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This paper presents a system based on neural networks that can analyse spatial relations in a visual scene and connect them to
appropriate linguistic descriptions. The system learns spatial concepts like “right of” and “above” by viewing a visual scene
containing a number of objects and simultaneously receiving a text string describing the scene. The spatial relations between the
objects in the scene are analysed with the aid of saccadic shifts of the focus attention. The system thus learns to correlate
linguistic expressions for spatial relation with different kinds of saccades. After being trained, the system can correctly
describe previously viewed scenes.

1. INTRODUCTION

One of the main questions in cognitive science is how
different information codes interact in biological and
artificial systems. In particular, the connection
between the visual code and language is of central
importance for understanding human cognition. The
problem is that the information provided by a visual
system must be translated into forms useable by a
language capacity. In other words: How can we talk
about what we see? (see Jackendoff, 1987).

In this paper, I will present a system based on neural
networks that can analyse spatial relations in a visual
scene and connect them to appropriate linguistic
descriptions. The system learns spatial concepts like
“right of” and “above” by viewing a visual scene
containing a number of objects and simultaneously
receiving a text string describing the scene. The
spatial relations between the objects in the scene are
analysed with the aid of saccadic shifts of the focus
attention. The system thus learns to correlate
linguistic expressions for spatial relation with
different kinds of saccades. After being trained, the
system can correctly describe previously viewed
scenes.

2. WHERE AND WHAT IN
VISION

A visual scene, perceived by a human or an animal, is
so complex that it is not possible to perceive the
whole scene as one unit. Such a holistic perception
would make the scene unique, and associations to
other scenes and other perceptions would be
impossible. It is therefore necessary to have a
mechanism in the perceptual system that breaks down
or fragments the scene to a more appropiate form of
representation.

In order to solve the problem of representing
complex visual scenes, I will in this paper focus on
sequential representations. For example, if the scene
contains two objects A and B standing in a certain
spatial relation R to each other, this aspect of the
scene could be represented by the sequence <A R B>.1

It has been found (Mishkin, Ungerleider and Macko,
1983; Zeki and Shipp, 1988) that humans and higher
animals represent visual information in at least two
important subsystems: the where- and the what-
systems. The where-system only processes the
location  of the object in the scene. It does not
represent the kind of object, e.g., whether it is an
elephant or a mouse, but this is the task of the what-

1 The sequence should be read as a vector,  not as a linguistic
or symbolic representation.



2

system. The two systems work independently of each
other and never converge to one common represen-
tation (Goldman-Rakic 1993). Physiologically, they
are separated throughout the entire cortical process of
visual analysis.

The where-system builds up what I will refer to here
as a spatial relation map, where no information about
the form of the object is represented. This means that
the representation is a drastic generalization: an
elephant is generalized to an undetermined object at a
specific spatial position, indistinguishable from the
representation of a mouse. This form of
representation can be used for variable binding in
collaboration with the what-system. The what-
system represents categories of objects, without any
information about their spatial location. An example
of variable binding would be that an undetermined
object in the where-system is bound to a
representation of an elephant-object obtained from
the what-system.

In natural environments, a significant problem is to
attend to a stimulus of interest. The where-system is
a part of the attention process, since the where-system
supplies information about where to foveate in the
scene. The fovea in the retina is exclusively concerned
with form perception, not with the location of the
objects in the scene.

The visual perception machinery also separates the
information into several other domains such as color,
size, luminance, motion, depth and texture. These
kinds of representation are necessary for language
understanding (Damasio and Damasio, 1990). For
example, we can talk about color because color is
represented as a separate domain and is very easy to
attend to.2 Lesions in area V4 of the visual cortex,
where color is represented, result in color agnosia.
Patients with this kind of brain damage cannot even
imagine color. He or she is simply not conscious of
the existence of color.

In the computer system that will be described here,
representations are partitioned in a similar way. The
system uses a very primitive representation of the
category of objects, while it has a full representation
of the spatial location of various objects. In the
present implementation of the system, the color and
other features of an object are not considered, but may
be added in a future extension.

