preparedness

Figure 2. The Preparedness Dimension

A classical example of preparedness was demon-
strated in an experiment by Garcia and Koelling
(1966). Rats were allowed to drink ‘bright, noisy
water’ and later confronted with its dreadful
consequences. The water was made bright and noisy
by a device that would flash a light and make a noise
as soon as the animal came into contact with the
water. After drinking this water, one group of rats
was given electric shock. Another group was instead
made ill by being injected with a toxic substance.
Two other groups of rats were allowed to drink
saccharine tasting water. One of these groups was
also given electric shock while the other was made
ill.
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While testing the animals the next day it was
observed that the rats that had been drinking bright,
noisy water and later received shock had learned an
aversion for the water. On the other hand, the group
that had been made ill did not show any aversion for
the water. Obviously, rats do not consider a flashing
light or a loud noise a cause of illness. This result
was elegantly balanced by the other two groups. Of
these, the group that had been made ill showed an
aversion for saccharine tasting water while the other
group was unaffected. Thus, taste is easily associated
with illness and lights and noises are easily
associated with shock. Associations between light
and illness or taste and shock are however very hard
to acquire (figure 3).

Hard
IllnessNoise + Light

EasyNoise + Light Fear

Hard
Taste Fear

Easy
Taste Illness

Figure 3. The potential associations in the Garcia and
Koelling experiment.

It has been pointed out that the equivalence of
associability is not required by the traditional
approach (Timberlake 1984). It was this assumption,
however, that led the researchers of the time to study
rats and pigeons in order to learn more about human
learning and while it does not require the equivalence
of associability it does not offer any explanation for
the differences either. There is also an unusual
systematicity in the associability that is out of reach
for the traditional approach.

For example, it is very hard, and in many cases
impossible, for a rat to learn to press a bar to avoid
shock. Other behaviours such as running are learned
almost immediately. In an influential paper on the
subject, Bolles (1970) suggested that just as animals
have specific behaviours for other engagements such
as eating, obtaining food and mating, they must also
have innate defence behaviours.

“Such behaviours must be innately organized
because nature provides little opportunity for
animals to learn to avoid predators and other
natural hazards. A small defenceless animal
like the rat cannot afford to learn to avoid
these hazards; it must have innate defence
behaviours that keep it out of trouble”
(Bolles 1978, p. 184).

The hypothesis is that associations that are in
agreement with the species-specific defence mecha-
nisms (SSDMs) are easily learned while others are

much harder or even impossible to acquire. To receive
food, a pigeon will easily learn to peck at a bar since
pecking is in agreement with its innate eating
behaviour and consequently in agreement with food.
But this behaviour is highly incompatible with its
innate avoidance mechanism and will thus only with
great difficulty be associated with shock evasion. We
see that here we have a possible explanation for the
variability of preparedness as suggested by Seligman.

There are even cases where the SSDMs may hinder the
animal from performing the response to be learned.
This is the case, for instance, when the frightened rat
freezes instead of pressing the lever in the Skinner
box. Another striking example of the role of SSDMs
have been shown in a modified version of the
experiment where a rat has to avoid shock by pressing
a bar. In this experiment, pressing the bar would
remove the rat from the box and would consequently
let it avoid the shock. In this variant of the
experiment, the rat could easily learn to press the bar
(Masterson 1970). Getting away from the box could
apparently reinforce bar pressing while simply
avoiding the shock could not. Considering these
examples it is hard to understand how the behaviour-
ists where ever able to teach their animals any of
their arbitrary behaviours.

“The truth of the matter is that our finest
learning researchers have been keen observers
of the organization underlying an animal’s
behaviour; they simply incorporated their
observations and knowledge into the design of
their apparatus and procedures rather than into
their theories. It is this talent in observation,
as much as the power of the accompanying
theoretical analyses, that has made the
arbitrary approach so viable. A truly arbitrary
approach to animal learning would have failed
long ago, as it has for countless pet owners,
parents, and students in the introductory
psychology laboratory” (Timberlake 1984, p.
183).

We may conclude that there exist a large number of
innate behaviours that interact with learning in a
highly complex way. These innate behaviours may
either make learning easier or harder. There also exist
innate preferences for forming some associations and
not others. Again we see that there is nothing general
about learning. The supposedly general law the
behaviourists tried to discover was the result of the
arbitrariness of their experiments. For an arbitrary
experiment the animal is generally unprepared and
can be supposed to learn slowly and regularly. In
nature, however, the animal is well prepared for the
types of learning that it will be confronted with. The
mechanisms involved in these situations may be
entirely different.
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5. INTERACTING LEARNING
SYSTEMS

In a recent learning experiment, Eichenbaum et al.
(1991), have shown that rats will learn to categorize
odours without being reinforced for doing so. Rats
that were trained to discriminate between odours on a
first trial were no more successful at a second trail
than rats that had initially been exposed to the same
odours without reinforcement. On the other hand,
both these groups performed better at the second
trial than did rats that had not been previously
exposed to the odours at all.

A conclusion that can be drawn from this experiment
is that there exist two distinct learning mechanisms
that are used in the discrimination task. The first
mechanism is concerned with the categorization of
odours while the second mechanism is used to
associate odour categories with the appropriate
responses. Learning by the second system is typically
performed on a single trial once the odours are known
while the first system is somewhat slower. This
would explain why prior exposure to the odours
speeds up learning regardless of whether or not
discrimination is reinforced. What we have here is an
example of perceptual categorization as a process
independent of response learning.

It should be noted that there exists some evidence
that at first may seem to be in conflict with this
discovery. Skarda and Freeman (1987) report changes
in the EEG of the olfactory bulb as a result of
reinforcement. Since the bulb is generally assumed to
be responsible for olfactory categorization, this
finding seems to indicate that the categorization
process is influenced by reinforcement. Such a
conclusion rests, however, on the assumption that
physical areas of the brain can be identified with
specific learning systems and this needs not
necessarily be correct.

