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Abstract: The main purpose with this paper is to describe how a psychologically motivated conceptual space can be
obtained with MDS (multidimensional scaling) and how it can be expressed in terms of a more primitive “physical”
(or mathematical) one. The idea is demonstrated practically with the aid of two experimental pilot studies. The paper

is concluded by a critical discussion of the method used.

INTRODUCTION

Always when modelling cognition, the representation
is of significant importance. It is the underlying repre-
sentation medium, together with the operations that
work upon it, that constrains what can be modelled.
Throughout the history of cognitive science, a tremen-
dous amount of different types of representations have
been used and these could be categorized in several
ways depending on what properties is focused upon.
For the purpose of this paper, a relevant distinction is
between linguistic (symbolic) and non-linguistic based
representations. Linguistic representations, which his-
torically have been most common, are required to be
expressible in linguistic code, whereas non-linguistic
are not. For a general discussion of representational is-
sues (Palmer, 1978) is strongly recommended.

The type of representation of interest here is that of
conceptual spaces (Géardenfors, 1992), which is sub-
sumed by the more general framework often referred
to as multidimensional spaces. Conceptual spaces are
limited to representing concepts, hence the term con-
ceptual.

A conceptual space consists of a number of quality di-
mensions, each representing some quality of a concept.
A basic metaphor is that mental objects could be repre-
sented as points or regions in a conceptual space and
that similarity is reflected by distance relationships be-
tween them. The main purpose of this paper is to, with
the help of two experimental studies, present how a
conceptual space expressed in terms of a “physical” (or
mathematical) one could be obtained by using multidi-
mensional scaling.

Quality dimensions are taken to be cognitive and infra-
linguistic, i.e. the qualities they represent are not re-
quired to be expressible in linguistic code. Various
quality dimensions may differ in a number of ways,
which are probably not completely exclusive:

* nature of the scale: The underlying scale may be of
nominal, ordinal, interval or quote nature. A nomi-
nal scale merely divides objects into classes (e.g.
sex), whereas the other scales are (at least) ordered

(e.g. pitch).

* metrical structure: Some quality dimensions are
discrete to their nature, others are continuous.
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* range of the scale: A dimension could, for exam-
ple, be isomorphic to the half-line of non-negative
numbers (e.g. weight), or be isomorphic to the line
of real numbers (e.g. time).

* sensory-nonsensory: A specific quality dimension
could be anywhere within the range from a close
relation with what is produced by our sensory
receptors (e.g. pitch) to be of an abstract and non-
sensory character (e.g. dangerous).

e origin: Some dimensions seem to be innate and to
some extent hardwired in our nervous systems (e.g.
pitch). Others are probably learned. Some dimen-
sions are culturally dependent, e.g. some cultures
conceive time as linear, but some conceive it as cir-
cular.

Sometimes, a distinction could be made between sci-
entific and psychological interpretations of quality di-
mensions. One example is the difference between the
ideal euclidian 3-D space and our psychological visual
space. In our psychological visual space, the vertical
dimension is treated differently from the horizontal di-
mensions, much because of gravity. In the ideal 3-D
euclidian space, all three dimensions are treated in the
same way. Psychological dimensions are discussed in
some detail in e.g. (Gérdenfors, 1992). In this paper,
the operational definition that psychological quality di-
mensions are the dimensions that could be used for de-
scribing peoples ratings of similarity/dissimilarity
between stimuli, is adopted. All psychological quality
dimensions used, together constitutes the psychologi-
cal conceptual space for the stimuli. The terms “psy-
chological conceptual space”, “psychological space”
and “psychologically motivated space” are used synon-
ymously.

As already mentioned, the assumption underlying mul-
tidimensional space-like representations is, that if
mental objects are located at unique locations in a
space (e.g. points), the psychological similarity is re-
flected by distance relationships between them. This
means, that the closer two objects are (i.e. the shorter
the distance), the more similar they are. So, if the un-
derlying psychological quality dimensions are known,
then the psychological space is known. Furthermore, if
the locations of mental objects (in this case, stimuli)
also are known, then, if the distance function is known,
the similarity between objects could be calculated. Of
course, there is a tight relationship between the under-
lying scales and what could be inferred from distances.