2 With few exceptions of languages which only have words
for “light” and “dark”, all languages contain basic color
words (Berlin and Kay 1969).

3. ATTENTION

When the brain processes a visual scene, some of the
elements of the scene are put in focus by various
attentional mechanisms (Posner, 1990). It is obvious
that attention must be a very important property for
identification and for learning in biological as well as
artificial systems. Here, I will not address the
general problems of attention in biological systems,
but focus on attentional mechanisms necessary for
grasping spatial relations.

In a natural scene, one of the basic problems is to
locate and identify objects and their parts. However,
in the artificial system studied here, the problem of
attention is tremendously simplified since the
representations of the objects and their locations are
assumed to be known. The system can hence easily
focus on one object at a time.

4. SACCADES

When the brain analyses a visual scene, it must
combine the representations obtained from different
domains. One hypothesis underlying the simulations
to be described in this paper is that attention shifts
from domain to domain in a sequential way (see
Crick, 1984). Since information about the form and
other features of particular objects can be obtained
only when the object is foveated, different objects can
be attended to only through saccadic movements of
the eye.

In the implemented model, the mechanism that
generates attention to different objects and different
domains results in a sequence of readings o f
representations from the different domains. They
will be of the type “saccade, shape, color, saccade,
shape …”. For example, the processing of a visual
scene consisting of a red car to the right of blue
bicycle can be represented as “color: red, shape: car,
saccade direction: left, color: blue, shape: bicycle.” A
sequence of readings produced by the system will here
be called a visual template.

A common description of animal behavior is that an
animal observes a stimulus, performs an action, and
obtains a new stimulus, repeating the pattern over and
over again. The coding of a visual scene in the
simulated system uses a similar sequence “form-
stimulus, saccade-action, new form-stimulus”.
However, the sequence is not executed concretely in
the natural environment but instead with the aid of
the internal representations.

Using the saccades as integrated parts of the
processing sequences provides the the system with the
possibility of representing abstract spatial concepts,
for example “RIGHT_OF,” with the aid of the
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direction of the saccade. More precisely, it is the
internal action schema for a saccade that is used to
represent the spatial relation. The internal
representation of the visual scene at a particular
moment contains information about the focus of
attention at that moment. In the system a saccadic
movement to an object is randomly generated.“Zero
movement” is also an option which means that the
attention remains fixed at the same object. For
example, if the scene has three objects A, B and C, and
the system attends to object C, it can perform three
possible saccades: attend to object A, attend to object
B, or continue to attend to C.” The saccadic actions,
together with readings of the features of the attended
objects, will generate sequences of the kind described
above.

5. LINGUISTIC CORRELATION

The goal of the system that has been developed is to
produce a linguistic description of a visual scene
presented to the system. Like the visual templates,
i.e., the sequences of readings from the scene, natural
language is also sequential. The problem is to
correlate the different visual templates, generated
from the visual system, with the language templates,
i.e., the text string presented to the language module
of the system. In our simulations the linguistic units
have been nouns and prepositional phrases.

The content of a visual template depends on the order
of actions and their consequences. For example the
sequence “shape: cat, saccade direction: down, shape:
dog” will represent a scene where a cat is above a dog,
while “shape: cat, saccade direction: up, shape: dog”
represents the cat as being under the dog. The
difference between the raw scene and the visual
template representing it is that the sequential
representation can synthesize different combinations
of visual units into a template. Thus, the objects in a
scene can be grouped in different ways. This “gestalt”
property of the visual templates is necessary for
higher cognitive tasks. In my opinion, sequential
representations are therefore of great interest in
biological or artificial systems.

The inputs to the system are visual scenes and
linguistic templates, i.e., a text string. The visual
scene can generate a large number of visual templates,
depending on the order and direction of the saccades.
The task of the system is to correlate different visual
templates with the given text string. The correlation
score of a visual template is determined from a
matrix of numbers representing the probabalities of
the co-occurence of a linguistic unit and a visual unit
(saccade or object feature). The correlation value of a
visual template is then sent as a multiplication or
“resonance” factor to the correlation matrix. This
multiplication represents a learning procedure,

updating the co-occurence probabilities. The
correlation matrix and the learning mechanism will
be described in greater detail later.