The idea that there exists more than one learning
system is not new. Even among the behaviourists,
there were researchers that belonged to this position.
Clark Hull, for example, postulated (at times) that
two interacting learning systems were needed to
explain the experimental data. In the primary system,
learning was induced by reduction of drive, while the
secondary system was controlled by conditioned
reinforcers, that is, events that had acquired
reinforcing properties through classical conditioning
(Hull 1952).
While Hull’s two systems are no longer considered
an accurate model of learning, they do show that not
all behaviourists believed in one general learning
system. It should be noted that Hull was one of the
few early psychologists that wes more interested in

fitting the theory to data than selecting data that
supported the theory.

“Hull’s willingness to be wrong was a re-
markable, perhaps unique, virtue. It is a virtue
that is, unfortunately, not shared by many
theorists” (Bolles 1978, p. 104).

6. THE ROLE OF
REINFORCEMENT

We have seen above that learning of odours can occur
entirely without reinforcement although this
learning may not be expressed in behaviour until
reinforcement is introduced. During the 1950s, the
role of reinforcement was one of the most intense
research areas within learning theory. Hull had made
the entirely sensible, but as we now know,
insufficient, assumption that an animal will learn to
perform an action if its internal drive or need is
reduced. For example, a hungry rat that is allowed to
eat after having pressed a bar will reduce its hunger
drive. Drive-reduction would then reinforce bar
pressing. This drive-reduction hypothesis became one
of the most influential ideas in psychology ever.

In one of Tolman’s most famous experiments
(Tolman & Honzik 1930), a number of rats were
allowed to run in a maze for several days. One group
was rewarded at the goal box while one group did not
receive any reward. After the 11th day and thereafter,
both groups were given food reward in the goal box.
At this point the, previously unrewarded rats began
to perform as well as the rats that had received
reward all along. The unrewarded rats had obviously
learned as much about the maze as the rewarded rats.
But the learning was not expressed until
reinforcement was introduced. This phenomenon is
known as latent learning.

Figure 4 exemplifies the learning curves in a
idealized latent learning experiment. Group A is
rewarded from the beginning and group B and C are
rewarded at a later time. The performance of group A
increases steadily but the performance of group B and
C jumps rapidly towards that of group A when
reward is introduced. Since the performance of groups
B and C almost directly approaches that of group A,
the learning in these groups must have been affective
even before the reward was introduced. According to
the reinforcement view of learning, the performance
curves for group B and C should be equal to that of
group A and not steeper.
There are also many situations where it is hard to
define exactly what the reinforcer should be. Avoid-
ance learning is one such case.

“By definition, the avoidance response pre-
vents shock from occurring, so we cannot
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point to the shock as a potential source of
reinforcement. On the other hand, it is not
satisfactory to cite the nonoccurrence of shock
as a reinforcer because, logically, there is a
host of things that do not occur, and one is
hard put to say why not being shocked should
be relevant, whereas, say, not being stepped on
is irrelevant” (Bolles 1978, p. 184).

The explanation of learning in these cases may again
be caused by interaction with species-specific defence
mechanisms.
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Figure 4. The idealized learning curves of three groups (A,
B, C) in an latent learning experiment. The small arrows
show when reward is introduced for each of the groups.

When this happens, the performance of each group
approaches that of the group that has received reward all

along.

An alternative to the drive-reduction hypothesis is
that it is the occurrence of certain stimuli that are
reinforcing. This was the mechanism behind rein-
forcement in Hull’s secondary learning system.
Could all learning be explained by this mechanism?
If an animal can respond to a number of innately
reinforcing stimuli, then perhaps all learning could
be derived from the effect of these reinforcing
stimuli.

Contrary to the idea that only s t imul i  have
reinforcing properties, Premack (1971) has proposed
that all experiences have different values that can be
used as reinforcement. The value of an activity is
proportional to the probability that an animal will
engage in that activity. The Premack principle states
that access to any more probable activity will
reinforce any less probable activity.

This principle was tested in an experiment where
children were allowed either to eat candy or play
with a pinball machine (Premack 1965). In the first
phase of the experiment, it was recorded how long
the children engaged in each of these activities. In the
second phase, access to one activity was used as
reward for performing the other. It turned out, as the
Premack principle would imply, that the children
that were initially more likely to eat candy than to
play pinball would play pinball in order to be
allowed to eat candy. The other children were,
however, unaffected by the candy. Thus, candy had

only a reinforcing effect when it was used to
reinforce a less probable activity.

This view of reinforcement is very different from the
traditional view of Thorndike and Hull. While
possibly more general, it is very hard to see how this
principle can be explained in mechanistic terms. There
also exists a number of cases were the principle does
not hold (see Dunham 1977). It appears that
reinforcement does play a role in some but not all
learning. The exact nature of reinforcement is
however still in debate and will probably continue to
be so for a long time.

7. WHAT DOES THE ANIMAL
LEARN?

What is learned when an animal in a maze succeeds in
running the shortest path from the start to the goal
box? Has it learned to perform a fixed sequence or
motor patterns or has it constructed a cognitive map
of the maze? Perhaps it has learned to expect food at a
certain place or to expect reward for running a certain
route. The theories are almost as many as the
researchers in the field. However, there are some main
directions that I will try to summarize in this
section. Here I will only consider what is learned and
not how that learning has come about.

Stimulus–response associations

The most trivial explanation is that the animal has
learned a stimulus–response association. Each place in
the maze is considered to give rise to a specific
stimulus that is associated with the correct response
to perform at that place. A problem with this
approach is that the behaviour generated is unstable.
The actions performed are defined as movement away
from stimuli and not towards stimuli, but this is not
a uniquely defined direction. The response R0
performed as a result of observing stimulus S0 may
give rise to different movements in space depending
on the initial position of the animal. Thus, S–R
behaviours are divergent. As a sequence of S–R
associations is performed, the error will accumulate
until it drives the animal off course. (See figure 3). A
larger set of S–R associations makes the behaviour
more stable but can never overcome the inherent
instability of this type of learning. It should be
noted, however, that few researchers nowadays refer
to this type of simple motor-pattern when they talk
about responses.



