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Abstract: It is argued that a rational agent should not be able to gain information simply by removing a previously accepted
proposition, i.e. a proposition having probability 1. An example is given showing that the Gärdenfors axioms for probabilistic
contraction in fact do not exclude that the agent’s uncertainty is decreased as a result of contraction. The concept of entropy is
borrowed from statistical information theory and used as a tool for measuring the uncertainty pertaining to a belief state.
Entropy is then used to formulate a new axiom in addition to the Gärdenfors axioms. The new axiom explicitly rules out the
possibility of agents getting more informed as a result of belief removal.

INTRODUCTION

Imagine that a crime has been commited and that you
cannot exclude that Herman is the criminal. You read
in the morning paper that in fact Herman has
confessed, information that leads you to believe that
it was Herman who commited the crime. Assume that
the next day you learn, to your great surprise, that
new evidence has been presented in the Herman case. It
turns out that Herman never confessed after all; that
he had confessed was only a rumour. The only
evidence pointing at Herman is that his blood type
matches that of the criminal.

When discussing belief changes like those in the above
example, it is common to refer to a distinction
between two types of basic belief change: expansion,
i.e. the addition of a new belief consistent with the
agent’s prior beliefs; and contraction, i.e. the removal
of some previous belief1. To return to the example
above, when you read that Herman has confessed you

1The literature on non-probabilistic belief revision seems
to grow almost exponentially. For the basic concepts the
reader should consult Gärdenfors, 1988. Philosophical and
interpretational problems are discussed in Levi, 1991. In
this context, see also Harman, 1986. For the state-of-the -
art, see Fuhrmann & Morreau, 1989 and Gärdenfors, 1992.

perform an expansion. When you later read that
Herman didn’t confess after all, this new information
calls, among other things, for a contraction of the
belief that Herman is the criminal. It is often argued
that revision, by which is usually meant the addition
of a belief inconsistent with prior beliefs, can be
explained as a sequence of contractions and
expansions. To add the belief -A assuming that you
already believe A must mean that you first have to
make place for -A by removing A after which you can
consistently add -A.

There are, hence, two main uses of contraction: as a
stand-alone belief change operation and as a tool for
making rational revisions. While standard
conditionalization can be used to represent expansion
in a probabilistic context, there is, unfortunately, no
similary evident way to represent contraction2. Peter
Gärdenfors has presented a collection of axioms
intended to characterize probabilistic contraction3.
Gärdenfors’ axioms are, however, compatible with
many quite different contraction methods. It would

2Probabilistic belief revision has not received the same
attention as non-probabilistic revision. See for example
Diaconis & Zabell (1982), Gärdenfors (1988), Lindström &
Rabinowicz (1989), May (1976), May & Harper (1976), van
Fraassen (1980) and Williams (1980).
3In Gärdenfors 1988.
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be desirable to further restrict the possible choices of
a posterior state after contraction. The main purpose
of this paper is to investigate the possibility of
stronger axioms for probabilistic contraction.

A belief state will be represented as a probability
distribution over a space of possibilities (or
alternatives or atomic events or possible
worlds/situations) W.4 We denote the set of all
possible probability distribution by !. A proposition
is a subset of W. For each probability distribution P
and each proposition A, the probability which is
assigned to A by P is defined:

P(A) = P(w)
w"A
#

Note that we allow for the possibility that W is
infinite. In all examples, however, W will be finite.
We use -A to denote W-A, i.e., the set-theoretical
difference between W and A.

2 THE UNIQUENESS PROBLEM
FOR EXPANSION AND
CONTRACTION

The problems of contraction is closely connected
with expansion which motivates that we first
consider expansion. Assume that P(A)>0 and that the
effect of new information is to give conclusive
support for A. This situation can be represented as a
constraint on the new state of information. The
constraint is the set of all probability distributions Q
such that Q(A)=1, and the task is to choose one of the
belief states in this set. As we will see there are
strong reasons to believe that this case can be handled
by standard conditionalisation in the sense that

PA
+ (B) = P(A$B)

P(A)
, for all propositions B.