During the learning phase of a simulation, the system
thus learns to correlate linguistic units with
appropriate units in the visual templates. After the
learning phase, knowlege about the spatial concepts
associated with the linguistic units can be used to let
the system actively search information from the
visual scene.

Suppose, for example, that two unidentified objects
are shown next to each other in the scene. If the
linguistic input to the system is the string “CAT
RIGHT_OF DOG,” the system can then find out
which object is associated with the words CAT and
DOG, since RIGHT_OF is known to correspond to a
particular saccade direction.

After the learning phase the system can also perform
the converse operation of generating a text which
corresponds to a given scene. A visual scene, given as
the sole input to the system, is not sufficient to
determine a unique linguistic output, since the
linguistic expressions describing spatial relation
depend on the saccadic movements. Thus, different
sequences of saccade sequences will generate different
linguistic outputs. The different visual templates
correspond to different ways of interpreting the
scene.

6. ARCHITECTURE OF THE
SYSTEM

I next turn to a description of the general architecture
of the system used in the simulations. The system
consists of several modules: The visual input is a
scene consisting of a matrix of pixels. The spatial
relation map is a matrix that identifies the positions
of the objects (corresponding to the where-system of
the brain). This information is extracted from the
visual scene. The pattern recognition network
classifies the visual patterns into objects (corre-
sponding to the what-system of the brain).

In addition to the visual scene, a small section (5 by 5
pixels) is identified as the focus of attention
(corresponding to foveating). Saccadic movements
correspond to shifts of focus. The saccade classifier
network sorts the relative movements into a small
number of directions.

The word classifier breaks up the text input into
units. The correlation matrix then connects units
from the text input with the outputs from the
pattern recognition network and the saccade
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classifier.3 Finally, in the case where the system is
used to generate a description of a scene, this is
handled by a text output module. The connections
between the different modules are shown in figure 1.
Each of them will be given a more detailed
description below.

Scene Spatial relation map
and saccade
generation

Saccade
Classifier

Correlation Matrix
Word
Classifier
and Text
Input

Text 
input

Text
output

ART2 Network

Pattern
Recognition

Figure 1: The general architecture of the system

7. GENERAL DESCRIPTION OF
THE IMPLEMENTATION

Before I turn to the description of each of the
modules, I want to outline the main computational
structure of the system.4 In brief, the system “looks”
at the scene with its retina, which is directed to
differents objects by a saccade generating unit. At
each moment the system focuses on a small area of the
scene. When the system focuses on an object, the
information from that attended part of the scene will
be directed to the pattern recognition network. This is
an ART 2 network (Carpenter and Grossberg, 1987)
that classfies the pattern as a particular type of
object.

The saccade generating unit obtains possible saccade
directions from the spatial relation map. In brief, it
searches for areas of the scene where patterns that
may represent objects are found. In other words, if an
area of the scene is empty, it will never be focused
upon. A random generator selects one of many
possible directions to move from the present focus.
The saccade motion is analysed in a prewired network
which classifies the saccade as either stationary or as
moving in one of four general directions.

3 As will be described below, there is no requirement that
the visual template and the linguistic template contain the
same number of elements.
4 The program is written in C, and Microsofts QUICK-C
compiler is used. The program runs on a PC with 1 Mbyte
primary memory on a 486-Processor 66 MHz.

The information about the objects obtained from the
pattern recognition network together with the
information from the saccade classifier is fed into a
relay station which forms sequences of information
units. It flips between the two domains so that
saccades are intertwined with object information. A
consequence of the random saccade process is that
different possible visual templates, i.e., sequences of
the type <object-shape(A,t), saccade(!P,t+1), object-
shape(B,t+2), … >, are generated by the relay station.