Once there is a way of calculating similarities between
locations in a conceptual space, more complex things
could be represented. For example, there are several
different models that operate upon multidimensional
spaces for predicting concept formation behaviour. All
of them have in common the assumption that categori-
zation is based upon similarity between concepts and

that they are exemplar based. Some examples of mod-
els are Nearest neighbour (NN), Average Distance
(AD), Prototype Voronoi Tessellation (PV) and Gener-
alized Voronoi Tessellation (GV).

According to NN, a new object belongs to the same
category as its closest neighbour does. According to
AD, a new object belongs to the same category as its
closest hypothetical average member does. Both PV
and GV resemble NN to some extent. According to PV,
a new object belongs to the same category as its closest
prototypical point, or object, does. A prototypical point
could be taken to be the most central member of the
category. According to GV, a new point belongs to the
same category as its closest prototypical region does.
Everything within the prototypical region could be the
most central member to the category together with a
radius that corresponds to the variation of what is con-
sidered to be typical.

No matter which model is used, if we want to evaluate
its describing power, the underlying space and its di-
mensions are critical. The question is, how do we get
knowledge about this space?

Abstract dimensions could very well fit the operational
definition of psychological quality dimensions adopted
here. However, a space constituted by such dimensions
could be impractical for evaluating concept formation
models that work upon it, the reason being that the di-
mensions may be hard to manipulate. For this reason,
the aim of this paper is to present how spaces that are
as simple as possible w.r.t. what dimensions are used,
rather than the number of dimensions used, could be
obtained.

The psychological quality dimensions for describing
concepts or stimuli, and knowledge of these, could be
obtained in several ways. In psychophysics, where the
general aim is to quantify the relationship between
physical characteristics and psychological sensations
of stimuli, one normally studies one dimension at a
time in order to find interesting magnitudes like abso-
lute thresholds, difference tresholds and points of sub-
jective equality. A basic assumption is that the physical
and the psychological dimensions are the same. When
the task is more molar (opposite to molecular), e.g. to
study more complex behaviour like categorization, rec-
ognition etc., other analyses are required. For example,
unidimensional analyses are not sufficient when more
complex stimuli are used. Two examples of simple
methods for obtaining psychological quality dimen-
sions is to assume that it correspond directly to the
multidimensional “physical” space, or to ask the test
subjects which dimensions they use, for example,
when judging the similarity within a set of stimuli.
These methods are not purely advantageous, however,
one reason being that the psychological space may not
have a direct relation to the “physical” one. Also, sub-
jects may not know which “physical” dimensions



(mathematical dimensions which describe some physi-
cal characteristic of an entity) they really base their
judgements on or how they relate to similarity judge-
ments. There are methods which do not suffer from
these specific problems, i.e. that allow the experiment-
er to find dimensions that could be used to constitute
an underlying psychological space, without depending
directly on the “physical” dimensions. Commonly, the
dimensions searched for are often of a rather abstract
nature, e.g. dimensions like “happy/unhappy”, “social
awareness” etc. Geometrical procedures for finding di-
mensions in psychological spaces or configurations are
often called multidimensional scaling procedures, and
will be the major method discussed in this paper.

MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) is the universal name
for a set of mathematical procedures which let the user
represent stimuli in a spatial manner. The procedures
are essentially concerned with finding a configuration
of mental objects, concepts, stimuli etc., based on the
perceived distances (proximity data) between them. An
analogy is to create a table of distances between pairs
of cities from a map. But instead of providing a table
of distances, MDS-procedures does the opposite — they
provide a map based on such a table. However, espe-
cially if the euclidian metric is used, neither the orien-
tation of the resulting map nor the location of a specific
city is known, the reason being that there is a 1:N map-
ping between a given set of distances and the corre-
sponding spatial configurations.