8

S0

R0
R0 R0

Figure  5. The result of performing a response, R0, depends
on the initial position of the animal.

Stimulus-approach associations

Another explanation may be that the animal has
learned to approach a number of stimuli in the maze
(figure 6). To get to the goal it has to first approach
stimulus, S0, then stimulus, S1, and so on until it is
able to reach the goal box. Contrary to stimulus–
response behaviour, stimulus–approach behaviour is
stable. This depends on the fact that an approach
behaviour consists of a whole set of responses, A0,
which all drive the animal nearer to the stimulus. An
error in the initial position of the animal will
decrease as it approaches the stimuli (Figure 4). As a
consequence, stimulus–approach behaviour is
convergent. This makes this type of learning much
more likely as a basis for adaptive behaviour.

This constitutes the first of the three mechanisms
discussed above in relation to the simple T-maze.
Stimulus–approach associations could be used to
guide the animal if the two arms of the maze looked
different or could be distinguished in any other way.

These structures should not be confused with what
Hull (1934) called habit-family hierarchies although
they are similar in some respects. A habit-family
hierarchy is a set of responses or chains of responses
that have the same starting point and the same goal
response. Stimulus–approach structures are only
concerned with goal stimuli and cannot be divided
into a discrete set of responses.

S0

A0
A0 A0

S0

Figure 6. The stimulus S0 can be approached from many
directions, A0.

Place-approach associations

Place approach is similar to stimulus–approach in
that it is stable but instead of approaching a stimulus,
the animal uses a set of stimuli to identify a place to
approach. This type of learning is more advanced than

the other since it requires the ability to use a
configuration of stimuli to identify a place – a far
from trivial task. There exist a number of models of
this process. (See for example Schmajuk and Blair
1993 and Zipser 1985.) Figure 7 shows a place-
approach situation. This is the second of the possible
mechanisms used in the T-maze discussed above.

A0
A0 A0

P0

S1

S2

S0

Figure 7. A place, P0, defined by a set of stimuli (or
landmarks), S0, S1, S2, can be approached from a number of

directions, A0.

Response chains

According to this position, what the animal learns is
simply to perform a sequence of responses, R0, R1,…,
Rn, in order to move from the start to the goal. The
only stimulus involved is the one that starts the
chain (Figure 8). Obviously, this type of behaviour is
even more unstable than a simple S–R reaction. It is
very unlikely that a structure like this is used if the
animal can choose other strategies.

There are nevertheless a number of situations where
response chains are the only possibility. This is the
case, for instance, when a fast arpeggio is played on
the piano. Each new key on the piano must be pressed
before any feedback signal from the fingers have had
the time to reach the brain (Carpenter 1984). This
means, of course, that simple stimulus–response
associations must also exist as a limiting case of
response chains. We have here the third of the already
discussed possible mechanisms used in the T-maze.

R0S0
R1 R2

Figure 8. A response chain. A single stimulus, S0, triggers a
whole sequence of responses: R0, R1, R2.

Stimulus-approach chains

Just as responses can be linked together in chains, it is
also possible for approach behaviours to be linked
(figure 9). Like a simple stimulus–approach
behaviour, these chains produce stable behaviour but
they can range over much larger distances than a
simple stimulus–approach association.
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S3S1 S2

A1 A2 A3

Figure 9. An approach chain. A sequence of stimuli, S0, S1,
S2, are approached in order.

Place-approach chains

Naturally, place-approach associations can also be
linked in chains (Figure 10). Using this type of
structure, the same stimuli can be used many times to
locate different places. In the figure only three
stimuli (or landmarks) are used to locate and
approach all three places p1, p2, and p3.

P3P1 P2

A1 A2 A3

S0 S1

S2

Figure 10. A place chain. A sequence of places (P1, P2, P3)
can be approached by identifying the relation between

various stimuli (S0, S1 and S2).

S-R-S ' associations

The types of associations described above can be used
to control behaviour but they cannot be used to make
inferences. Tolman, postulated that animals learn
something like S–R–S' associations (cf. Tolman
1932). These tell the animal that if it is in situation S
and performs response R it will end up in situation S'.
Such associations are much more powerful than the
others we have so far considered. For example, if the
animal is in possession of the two associations S0–R0–
S1 and S1–R1–S2, it can, at least potentially, infer that
by performing the responses R0 and R1 at S0 it will
reach S2. Thus, it can perform sequences of responses
in order to obtain a goal even if that particular
sequence has never been performed before.

By acquiring sufficiently many S–R–S' associations,
it is possible to build a topological map of the
environment (Figure 11). This map can be used with
great utility in shortcut and detour problems as well
as in general problemsolving. It can also be used to
detect when a response does not result in the expected
situation. This is in other words a form of
expectation learning.

S0 S2

S4S3

S1

R0

R4R3

R1

R2

Figure 11. A map consisting of S–R–S' associations that
predict the consequences of performing a responce in a

certain situation.

These types of structures can be further extended by
assuming that the animal has the ability to reverse
the direction of a S–R–S' association. In this case,
every time the animal knows that it can transform
situation S to situation S' by performing response R,
it also knows that it can transform situation S' to
situation S by performing RI , where RI  is the inverse
of R.

An especially important class of systems can be
constructed if we embed stimulus–approach struc-
tures within S–R–S' associations. The behaviours
generated by a system of this kind are stable while at
the same time supporting various forms of inferences.
Systems of this kind have been proposed by Gallistel
(1980) and also by Schmajuk and Thieme (1992).

S-R-S* associations

Another possibility is that the animal learns to
associate a stimulus, S, followed by a response, R,
with a certain motivationally significant stimulus
S*. If S* is a stimulus that gets more intense as the
animal approaches a goal, associations of this type
could be used to guide the choice of responses at S.
The response associated with the most intensive S*
should be selected in order to reach the goal.