The word classifier module is also an ART 2
network, providing a very elementary classification
of the units from the text input. However, the
network also functions as an output unit since
activating a node may also activate a word. Thus the
network can associate in both directions, and is able to
generate text output, given input from the
correlation matrix.

The correlation matrix correlates, unit by unit, the
sequence of linguistic units, i.e., the language
template, with the visual template, i.e., the sequence
generated by the relay station. The number of units in
the text string, determines the length of the
correlating visual template. For example, a text
input of the three linguistic units DOG RIGHT_OF
CAT, is matched against the different visual
templates containing three units that can be obtained
from the sequence generated by the relay station. The
system searches for the visual template that has the
highest correlation with the linguistic template. The
computational structure of the system is illustrated
in some detail in figure 2.

8. SCENE AND RETINA

Next, I turn to a more detailed description of the
modules of the system. The scene in the system is a
64*64 matrix, where each pixel has 256 gray levels.
An object can be placed at an arbitrary position in the
scene by the user, by selecting a figure from a menu.
The figure is represented in a predrawn 5*5 matrix,
and can be dragged by the mouse from the menu to the
scene.

When the system is focussing on an object in the
scene, the image from the scene is copied to a “retina”
also consisting of 5*5 pixels. In figure 3, two objects
are present in the scene, and a 5*5 pixel retina is, at the
moment, attending to one of the objects. The
attention flips between the two objects, and the
saccadic actions are transferred to the pattern
recognition network one by one in a sequence. Before
the image reaches the network, it is filtered to a
courser scale, which reduces noise and increases the
robustness of the pattern classification.
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Correlation Matrix Pr(Wi | Rj)

Word Classifier

j j

Motor Command

Saccade Classifier

Scene

ART Network

Saccade Generation

Relay Station

Attention Map

! X
! Y

i DOG RIGHT_OF CAT

Text Input

Figure 2: The computational components of the system.

(1)

(2)

Retina
5 x 5 pixels

Figure 3: Scene with two objects and a 5*5 pixel retina.

9. SPATIAL RELATION MAP
AND SACCADE COMMANDS

A scene with two objects is shown to the left in
figure 4. The objects in the scene are segmented by a
Gaussian function into blobs, which are represented in
the map to the right. A lateral inhibition mechanism
finds the maxima, and results in a map of the maxima,
the “spatial relation map,” shown in figure 5.

The saccade system is then guided by the spatial
relation map, which is used to generate appropriate
saccades that shift the attention of the retina from

one object to another. A random generator is used to
select saccades in different directions. (See figure 6).
The motor command unit, called saccade unit in figure
2, generates relative coordinates, which flips the
attention by moving the retina from one object to
another.

+ "#

Figure 4: Generation of a spatial blob map.

Find
Maxima

Threshold

Figure 5: A sharp spatial relation map is created from the
“blob map” by lateral inhibition.
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Figure 6: Motor command generation.

10. SACCADE CLASSIFIER

The saccades generated by the saccade unit are then
classified in the “saccade classifier”. This classifier is
prewired and cannot be modified by the system. The
two dimensional space of X- and Y-coordinates is
divided into five predefined categories, where each
field is connected to a specific node, as shown in
figure 7. In the figure the nodes are identified with
the overall direction of the saccade. This division
describes the receptive field of each of the five types
of saccades. The central field corresponds to the zero
saccade, i.e., no shift of attention.

Saccade
Coordinates

Receptive Field

Saccade Classifier

! X
! Y

Figure 7: The saccade classifier.

11. PATTERN RECOGNITION
ART NETWORK

The pattern recognition unit is an ART 2 network
(Carpenter and Grossberg, 1987) as illustrated in
figure 8. The input to the network is lowpass filtered
which has the effect of blurring the image. In lowpass
filtering, high frequencies in the picture are

suppressed and thus information is reduced. The
vigilance factor in the ART network decides how
many categories will be generated. The ART network
is an unsupervised learning network that can
automatically create new categories. Each picture on
the retina is classified into an old or a new category
by the network.