Somewhat simplified, MDS-procedures work as fol-
lows: once a starting configuration based upon the dis-
similarities/similarities (proximity data) is calculated,
an iterative phase begins. During each iteration the dis-
tances between the points (stimuli) in the configuration
are calculated and compared with the proximity data.
If the differences are too big according to some criteri-
on, the configuration is modified. The modification is
based on the method of steepest-descent, which means
that for a particular pair of points, the modification is
proportional to the difference. When the configuration
is sufficiently “good”, the procedure terminates.

Metric and Non-Metric MDS

There are two main types of scaling procedures: metric
scaling and non-metric scaling. Metric scaling as-
sumes that the numerical values of the dissimilarities
(or similarities) are of significance. Metric scaling pro-
cedures works upon some instance of the general
Minkowski metric, which is defined by
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where d;; is the distance between points j and s. The far
most common metric used is the euclidian metric,
which is defined by Minkowski R = 2. Another well
known metric is defined by Minkowski R = 1, and is
called the “city-block” or “Manhattan” metric. An im-
portant difference between the two metrics is that a
configuration based on the euclidian metric is rotata-
ble, whereas a configuration based on city-block, is not
(in general, due to the fact that rotation — other than
multiples of 90 degrees — does not preserve the original
distances). Metric scaling is used when the level of
measurement of data is interval or ratio. Comparing the
configuration and proximity data is straightforward
since the distances in the configuration could be direct-
ly compared to the proximity data.

In non-metric scaling, the exact numerical values of
the distances are assumed to have little intrinsic mean-
ing, it is rather the relative order which is considered
to be important, and the level of measurement is as-
sumed to be ordinal. For non-metric scaling, some
monotone transformation has to be applied to the prox-
imity data (which is often referred to as disparities) in
order to allow the arithmetic operations necessary for
comparing them with the configuration. In fact, non-
metric MDS with monotonicity and a minimum of di-
mensions is generally enough to recover metric infor-
mation from nonmetric information (see e.g. (Shepard,
1962)).

In short, the major differences between the two types
of scaling are:

* Metric scaling tries to fit the dissimilarities/similar-
ities to the distances in the configuration.

* Non-metric scaling tries to fit the rank order of the
dissimilarities/similarities to the distances in the
configuration.

Comparison Between Configuration and Em-
pirical Data

The criterion for termination of the iterative process is
usually based on some measure of goodness or badness
of fit. The particular measure may differ between dif-
ferent programs. An example of a common such meas-
ure for ordinal proximity data is stress, which is a
measure of departure from monotonicity. Of the sever-
al versions of stress, one is defined by
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where d;; is the distance between points / and j, and
d;; is the disparity (transformed dissimilarity) for
stimuli i and j. Stress is a measure of badness of fit and

is thus inversely related to goodness of fit.



Dimensionality of the Configuration

One of the main points with MDS is to find the rele-
vant number of dimensions. There does not seem to be
a “best way” for determining which number is rele-
vant, but there are some heuristic principles (see e.g.
(Kruskal & Wish, 1978), (Shepard, 1972)). A common
way is to compare the goodness of fit for configura-
tions of different dimensionality. There is no point
comparing these measures directly, since the goodness
of fit will be better with increasing dimensionality.
Rather, the changes in goodness of fit between config-
urations is compared. If a change between two dimen-
sions, say N and N-1, is substantial compared to the
other changes, then N is usually considered as the
“correct” number of dimensions.

A

4
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2

Stress

Dimensions

Figure 1. Changes in goodness of fit (Stress) with dimension-
ality.

In the constructed example in Figure 1. it is easy to see
that the correct number of dimensions is three. Another
way of expressing this is to say that the number of di-
mensions at the “elbow” is the correct one. In other
words, the relevant number of dimensions, is the
number of dimensions that provides the best change in
goodness of fit compared to the next lower number.
The guideline appears to be very simple, but there are
some factors that make it a bit more complicated than
is outlined here (see e.g. (Kruskal & Wish, 1978)).
There also are heuristic principles which are not direct-
ly based on goodness of fit (see e.g. (Schiffman, Rey-
nolds & Young, 1981)).