Like, S–R–S' learning, this is a type of expectation
learning, but here it is an expectation of reward and
not an expectation of a subsequent stimulus that is
learnt. As we will see below in section 16, a
combination of these two types of expectation lear-
ning can be very powerful.

S-S' learning

We will finally consider associations between
stimuli. In classical conditioning, it has sometimes
been assumed that it is not an association between
stimulus and response that is formed but rather an
association between the two stimuli involved. In this
view, Pavlov’s dog does not salivate because the bell
has been associated with salivation but rather because
the bell has been associated with food which in turn
activates salivation. This is called the stimulus-
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substitution theory of conditioning (Mackintosh
1974).

There are a number of processes that have S–S'
associations as their basis. In categorization , a
stimulus representing an instance of a category is
associated with a stimulus representing its category.
When the stimulus is perceived its corresponding
category is activated. Of course, stimuli are here
considered as something internal to the organism and
not as external cues. We are, in fact, talking about
representations of stimuli. This view of learning is
similar to the early associationistic school that
considered associations as links among ideas. Hebb’s
cell assembly theory is a more sophisticated variation
on this theme (Hebb 1949).

The above list is by no means exhaustive. I have only
touched on some of the most important ideas about
what is learned by an animal. Numerous attempts
have been made to explain each of the above learning
types by means of the other but so far there is no
consensus in the area. The view I am advocating is that
all these learning types, and perhaps many more, co-
exist and interact with each other during learning and
behaviour.

8. INTERNAL INFLUENCES ON
BEHAVIOUR

So far, I have described behaviour as if it were guided
primarily by external stimuli. This is of course not
the case. Internal determinants of behaviour are very
prominent in most situations.

One obvious internal determinant is the current need
of an animal. In identical external situations, a
hungry animal will eat if possible while a satiated
animal will not. Internal stimuli are related to the
concept of motivation, but since this determinant of
behaviour is not directly relevant for the present
argument, I will not dwell on this matter here. I have
so far assumed that there is only one goal to pursue
and that the animal is motivated to do so.

Another determinant that is more relevant to the
present argument is what I will call the internal
context of a situation. In many learning paradigms,
the appropriate action for a given situation depends
on some previous action performed at the same place
or in the same situation. To make the correct choice of
an action at the second trial, the animal must
remember what it did the last time. The internal
context of a situation is the internal state that
somehow reflects this previous choice.

In Olton’s radial maze, a rat is supposed to visit each
arm of a maze once and to learn this behaviour, the rat
receives a reward on its first visit to each arm (Olton
and Samuelson 1976). Each time the rat is in the

centre of the maze, it has to choose a new arm to visit
(figure 12). Since the rat cannot perceive the reward
from the centre of the maze, this behaviour seems to
require some memory for the previously made
choices.

Rats are surprisingly good at this task and remember
which arms they have visited without much trouble.
This is the case even in very large mazes with
sometimes as many as eighteen arms. They do not,
however, follow an obvious strategy like selecting
each arm sequentially around the maze but move
around seemingly at random. It is interesting to note
that the demands on memory required for this
solution is clearly out of reach for most humans.

Figure 12. A radial maze with six identical arms. The
animal is rewarded on the first visit to each arm. To be
successful, the animal must remember what arms it has

already visited.

As a determinant of behaviour, the internal context is
no different from external stimuli. It is used to
direct behaviour in exactly the same way but it
differs in the way it is generated. External stimuli
are gained through the perceptual apparatus of the
animal but the internal context has to be generated
from other sources. One possible mechanism is a
working memory that stores the actions previously
performed by the animal (Olton and Samuelson
1976).

While it is clear that some sort of memory is
necessary for these types of tasks, it is not at all
established what properties such a memory system
must have. For instance, how is the relevant internal
stimuli recollected from all the potential memories
that could be relevant in a given situation? How does
the animal decide on what to store in memory?
Whatever properties a learning system involved in
this type of memory may have, it must interact with
the different learning strategies I have presented
above.
9. ARE THE INTERNAL
STRUCTURES AN IMAGE OF
REALITY?

Assuming that an animal behaves in an appropriate
way, does this mean that it knows something about
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its world? It is tempting to assume that a rat that has
learned to run through a maze to receive food does so
because it is hungry but would prefer not to be. It
knows where the food is located and how to get there
and expects to be less hungry if it eats the food. Based
on this information, the rat can infer that the best
way to satisfy its goal is to run through the maze and
eat the food, and as a consequence of this inference it
will decide to run through the maze and eat the food.

According to Tolman (1932), this is an adequate
description of what goes on in the mind of the rat and
it is not hard to understand Guthrie’s objection that
according to this view the rat would be “buried in
thought”. However, the main criticism of this view
has not come from within animal learning theory but
instead from ethology and ecological psychology.

When the smell of butyric acid with a certain
temperature causes the tick to bite, there is no reason
to believe that it has some objective knowledge of
mammals that is used to decide on whether to bite or
not (Sjölander 1993). In fact, it seems inappropriate
to talk about knowledge at all in this context. In
nature, everything that smells of butyric acid and has
a temperature of +37 °C is a mammal and in the
world of the common tick, this is all that a mammal
is.

The part of reality that is within reach of the
perceptual apparatus of an animal can be referred to
by the concept of Umwelt3 as proposed by von
Uexküll. There is no reason to assume that an animal
has a better conception of reality than is necessary.
The U m w e l t  of the common tick is not very
sophisticated but is sufficient for it to survive. If the
tick believes that everything that smells of butyric
acid is something it should bite, it will survive, if it
does not it will probably die. This does not mean that
its conception of reality is true in any objective sense
but this is not terribly important as long as it
significantly increases the chance of survival for the
animal. It is sufficient for the concepts of an animal
to parallel the real world. They do not have to be
isomorphic to it (Sjölander 1993).

In ecological optics (Gibson 1979), the idea of an
ambient optic array is used in a way that is very
similar to an Umwelt, but while this concept refers to
all aspects of the environment, the ambient optic
array refers only to the visual surrounding of an
animal.