That is, the new probability distributions after
adding the information A is the old distribution
conditionalised on A. The motivation is that
conditionalisation is a minimal change of belief in the
following sense: “unlike all other revisions of P to
make A certain, it does not distort the profile of
probability ratios, equalities, and inequalities among
sentences that imply A” (Lewis 1976, p. 311). This is
the case since conditionalisation works by assigning
all propositions inconsistent with the new
information a zero probability value, while all
propositions consistent with the new information are
scaled by the same constant, i.e. P(A).

4For criticism of this “Bayesian” way to represent belief
states see Gärdenfors & Sahlin (1988), Shafer (1976) and
Shafer (1981).

Example.2.1 Let W={w1, w2, w3} and P(w1)=1/3,
P(w2)=1/6 and P(w3)=3/6. A compact way to
represent P is as the vector P=(1/3, 1/6, 3/6). Let A be
the proposition {w1, w2}. Then the result of
incorporating A is the vector (2/3, 1/3, 0).

The proposal is, then, that we can use
conditionalisation to single out a unique new belief
state from the imposed constraint. This solves the
uniqueness problem for expansion. Unfortunately,
the uniqueness problem for contraction is much more
difficult. To see where the difficulties lie, let us look
at a concrete example.

Example.2.2 Suppose W={w1, w2, w3, w4, w5},
P=(1/4, 3/4, 0, 0, 0) and A={w1, w2}. Now, assume
that we receive new information to the effect that A
is falsified. The constraint on the posterior belief
state is %={Q: Q(A)<1}. From this set we should,
ideally, be able to choose a unique distribution as the
posterior belief state.

To solve the uniqueness problem for contraction, if
possible, the following questions must be given
definite answers: What probability should be
assigned to P-A(A)? That is, what probability should
A have in the posterior belief state? How should we
distribute probability values over possibilities in A?
In the posterior state, -A will have a positive
probability, i.e. P-A(-A) = & > 0. How should the
probability value & be distributed over possibilities
in -A? Specifically, what possibilities in -A should be
assigned 0?

The rest of this paper will be devoted to the
uniqueness problem for contraction.

3. GÄRDENFORS’ AXIOMS FOR
PROBABILISTIC CONTRACTION

The Gärdenfors axioms for contraction are given
next5. Originally, these axioms were formulated in
terms of probability distributions over sentences in a
propositional language rather than over propositions
formed from an outcome space. It turns out that the
problems involved in contraction stand out much
clearer if we use the latter “possible world”
terminology. As it happens, one of the original six
Gärdenfors axioms, saying that contractions using
equivalent sentences should give the same result,
becomes superfluous. The remaining five axioms are:

(G-1) For all probability distributions P and all 
propositions A, P-A is a probability 
distribution.

5In Gärdenfors, 1988, p. 118.-
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(G-2) P-A (A)<1 iff A'W.

(G-3) If P(A)<1, then P-A=P.

(G-4) If P(A)=1, then (P-A)+A=P.

(G-5) If P-A$B(-A)>0, then P-A(C/-A) 
= P-A$B(C/-A) for all C.

Axioms (G-1)-(G-3) are uncontroversial regularity
conditions. The real force lies in (G-4) and, to some
extent, in (G-5). Axiom (G-4) states that if we first
contract with respect to -A and then conditionalize
on A, we should get P back. According to (G-5), if we
contract with respect to A$B and A is given up in
that process, then this contraction and the result of
contraction with A simpliciter should give the same
proportions of probabilites to the sentences implying
-A. This is a parallel to what happens when we
conditionalize. Recall that when we conditionalize
with respect to A, the proportions between sentences
implying A are preserved. The proposal is, then, that
contraction should be seen as “backward”
conditionalisation.