12. RELAY STATION

The relay station receives information from two
channels: the pattern recognition network and the
saccade classifier module, as shown in figure 9. The
control unit of the relay station sequentially selects
the information from the two channels and simply
relays it to the correlation matrix. The control unit is
preprogrammed to select the channels in a certain
sequential order.

Output Layer
32 Units

Input Layer
25 Units

Lowpass
Filter

Figure 8: The pattern recognition ART2 network.

Control
Unit

Saccade
Classifier

Pattern Recognition Network

Relay Station

{

To Correlation Matrix

Figure 9: The relay station with two input sources: patterns
and saccades.
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13. TEXT INPUT AND WORD
CLASSIFICATION

The system takes an ordinary text string as the input
source to the word classification network. A word
divider finds the words in a text string, which are
stored in memory. This network simply creates a new
node for each word. It also establishes a bidirectional
connection between a word and the corresponding
node so that a word in the input string activates a
node, and an active node activates a corresponding
word. The architecture of the word input unit is
shown in figure 10.

D O G R I G H T _ O F C A T ' \0 '

Input Text string

Word
Divider DOG RIGHT_OF CAT

Network
32 Nodes

Figure 10: Text input and word classification network.

14. CORRELATION MATRIX

The correlation matrix, illustrated in figure 11,
receives a sequence of inputs from the word classifier
network paired with a sequence of inputs from the
relay station. These pairs of data are used to construct
a probability matrix.

j

i

Pr(Wi | Rj)
1.0

0.0

0.5

Object Saccade

Words

Figure 11: The correlation matrix

The pattern recognition network and the saccade
classifier will, with the aid of the relay station,
generate an alternating sequence of patterns and
saccades of the form <R1, R2, R3, R4 ... > (the visual
template). Similarly, the word recognition network

generates a sequence <w1, w2, w3, … wn> of words
from the input string(the linguistic template). These
two sequences are then correlated in the following
manner (figure 12): The word sequence <w1, w2, w3,
… wn> is first matched with the sequence <R1, R2,
R 3 , R4 ...> and the correlation corr(1) =
1/n*$ iPr(wi/Ri) is computed.5 Here Pr(wi/Ri)
represents the current value in the probability matrix
of a word wi occurring, given that the pattern or
saccade Ri occurs.

R1 R2 R3 R4 R5 R6 Rn

t t+1 t+n

W1 W2 W3W1 W2 W3

$

Temporal
sequence

Corr(1)

Figure 12: The first matching of the linguistic template to
the visual template.

Next the word string is shifted one step to the right
so that w1 matches R2 etc. and the correlation corr(2)
= 1/n*$i Pr(wi/Ri+1) is computed. In this way, the
word string is shifted stepwise to the right and the
corresponding correlations corr(j) = 1/n*$ i
Pr(wi/Ri+j-1) are computed. This process is repeated
for a fixed number of steps (standardly 100).

Suppose, for example, that the word string contains
the three words DOG RIGHT_OF CAT and that the
pattern saccade sequence begins with “shape: cat,
saccade: right, shape: dog, saccade: left, shape: cat”.
The first matching will be between the text string
and “shape: cat, saccade: right, shape: dog.” Since
Pr(DOG/shape: cat), Pr(RIGHT_OF/saccade: right),
and Pr(CAT/shape: dog) should all be low, the total
correlation will be low. In the next step the text
string is matched against “saccade: right, shape: dog,
saccade: left.” Also here the correlations are
supposedly low, and thus the correlation is low again.
However, in the third step, the text string is matched
against “shape: dog, saccade: left, shape: cat.” Now
the values of Pr(DOG/shape: dog), Pr(RIGHT_OF/
saccade: left), and Pr(CAT/shape: cat) are all very
high and the result is a high correlation value.

The correlation values obtained in this way are
continuously used to update the probability matrix.

5The index 1 in corr(1) indicates that the linguistic
template is matched with the visual template from the first
position of the visual template.
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The total correlation value is used as a weight to
change the single probability values in the matrix.6 If
the total correlation of the text string and the
pattern sequence is high, the corresponding
probabilities will increase, and if it is low, they will
decrease. Initially, the probability values are set to
small random numbers. During the training of the
system, the conditional probabilities in the matrix
will stabilize. If there are no ambiguous words, the
probabilities will in general approach 1 or 0.