Ecological psychology emphasizes the role of
invariants in the environment that can be directly
picked up by an organism. The sign stimulus that
causes the bite reaction in the tick is an example of
such an invariant. As pointed out by Runesson (1989),

3Umwelt means approximately surrounding environment.

it is sufficient that invariants are incomplete, that is,
they should hold sufficiently often for the
mechanisms that rely on them to be adaptive. This is
certainly the case with the sign stimulus of the bite
reaction.

In the behaviourist accounts for learning it was often
implicitly assumed that animals perceive the same
(objective) world as humans. No-one was ever
surprised to find that animals attended to exactly
those stimuli that were relevant for the learning
task. For some reason, the world of the animals
coincided with that of the experimental situation. As
a consequence, only those stimuli specially prepared
for the learning task needed to be considered when
attempting to explain learning.

In the light of the example above, this should be very
surprising. Why should a rat care about exactly those
stimuli that were needed to solve the problem and
not on something entirely irrelevant like the smell
of the experimenter? Of the classical learning
theorists, only Pavlov considered this problem in any
detail (Pavlov 1927).

None of the different learning strategies presented
above gives rise to objective knowledge of the world.
Some of the learned structures even depend on the
learning animal in some unusual ways. For example
S–R–S' association are based on the behavioural
repertoire of the animal. It will not learn that A is
north of B but rather that some specific action is
appropriate for moving from A to B. But a structure
of this kind is much more useful than an objective
representation if the animal wants to move from one
place to another.

10. WHEN DOES THE ANIMAL
LEARN?

In this section we will consider how different
proposed learning mechanisms relate to the
obtainment of a reward. Learning has been described
as occurring either before, after or at the same time as
a reward is received. I will call these different
learning types early, synchronous and late learning
(See figure 13).

Late
Learning

Early
Learning

Synchronous

tReward

Figure 13. Different times when learning can occur.

Early learning

Early learning is learning that occurs prior to the
obtainment of a reward. If a rat learns the location of
food without being allowed to eat it, we have an
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instance of early learning. Thus, early learning is
involved in latent learning experiments. We may
hypothesize one of two distinct processes responsible
for early learning.

The first process, usually associated with Tolman,
explains learning simply as the gathering of
information about the environment. The construction
of a cognitive map is an example of such a process.
Both S–R–S' and S–S' associations can be constructed
using this type of early learning. It is important to
note that the demands on the cognitive apparatus that
an animal needs for this mechanism are rather high.
Consequently, we would only expect to find this
type of learning in higher animals.

The second process is driven by the distance to a goal
object. An anticipatory reinforcement signal is
generated that is inversely proportional to the
perceived distance to the goal object. The closer to the
object, the larger the reinforcement will be. In this
case, an animal will learn to approach food even if it
is not allowed to eat it. A learning mechanism of this
type implies that maximal reinforcement will be
received when the goal object is actually reached.

While this type of learning has many important
merits it critically depends on a competent
evaluation of the distance to the goal. Perhaps it is
the failure to perceive this distance that makes the
dedicated gambler risk even more money after
‘almost winning the bet’. As far as I know, this type
of learning has not been studied in the animal
learning literature.

Since early learning does not depend on any reward,
phenomena like latent learning are easily explained
with either of these learning mechanism. In the case
of shortcut and detour behaviours, it seems that the
first learning mechanism is necessary.

Synchronous learning

Synchronous learning is perhaps the most obvious
alternative to the drive-reduction hypothesis. Here it
is the consummatory response that is the origin of
learning. When an animal eats the food, its previous
responses are reinforced. Among the classical
learning theorists, Guthrie is the main proponent of
this view.

It does not appear that synchronous learning can
explain the more complex behaviours of an animal
but there are some situations where a mechanism of
this type seems most appropriate. For instance,
learning the correlation between smell and taste is
obviously best done when both types of information
are present, and this is only the case while eating.

Late learning

Hull’s drive-reduction hypothesis is a classical
example of late learning. Here it is not the reward
itself, such as the food that causes learning, but rather
its consequences on the organism. According to this
hypothesis, the reduction of hunger would reinforce
learning while eating should not.

How are we to choose between these learning types?
Again, I want to propose that they are all effective
but in different circumstances. In many cases, early
learning is certainly the case, but can that type of
learning explain all cases where behaviour is
changed? Because of the complexity involved in early
learning it is not entirely unrealistic to assume that
there also exist less complex learning mechanisms
such as synchronous and late learning. At least in
simpler organisms, these are the mechanisms to look
for.

We may also make the conjecture that if these less
sophisticated learning types are present in simpler
organisms, they are also very likely to play a role in
more advanced organisms. After all, they are still
entirely sensible.

11. SUMMARY OF ANIMAL
LEARNING

I hope to have shown that learning in animals is a
highly complex and complicated business. It is quite
unlikely that all the examples described above can be
explained by one mechanism and if it can, it is
certainly very different from any of the currently
proposed learning theories.

In summary, there are a number of important facts
about animal learning that we must consider if we
want to construct or model an intelligent system.

◊ It is unlikely that there exists one general
learning mechanism that can handle all situations.
Animals are prepared to learn some associations
and not others.

◊ Many alternative strategies are available to use
for the same problem, like place learning,
approach learning or response learning. The
strategies are selected and combined according to
the demands of the task.

◊ Animals have a number of species-specific mecha-
nisms that interfere with learning. Such innate
behaviours are necessary to keep the animal alive
while it learns about the world. In some animals,
almost all behaviours are of this kind.
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◊ What the animal learns can be represented in a
number of ways. We have seen at least nine ways
to represent habit and knowledge. These
structures need not be good descriptions of the
external world. It is sufficient that they help the
animal stay alive.

◊ Memories of past actions or experiences are
sometimes necessary to choose the correct beha-
viour. These memories are probably different
from the other structures learned by an animal.