Example.3.1 Let us continue example 3.2. As before
W={w1, w2, w3, w4, w5}, P=(1/4, 3/4, 0, 0, 0) and
A={w1, w2, w3). It is compatible with (G-4) that the
result of contracting P with respect to A is Q=(1/8,
3/8, 0, 0, 4/8). For if we conditionalize Q with respect
to A we get P back. However, (1/8, 3/8, 0, 4/8, 0) and
(1/16, 3/16, 0, 8/16, 4/16) are equally permissable.
Now, let B={w1, w2, w4). A and B are both accepted
in P. To illustrate (G-5) we note that a contraction
rule to the effect that P-A=(1/8, 3/8, 0, 1/8, 3/8) but
P-A$B=(1/8, 3/8, 0, 3/8, 1/8) would violate (G-5)
(but not (G-4)). A possible rule could instead let P-
A$B be equal to (1/16, 3/16, 0, 3/16, 9/16).

Gärdenfors proves the following useful consequences
of (G-1)-(G-4):6

Theorem 3.1. For all B, if P-A(B) = 1, then P(B) = 1.

Theorem 3.2. P-A(B) = &P + (1-&)(P-A)+-A(B) for
all B (where & = P-A(A) when P(A) = 1 and & = 1
otherwise).

Theorem 3.1 says that the set of propositions accepted
in P-A is a subset of the set of propositions accepted
in P. According to Theorem 3.2, the result of a
contraction is always a probabilistic mixture of two
distributions, one of them being P and the other (P-
A)+-A. Note in connection with Theorem 3.2 that the
Gärdenfors axioms do not say anything about the
magnitude of P-A (A), except that it should be
strictly less than 1. As Gärdenfors remarks, this
leaves open a large number of possibilities for an

6Appendix C in Gärdenfors 1988.

explicit construction of a contraction function. If P-
A(A) = &, then P-A is called an &-contraction of P
with respect to A. Concerning the distribution of
probabilities over possibilities in A, only axiom (G-
4) is relevant. As indicated earlier, (G-4) says that the
relative proportions between these probabilities
should be preserved. Regarding the distribution of
probabilities over possibilites in -A, we have only (G-
5), according to which the relative proportions
between these probabilites should be maintained
along the line indicated above. Note, however, that
the axioms are indifferent to what possibilities in -A
should be assigned probability zero.

We have seen that the Gärdenfors axioms are rather
weak. It would be quite surprising if nothing more
could be said about contraction than what is
expressed in these axioms. I now turn to the task of
finding stronger axioms to complete Gärdenfors’
account.

4. CONTRACTION AND LOSS
OF INFORMATION

What intuitions can we rely on in our search for
stronger contraction axioms? Whenever we decide to
perform a contraction, it is intuitively clear that,
given a reasonable contraction function, we should
lose information. That contraction should involve
loss of information is an implicit assumption in
Gärdenfors’ Knowledge in Flux: “Because
information is valuable, it is rational to minimize the
loss of information when giving up sentences in a
contraction of a state of belief”.7 Falsifying a
proposition that we previously believed cannot make
us more opinionated. Intuitively, it should instead
make us more uncertain. One way to express this idea
would be to say that fewer propositions should be
accepted after the contraction than before. As we have
seen this is in fact provable from the Gärdenfors
axioms (Theorem 3.1). But it is not clear that the
number of accepted propositions indeed is a plausible
information measure. We would, hence, like to have a
way to measure the uncertainty of a probability
distribution. Assuming that we could do this we
would like to postulate (or, if possible, prove from
the Gärdenfors axioms) that contraction always
involves a loss of information.
However, the Gärdenfors’ axioms do not assure that
the agent’s uncertainty increases as a result of
contraction. This is shown by the following intuitive
example.
Example 4.1. Let W={w1, w2, w3}, A={w1, w2},
P=(1/2, 1/2, 0) and Q=(1/16, 1/16, 14/16). Then Q is an
admissable contraction of A from P according to the
Gärdenfors axioms. Note especially that we get P

7Gärdenfors 1988, p 91.
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back if we conditionalize on A with respect to Q. The
problem is that Q is intuitively more opinionated
than P. For in Q almost all of the probability mass is
concentrated on one alternative, while P devides the
probability equally between two alternatives. All
reasonable ways to measure uncertainty should make
Q less uncertain (i.e. more informed) than P, which
means that the example does not rely on any
particular choice of uncertainty measure.