It is important to note that guidelines, as described in
this paper and others, are merely guidelines. They have
evolved from people’s experience with MDS, and have
been useful. They are, however, not guaranteed to find
the number of dimensions actually used by subjects.
No matter which guidelines are used, since MDS is
used for understanding proximity data, one has to con-
sider factors as interpretability, ease of use and stabili-
ty. All these factors should affect the choice of
dimensionality.

Interpretation of the Configuration

One of the most important and obvious methods for
examining the configuration is to look at the arrange-
ment of stimuli. What is searched for are lines that ar-
range stimuli which are maximally different from each
other, such that these appear at polar ends of the line.
The method, however, is limited to configurations of
small dimensionality. Already with three dimensions
the method can be quite difficult, depending on visual
limitations, in four or more dimensions visualisation
becomes impossible. Another problem is that it is diffi-
cult to say whether or not a dimension is genuine if the
described relationship is not very strong. Especially in
such cases, it is better to rely upon statistical tech-
niques like (multiple) linear regression, which could
be used to find the linear function over the co-ordinates
(the independent variables) that best predict some
characteristic of stimuli (the dependent variable). The
determination coefficient R’ (or multiple regression co-
efficient) provides a direct measure of how well the de-
pendent variable can be predicted. According to
(Kruskal & Wish, 1978), it is desirable that the deter-
mination coefficient is in the .90’s for a good interpre-
tation, but in some cases R? in the .80’s or upper .70’s
has to suffice. Furthermore, a minimal requirement is a
significance level at the .01 level or better.

The quote from (Shepard, 1972, p. 10): “It is only in
the cases of non-Euclidian metrics and other certain
cases — ... — that the axes that come out of multidimen-
sional scaling can be expected to be interpretable with-
out further rotation”, gives a hint about when linear
regression analysis is applicable. As a matter of fact,
there is no use performing such an analysis on a con-
figuration based on the city-block metric. The reason is
that the space cannot be rotated to the eventual optimal
axes. However, it is, of course, possible to examine the
correlations between the outcoming axes and the de-
pendent variables.

Even if the dependent variables are varied in several
more or less different ways, e.g. ratings of stimuli on
several different linguistically coded scales, there is no
guarantee that the “proper” dimensions are in the set.
This is because the dimensions must be known before
the regression or correlation analyses. The problem
can be reduced by using a range of possibly relevant
dependent variables, analyse them, and calibrate the
interpretation afterwards.

EXPERIMENTAL STUDIES

In order to demonstrate that MDS can be a useful tool
for finding a mapping between a “physical” or mathe-
matical description of a stimuli space and the corre-
sponding psychological space, two experimental
studies will be accounted for. The goal with each of



them have been to find the underlying psychological
space and describe it in terms of the “physical” param-
eters generating the stimuli. The more general goal is
to demonstrate how psychologically motivated spaces
could be obtained, spaces that distance based categori-
zation rules etc. could work upon.

For the analysis of both the studies, the MDS-program
KYST-2a (Kruskal, Young & Seery, 1977), have been
used. Scaling analyses has been done on single matri-
ces representing average judgements from subjects.
Configurations based on both the euclidian metric and
the city-block metric, have been analysed. In the fol-
lowing, KYST-2a will be referred to as KYST.

THE MOLLUSC SHELL STUDY

The study is similar to the pilot studies performed by
Girdenfors and Holmqvist (Gérdenfors & Holmqvist,
1994). The goal with the present study is the same as
one of theirs: to find a psycho-physical space for mol-
lusc shells. However, the studies differ in the method-
ology adopted.

Girdenfors and Holmqvist collected similarity judge-
ments from thirteen subjects by letting them rate how
similar the middle shell (of three shells) was to the left
and the right shells on a continous scale. The shell
space used consisted of three dimensions V’, E’ and R
(see below). In order to obtain a satisfactory descrip-
tion of subjects’ perceptions of shell forms, transfor-
mations in form of instances of Stevens power law,

d(x) = k(d(x))b , were tested. The vectors
(kV’ kE’ kR ,bV’ bE’ bR) were varied so as to maxim-
ise the Pearson correlation coefficient between aver-
aged test sheet distances (based on the similarity
ratings) and the shell space distances.