◊ Learning can occur at different times with respect
to a reward. Learning that occurs prior to any
reward is in effect independent of the reward but
can usually only be demonstrated once a reward is
introduced.

12. PARALLELS BETWEEN
ARTIFICIAL INTELLIGENCE
AND ANIMAL LEARNING
THEORY

It is interesting to see that many artificial
intelligence models show striking similarities with
the animal theories. The reinforcement theories
proposed by Thorndike and Hull find their
counterpart in the early learning algorithms such as
the one used in Samuel’s checkers program (Samuel
1959) and more contemporary reinforcement learning
models (Barto and Sutton 1990). The parallel of
Tolmans’ theory can be found in mainstream
artificial intelligence in the use of internal world
models and planning. We also find the equivalent of
the ethological approach to animal behaviour in the
work of Brooks and others that emphasize the role of
essentially fixed behavioural repertoires that are
well adapted to the environment (Brooks 1986).

These similarities have made me curious to see
whether it would be possible to match the different
fields and perhaps transfer ideas between them. Can
insights from animal research be used to construct
intelligent machines? Is it possible that research on
artificial intelligence has anything to say about how
animals and humans work? I think the answers to
both these questions are affirmative and the present
work is partly an attempt to carry out such a
matching.

In the following sections, we will take a closer look
at the different learning methods used by various
artificial intelligence researchers and try to match
them with the relevant animal learning theories. The
result of this exercise will be an attempt to
formulate some general design principles for an
intelligent system.

13. S–R ASSOCIATIONS IN AI
AND CONTROL

The rules used in rule based systems are very often
similar to S–R associations. When one rule is used to
generate the precondition for another rule, the
process is not entirely unlike the chaining of S–R
associations. In the animal earning theories, the
environment holds the result of a response and may in
turn trigger the next S–R association. In rule based
systems, the environment is replaced by an internal
representation of ‘facts’ generated by the triggered
rules. Computationally, the two approaches are
almost identical although the languages used to
describe them are entirely different.

Perhaps a clearer example of S–R associations can be
found in the use of look-up tables (LUT) in both AI
and control. Look-up tables are used to store the
output for a set of inputs. This has the advantage that
no calculations have to be made. For a given input, the
result is simply looked up in the table. A control
strategy can be coded once and for all in a look-up
table to make the control faster than if the
controlling signal had to be calculated for each input.

Look-up tables have two disadvantages however. The
first is that there may exist inputs that are not stored
in the table. These inputs have no defined output. The
second problem has already been mentioned in
relation to S–R learning: behaviour generated by S–R
associations is divergent. Both these problems have
been addressed by generalizing look-up tables. These
data structures will interpolate between the entries
in the table to find an output for an unknown input.

Albus’ CMAC was one of the first mechanisms to
use this idea (Albus 1975). The model was supposed
to describe learning in the cerebellum and since its
introduction it has been developed in two quite
distinct directions. The first is in the field of control
where it is the basis for many control strategies based
on generalizing look-up tables (e. g. Atkeson and
Reinkensmeyer 1990, Kraft and Campagna 1990). The
other development of the model has been towards a
more realistic model of cerebellar learning. Most
contemporary neurophysiological models of classical
conditioning have the CMAC model as their starting
point (e. g. Ito 1989, Moore et al. 1989). Another
connection between animal learning theory and
control theory if the Recorla–Wagner model of
classical conditioning (Rescorla and Wagner 1972).
This model is mathematically identical to the
Widrow–Hoff learning rule for adaptive filtering
(Widrow and Hoff 1960/1980).
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14. REINFORCEMENT
LEARNING

Thorndike’s law of effect states that the learning of a
response is governed by the effects of that response.
The cat will learn to press a lever to escape from its
box since the effect of lever pressing, that is the
escape, is pleasant. The pleasant aspect of escape
reinforces the behaviour that precedes it. As a
consequence, this behaviour is more likely to be
elicited again. If, on the other hand, a behaviour is
followed by some unpleasant event, the likelihood of
the behaviour is reduced instead. The closer in time a
response is to the reward, the more the response will
be reinforced. While this description comes from
animal learning theory, it is essentially the idea
behind reinforcement learning as it is used in
artificial intelligence.

Something similar to reinforcement learning was
first used in Samuels’ checkers program that was
developed in the late fifties (Samuel 1959). When the
computer wins a game, it receives a reward in the
form of a positive evaluation of its last few moves.
During later games, this evaluation is propagated
towards earlier positions of the game. Moves that
lead to favourable positions receive a higher reward
(that is a better evaluation) than moves that are less
successful. Eventually all moves will have been
evaluated and the computer will be able to play the
game fairly well.

While this learning scheme is feasible in principle, it
will take an almost infinite amount of time before
all moves have been tested. This problem was
overcome in two ways. The first was to let the
program use a static evaluation function on moves
that were far from any known position. The second
solution was to let the program use a high-level
description of the positions. Using this complex
description, evaluations of one position could be
generalised to a position that had never been
encountered before. The high-level descriptions were
also further enhanced by the introduction of learning.

This idea has later been included as a component in
many learning systems. The bucket brigade algorithm
used in Holland’s classifier systems is another
instance of this general learning scheme (Holland et
al. 1986). The learning system receives a reward from
the environment and its task is to adapt its internal
rule base in such a way that it receives an optimal
reward from the environment.

Q-learning as proposed by Watkins (1992) is perhaps
the easiest reinforcement learning algorithm to
understand. The main element of this algorithm is the
Q-function that assigns an expected reward to each

combination of a situation (or stimulus) and an
action (or response). When the system finds itself in
a certain situation, it simply chooses the action for
which its expected reward is largest. In effect, the Q-
function describes a set of S–R–S* associations. The
role of the learning algorithm is to construct an
estimation of the Q-function by trying out the
different actions in the environment.

Common to all of the above examples of
reinforcement learning is that actions that are not
immediately rewarded are reinforced by the actions
that follow them. The propagation of reward from
the terminal action towards the preceding ones is not
entirely unlike the anticipatory goal reaction, rG ,
proposed by Hull (1943, 1952). This reaction, whose
only effect would be to generate an anticipatory goal
stimulus, sG , would initially be associated with the
rewarding response and would later propagate
through the chain of S–R associations and serve as the
glue in a response sequence.