Since the Gärdenfors axioms, contrary to intuition, do
not garantee that the agent loses information in the
contraction process, we would like to add an axiom to
this effect. One way to do this would be to state
postulates that characterize the class of all
reasonable ways to measure uncertainty, and then to
say that every measure in this class should make the
posterior state after contraction more uncertain than
the prior state. However, we will be satisfied here
with the less ambitious problem of formulating an
axiom in terms of a specific, and commonly used,
information measure: entropy. This measure has some
advantages over many other measures, one of them
being that it easily generalizes to the infinite case.

5. CONTRACTION AND
INFORMATION-THEORETICAL
ENTROPY

The purpose of this section is to define and motivate
entropy as a measure of the uncertainty pertaining to a
probability distribution8. The most convenient way
to do this is to start by defining the information in an
event A'( . We want to measure the information
which represents for the agent. A fundamental
principle of information theory is that the quantity
of information associated with A equals the
reduction of uncertainty that would be the result if
the agent got to know A9.

Suppose for example that we wanted to know were
on a chess table the white king is positioned. There are
64 possible alternatives which are supposed to be
equally probable. We could use the number 64 to
quantify the uncertainty of the initial state. Instead
we choose the number log 64 = 6 bits (if we use 2 as
the logarithm base). Now we are told that the white

8I would like to thank Sten Lindström for giving me access
to his unpublished notes on information theory.
9Other attempts to connect probabilistic belief updating
and information theory can be found in the following
papers: May (1976), May & Harper (1976), van Fraassen
(1980) and Williams (1980). Cziszár (1977) is a discussion
of information measures. Rosenkrantz (1977) gives
postulates that characterize entropy. Shannon (1948) and
Kullbach & Leibler (1951) are basic papers on relevant
information-theoretical notions. For a modern textbook,
see McEliece (1977)

king is actually on a black square. We are now left
with 32 possible outcomes, that is, the uncertainty
has been reduced from 6 bits to log 32 = 5 bits. This
means that the amount of information associated
with the event that the white king is on a black square
is 1 bit:

log64 ) log32 = log 64
32

= log2 = 1.

Given that all atomic events are equally probable, the
information in an event A is given by:

inf(A) = log n
card(A)

= log n ) log card(A),

where n is the number of elements in W. Note that if
all atomic events are equally probable the probability
of A is given by P(A)=card(A)/n. Combining this
fact with the above equation has the following
consequence:

inf(A) = log 1
P(A)

= log1- log P(A) = -log P(A).

It is natural to extend this idea to the general case in
which the atomic events are not necessarily
equiprobable. This completes the motivation for the
following definition:

Def 5.1  infP(A) = -logP(A).

We will drop the subscript and only write inf(A)
when the associated probability distribution is
determined by the context.

We now go on to defining the information, or rather
lack of information (i.e. uncertainty), in a probability
distribution. Obvious requirements are that the
uncertainty should be at a maximum for the uniform
distribution and at a minimum for a distribution
which concentrates all probability mass on one single
atomic event. It turns out that the expected value of
the agent’s information indeed has the required
intuitive properties making it highly suitable for the
task at hand:

Def 5.2 Ent(P) = ) P(w)log P(w).
w"W
#

The function Ent(P), the entropy of P, measures the
expected informational gain of finding out what the
real outcome is. This intuitive reading gives
additional support to Ent as an uncertainty measure.

We are now in position to verify that entropy
conforms with our intuition in example 4.1.
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Example 4.1 (continued). Recall that P=(1/2, 1/2, 0)
and Q=(1/16, 1/16, 14/16). Calculation using 2 as the
logarithm base give that Ent(P)=1 while
Ent(Q)*0.67. So P is, not surprisingly, more
uncertain according to Ent than Q.