15. TRAINING PHASE

In order to facilitate learning, the system is often
first trained on single words for objects. A scene
consisting of just one object, say a dog-shape, is shown
and the text input is just one word, say DOG. The
sequence of patterns and saccade that is generated for
this scene will consist of only two elements, namely
shape: dog and saccade: zero. After updating the
correlation matrix, the probability values
Pr(DOG/shape: dog) and Pr(DOG/saccade: zero) will
be comparatively large, while all other probabilities
will be close to zero. This means that at this stage the
system does not know whether DOG refers to a shape
or a zero saccade.

If next a scene with just a cat-shape is shown and the
lingustic input is just the word CAT, the system will
learn that the word CAT is correlated with the cat-
shape, while it will now assign both
Pr(CAT/saccade: zero) and Pr(DOG/saccade: zero)
very small values, and, as a consequence, the value
Pr(DOG/shape: dog) will increase. In other words,
the system will “realize” that CAT and DOG refer
to shapes and not saccades.

After training the system with some shape-words,
sentences containing spatial relations can then be used
as the linguistic input. For example, suppose that the
scene shows a fly shape vertically over a frog shape
and the system has been trained to recognize the
words FLY and FROG. If now the linguistic input is
FLY ABOVE FROG, the system can learn to
associate ABOVE with a downward saccade.

16. TEST PHASE

In the test phase the aim is to let the machine
describe a simple scene. The input to the system is
now only a visual scene containing known shapes, but
where the spatial configuration of the shapes has not
been shown during the learning phase. For an example

6The actual calculations are rather complex and we will
not present them here.

see figure 13, which contains a “fly” shape, a “frog”
shape and a “cat” shape.

(frog) (cat)

(fly)

Figure 13: An example of a visual scene in the test phase.

With the aid of the saccade sequences generated from
this scene, the system finds the linguistic template
that has the highest correlation with the pattern-
saccade sequence. Figure 14 illustrates how the
association between a word and the output of the
relay station is computed as a maximum of the
conditional probabilities.

Max

j

i

DOG

Object Saccades

Find Max
Pr(Wi | Rj) = maxj  [Pr(Wi| Rj)]

Figure 14: Generation of a new text string.

For the scene in figure 13, the system will generate
strings like FROG UNDER FLY, FROG LEFT_OF
CAT, but also longer sequences like CAT
RIGHT_OF FROG UNDER FLY OVER FROG.
Thus the system has no control for redundancies.

The system can also be shown to learn new shape
words from the context of a scene. For example,
suppose that the scene contains a dog shape above an
unknown shape and another unknown shape to the
right of the dog shape. If the corresponding linguistic
input to the system is DOG ABOVE DUCK, the
system will associate the word DUCK with the
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corresponding unknown shape and it will be able to
use this knowledge about the object category in the
analysis of a later scene.

17. DISCUSSION

At the present stage of the system, it can only
generate a stereotyped “language” as output during
the test phase. The linguistic value of the system is
thus limited. Another problem is that the system
repeats the same text over and over again.

However several extensions of the system are
possible to implement. One direction is to develop
the system with scenes containing moving objects. For
such scenes, one could train the system to associate
appropriate motion types with words like
TOWARDS, AWAY_FROM, HIT etc. Another
extension is to introduce properties of the objects in
the scene, for instance their colors. A system that
contains more advanced visual information could also
exploit the depth dimension of a scene, thus handling
words like BEHIND.

As noted above, the linguistic output during the test
phase is not filtered for repetitions. Another possible
extension would therefore be to supply the system
with various pragmatic filters on its linguistic
output.

Finally, and perhaps most importantly, in the current
version the shape recognition module is trivial. A
more useful system would contain a realistic shape
analysis based on video inputs from actual scenes.
Such an extension would have immense potentials for
technological applications.
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