The connection between animal learning theory and
reinforcement learning has recently been emphasized
in a number of articles by Barto and Sutton (Barto,
Sutton and Watkins 1990, Sutton and Barto 1990).
Their temporal difference method has been used both
as a biological model and as an adaptive control
strategy and is one of the most recent attempts to
make the connection between animal learning and
control theory explicit. Baird and Klopf (1993)
describe a modified version of the Q-learning
paradigm that also clarifies this connection. They
show how Q-learning can be changed to conform with
the precise details of several animal learning
experiments.

15. LEARNING AS KNOWLEDGE
ACQUISITION

According to Tolman, learning is the acquisition of
knowledge about the world. This view is the most
popular among most contemporary psychologists and
AI researchers, and there exists an endless number of
models and systems based on this approach.
Reasoning and problem solving are examples of
abilities that seems to require knowledge. Based on
knowledge of the world, we are able to reason about
the outcomes of actions, we can solve problems and
make plans.

The solution to many spatial problems requires that
the animal in the maze makes some form of inferences
about what route to take from the start to the goal
box. In a classical experiment of Tolman and Honzik
(1930) a rat is allowed to explore the maze in shown
in figure 14. After some practice the animals will use
the straight alley from the start box, S, to the goal
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box, G. Once this habit is formed, the path from S to
G is blocked at point B in the maze. Consistent with
reinforcement theory, the rats now chose the next
shortest path on the right of the maze. When the
direct path is instead been blocked at point A,
according to reinforcement theory, the rats would
now try the second shortest path on the right instead.
This does not happen, however. Instead they will
directly choose the longest path on the left.

This is, of course, the most sensible choice since the
right path is also blocked at A but to make the
correct choice some considerable cognitive abilities
are required. Its seems that some kind of internal
world model is required and that the animal uses this
model to infer that the right path will also be
blocked before it chooses the right one.

A
B

G

S

Figure 14. The maze of the type used in the Tolman and
Honzik (1930) experiment.

Tolman’s view that learning is essentially the
acquisition of knowledge about the environment has
no problems explaining this behaviour, nor do most
artificial intelligence systems for planning and
problem solving. If the world is represented as a set
of S–R–S' associations, the choice of the correct path
is given by invalidating the S–R–S' association that
leads past the point A where the path is now blocked
and replan the route from S to G.

Most AI planning systems make use of
representations that are very similar to S–R–S'
associations. They are usually of the form:

precondition × action → outcome.

A plan is simply a sequence of these representation
where the outcome of one rule is the precondition for
the next (Fikes and Nilsson 1971). Planning and
problem solving is thus reduced to a search for a
sequence of rules that leads from the start to the
goal. If such a sequence is found, it is subsequently
executed in the real world.

The planning process can be made more efficient by
building new rules that describe the combined result
of executing several actions in succession. If the
planning system finds two rules, x:a →  y and

y:b →  z, it can combine these into a new rule
x:b°a →  z. The next time the planner wants to go
from x to z no planning is necessary. This process is
called chunking and has been much studied in the
cognitive literature. (See for example Newell 1990.)
As a result of chunking, the planner will become
better with added experience.

The view that all behaviour can be described in this
way have received much criticism in recent years and
many of the deficiencies of these type of mechanisms
have been acknowledged (e. g. Maes 1990b). For
example, it is often the case that once the planning
process has finished, the rules used to construct the
plan may no longer be valid. There are nevertheless
many situations where a problem solving ability
seems to be necessary. This has lead some researchers
to try to combine the reactive approach with planning
in different ways. One of the greatest insights gained
from this work is that plans should be considered
more as resources than as programs to execute
(Payton 1990). The immediate sensory readings from
the environment should always have precedence over
an internal plan.

There have also been some attempts to combine an
internal world model with reinforcement learning.
The DYNA architecture proposed by Sutton (1992)
is one noticeable example of this. Using an internal
world model, the agent can try out actions internally
instead of confronting them with the cruel and
unforgiving results of reality. While these internal
tests are performed, the reinforcement learning
system will adapt and the appropriate actions can
then be executed externally. It has been shown that
this approach speeds up Q-learning considerably
(Peng and Williams 1993). This is an example of a
model where S–R–S' learning, (the internal model) is
combined with S–R–S* learning (the Q-function).

Another important role of planning is to anticipate
future states of the world (Rosen 1985). This ability
makes it possible to let anticipated future states of
the world influence the present behaviour of the
agent. For example, an animal that anticipates its
own future needs may gather food even before it
becomes hungry (cf. Gulz 1991).

In summary, most behaviour of an animal may be
governed by rather simple mechanisms but they also
have the ability to solve rather complex problems in
some cases. This ability seems to require knowledge
of some kind and this knowledge must be acquired by
learning. There are plenty of models within AI that
may be used as a starting point for models of these
phenomena.
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16. THE REACTIVE APPROACH

The view that animal behaviour is best described by a
number of interacting innate motor patterns has been
the inspiration for the currently most fashionable
approaches to robot control.

“[T]he emphasis in these architectures is on
more direct coupling of perception to action,
distributedness and decentralisation, dynamic
interaction with the environment and intrinsic
mechanisms to cope with resource limitations
and incomplete knowledge” (Maes 1990a).

The most important aspect of such architectures is
their emphasis on complete creatures or systems that
let us make observations that cannot be made from
studies of isolated modules (Brooks 1986, 1991a,
1991b).

The subsumption architecture introduced by Brooks
(1986) is a computational model that is based on a
network of asynchronously computing elements in a
fixed topology. The active elements communicate
with each other and with sensors and effectors by
sending and receiving messages without implicit
semantics. The meanings of the messages are given by
the operations of both the sender and the receiver
(Brooks 1991b). Typically, the messages are
constrained to be very small values represented in a
low number of bits. The communication rate is
usually very low, on the order of a few messages
every second.