The previous argument motivates a new axiom that
prevents the agent from shifting over too much
probability to possibilities that were excluded in the
prior distribution. The idea is that the posterior state
after contraction should always be more uncertain
than the prior state before contraction, i.e:

(G-6) Ent(P-A)+Ent(P), with equality iff either 
P(A) < 1 or A = W.

Axiom (G-6) could be formulated more generally in
terms of any uncertainty measure satisfying certain
reasonable conditions. Here we have chosen to
sacrifice generality for definiteness and ease of
calculation. It is important to observe that the
example showing that Gärdenfors’ axioms for
probabilistic contraction are insufficient did not rely
on the use of entropy as the only way to measure the
information content of a distribution. The example
would go through using any reasonable information
measure. In future work it should be investigated
what exactly could be required of a reasonable
information measure, an investigation that should
lead to a more general axiom than (G-6).

6. CONCLUSION

It was argued that a rational agent should not be able
to gain information simply by removing a previously
accepted proposition. Such a belief change should
instead always result in a less committed belief state.
A simple example was given showing that the
Gärdenfors axioms for probabilistic contraction in
fact do not exclude that the agents uncertainty is
decreased as a result of belief removal. The concept of
entropy was borrowed from statistical information
theory and used as a tool for measuring the
uncertainty pertaining to a probability distribution.
This concept was then used to formulate an a new
axiom in addition to the Gärdenfors axioms. The new
axiom explicitly rules out the possibility of agents
getting more informed as a result of contraction.

REFERENCES

Csiszár, I. (1977) ‘Information measures: a critical survey’,
in Transactions of the Seventh Prague Conference,
Prague: Academia, 73-86.

Diaconis, P. and Zabell, L. (1982), ‘Updating subjective
probability’, in Journal of the American Statistical
Association, 77, 822-30.

Fuhrmann, A., Morreau, M. (1989) (eds) The logic of
Theory Change , Springer-Verlag.

Gärdenfors, P. (1988) Knowledge in flux, The MIT Press.
Gärdenfors, P. (1992) (ed) Belief Revision , Cambridge

Tracts in Theoretical Computer Science 29.
Gärdenfors, P. and Sahlin, N.-E. (1988) (eds) Decision,

Probability and Utility , Cambridge University Press.
Harman, G. (1986) Change in view , The MIT Press.
Kullback, S. and Leibler R. A. (1951) ‘On information and

sufficiency’, in Ann. Math. Statist., 22, 79-86.
Lewis, D K (1976) ‘Probabilities of conditionals and

conditional probabilities’, The Philosophical Review
85:297-315.

Lindström, S. and Rabinowicz, W. (1989), ‘On probabilistic
representation of non-probabilistic belief revision’, in
Journal of Philosophical Logic, 18, 69-101.

McEliece, R. J. (1977) The theory of information and
coding, Addison-Wesley Publishing Company.

May, S. (1976) ‘Probability kinematics: a constraint
optimization problem’, in Journal of Philosophical
Logic  5, 395-398.

May, S. and Harper W. (1976) ‘Toward an optimization
procedure for applying minimum change principles in
probability kinematics’, in Harper and Hooker (eds),
Foundations of Probability Theory, Statistical
Inference, and Statistical Theories of Science, Vol. 1,
137-166.

Rosenkrantz, R. D. (1977) Inference, method and decision ,
R. Reidel Publishing Company.

Shafer, G. (1976) A mathematical theory of evidence,
Princeton University Press.

Shafer, G. (1981) ‘Constructive probability’, in Synthese
48, 1-60.

Shannon, C.E (1948) ‘A mathematical theory of
communication’, in Bell System Technical Journal, Vol.
27, 379-423.

 van Fraassen, B. C. (1980), ‘Rational belief and probability
kinematics’, in Philosophy of Science, 47, 165-187.

Williams, P.M. (1980) ‘Bayesian conditionalisation and the
principle of minimum information’, in British Journal
for the Philosophy of Science 31 , 131-144.