The robots built according to these principles differ
from more traditional designs in that they are
behaviour based (Connel 1990, Horswill and Brooks
1988). In this context, a behaviour is a subsystem that
is responsible for some specific action pattern of the
robot. There are many connections between this
approach and models in ethology. For instance, the
behaviours of the robots are similar to fixed action
patterns.

There are also a number of similarities between the
perceptual systems of these robots and the idea of
direct pick up in ecological optics. For instance,
Horswill (1992) presents an interesting analysis of
the visual invariants in an office environment that is
directly inspired by the ecological approach.

The most radical defenders of this view deny the need
for any type of internal representations or reasoning
mechanisms (Brooks 1991b). Even memory is
considered harmful since it gives the robot an
internal state. Since internal states may not
adequately describe the external situation, a robot
should react directly on the external world and not
on some internal representation of it. This is the idea

of using “the world as its own model” (Brooks
1991a).

While this may be a good idea in general, we have
already seen that memory is necessary for situations
like the radial maze. It is therefore reassuring to see
that Brooks now acknowledges this need (Brooks and
Stein 1993).

17. PERCEPTUAL LEARNING

In the cognitive literature, perceptual learning is
usually described in terms of concept formation and
prototypicality (Rosch 1973, Glass and Holyoak
1985). Within the behaviourist school, the same
phenomena are studied in the context of discrimi-
nation learning and generalisation gradients. The
difference between the two views of categories can be
seen in figure 15. The figure to the left shows
instances of three categories with a discrimination
border drawn between them and the figure to the
right shows the three categories as bounded regions
around the examples.

Figure 15. Two views of categories. Left. Discrimination
surfaces in the instance space. Right. Categories as regions.

The main difference between the cognitive and the
behavioural approaches has not been in the phenomena
studied but rather in the way these phenomena have
been attributed to different mechanisms. The
cognitive investigators have searched for the internal
representations of categories while the behaviourists
have studied the tendencies to react to different
stimuli. In both cases, one has found that categories
cannot in general be described by sharp borders.
Instead they have a radial structure where some
instances of a category are better examples of that
category than others.

In cognitive science, this is taken as evidence for the
prototype theory. This theory states that some
members of a category are more prototypical than
others (Rosch 1973). For example, a prototypical
chair has four legs. But there also exist chairs with
three legs or perhaps only one. These are thus less
prototypical, that is, less good examples of the
concept of a chair.

The radial structure of categories has also been
studied within the behaviouristic tradition. When the
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tendency to respond to a stimulus is measured, it can
usually be shown that there exists one specific
stimuli for which the response is strongest or most
likely (Mackintosh 1983). As the stimulus is altered
the response decreases with increased dissimilarity
between the optimal and the altered stimulus. There
is said to be generalization gradient around the
optimal stimulus. Is this not prototype theory in
disguise?

Another way to study perceptual learning is to see
whether an animal will react in one way or another
on a stimulus. In this way we will study discrimi-
nation surfaces between different categories instead
of their radial structure.

All these approaches to perceptual learning and many
other can be found both within the area of machine
learning (Davidsson 1994) as well as in neural
networks and statistical inference (Lippman 1987).

18. CONCLUSION

All the studies presented above, both within animal
learning theory and artificial intelligence, have been
concerned with some particular aspect of learning or
behaviour. To date, very few models have attempted
to deal with the full complexity of learning,
although there certainly exist biological models that
could explain most aspects of learning if they could
only be combined in some sensible manner.

Too much effort has been spent on trying to figure
out who is right and who is wrong instead of
attempting to see the similarities between the
different theories. While the extreme positions
usually get the most attention, the truth is, more
often than not, somewhere in between. An attempt to
merge the different theories into a coherent system
would be very welcome. However, such an enterprise
would have to avoid two critical traps that have
caught most previous attempts.

The first trap is to believe that all learning and
behaviour can be explained with a small set of
principles. The result of this approach has been the
construction of grand theories that set out to explain
all instances of learning but are later revealed as too
limited. It is not unusual for models of this kind to
be both clear and elegant, but this is true only because
their explanatory power has been sacrificed.

The second pitfall is to think that everyone is right
and to simply combine all models one can find into
one big theory of everything. This has often been the
case when AI researcher have felt the need to build
complete systems. The models for perceptual
learning are usually highly incompatible with those
for reasoning and problem solving but this has not
stopped some people from combining them into so

called hybrid systems. While these systems have the
advantage that they combine many mechanisms, all
signs of elegance are usually far gone. Since most
hybrid systems have been directed towards specific
technical applications, their value as theories is also
very limited.

In summary, what is needed is an approach were all
the different aspects of learning can be combined in an
elegant manner. I want to propose that such an
endeavour must satisfy the following three criteria.

First, it must be computational. Whatever the
properties are of the system we are looking for, they
will be highly complex. Thus, a model that is not
computational will inevitably contain many incon-
sistencies. Only within a computational approach are
we required to specify a model in every detail, and
that is absolutely necessary in this case. This implies
that we must model one particular individual. There
exists no general animal and a fully specified system
can never general either.

Second, it must describe a complete system. A
complete system includes sensors and effectors as
well as everything in between. This assures that the
system will be grounded, that is, all internal
processes can be traced back to the peripheral systems.
Like the computational approach, the complete
systems approach also requires that we model one
particular individual of one particular species.

Third, the system must be based on one descriptive
framework, such as neural networks or a rule based
system. This may not be required to build a working
system, but it is a necessary feature of any attractive
model. This will make it possible to describe a
system in a coherent way as well as making the
computational approach easier.

To conclude, I suggest that artificial intelligence
learn the lessons from animal learning theory and
starts to consider complete systems where a large set
of interacting mechanisms are combined in a coherent
manner. The study of such systems will be of great
importance both for the success of artificial
intelligence and for our understanding of learning
and intelligence in animals and man.
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