Even though there are some resemblance between Gér-
denfors and Holmgqvist’s study and the present, they
are hard to compare. This is mainly due to the fact that
they aimed at deriving the constants of Stevens power
law when the space consisted of three dimensions de-
cided in advance.

Stimuli

The same stimuli as Gérdenfors and Holmgqyvist, i.e.
computer generated pictures of mollusc shells, were
used. An advantage of using shell shapes as stimuli is
that people normally have quite little experience with
them, but that they yet are rather “ecologically valid”.

The shells varied in three mathematical (or “physical”)
dimensions (see Figure 2.): The rate E of whorl expan-
sion, which determines the curvature of the shell, the
rate V of vertical translation along the coiling axis and
the expansion rate R of the generative curve of the
shell.

Coiling axis

Generating curve
after one generation

Figure 2. The dimensions generating a mollusc shell shape.

Girdenfors and Holmqvist made no direct use of the
“physical” parameters E and V. Rather, they used the
transformations V’=V+R-1 and E’=E+R with the mo-
tivation that people do not look at the centre of the gen-
erating circle when estimating the vertical and
horizontal growth rates of shells, but rather on the
height and width of them.

Figure 3. presents the “physical” parameter space used
in the present study. Figure 4. and Figure 5. show the
resulting stimuli.

Physical parameter room for mollusc shells

v

E 1171

Figure 3. The underlying “physical” space for the mollusc
shells.

Figure 4. Mollusc shells with R = 1.10. Parameter V varies
with the horizontal axis of the figure (1.10,1.25,1.40) and pa-
rameter E varies with the vertical axis (1.40,1.25,1.10).



Figure 5. Mollusc shells with R = 1.20. Parameter V and E has
the same variation as in Figure 4.

Method

The direct scaling data was collected during a session
with PsyScope (Cohen, MacWhinney, Flatt & Provost,
1993), a program especially developed for presenting
experiments on a computer. The session, programmed
by Méns Holgersson at Lund University Cognitive Sci-
ence and the author, mainly consisted of three different
phases: an instruction phase, a presentation phase and
a similarity rating phase.

Before a session the experimenter informed the subject
personally that a typical session would take about 40
minutes’ , that there would be breaks? and that instruc-
tions would be given on the screen.

The Instruction Phase

The first screen contained general information about
the test and instructions for the similarity rating part,
all in Swedish. Subjects were told that the purpose of
the study was to investigate how human subjects make
similarity judgements between mollusc shells. They
were also told to base their ratings on whatever at-
tributes they felt was relevant, but as consistently as
possible. The similarity ratings should be mapped to a
nine-grade similarity scale, where “1” corresponded to
“large similarity” whereas “9” corresponded to “large
dissimilarity”. Subjects were instructed to not spend
too much time on particular pairs, but rather try to
make holistic judgements.

The Presentation Phase

First, subjects had each shell in the forthcoming ses-
sion presented to them. During this presentation, shells
were presented pairwise in a randomised order that
was the same for all subjects. Each pair was showed

1. The collection of data, as described in this paper, actually took
shorter time. The real session also consisted of an adjective rating
part. This part was the last segment of the study, and could therefore
have had no affect on the study as described here.

2. The exact number of breaks throughout the whole session was 6.
The breaks had no time limit.

for 5 seconds. The reason for presenting the stimuli be-
fore collecting data was that subjects should know the
variation between stimuli, i.e. subjects were calibrated
with respect to the variation of stimuli. Similarity rat-
ings where the variation of stimuli is previously un-
known to subjects, is probably likely to be more
unstable until all stimuli have been presented.

The Rating Phase

This phase consisted of rating 153 different pairs3 of
mollusc shells with respect to the similarity between
the members of a pair. Each screen (see Figure 6.) con-
sisted of two shells in left - right order and a scale sym-
bol bar marked with each digit from 1 to 9. It was also
indicated that lower numbers corresponded to large
similarity, whereas higher numbers corresponded to
larger dissimilarity.

Large Simiariy Large Dissimilariv

Figure 6. Example of a screen during the similarity rating
phase.

In order to avoid systematic bias, the presentation of
the pairs to judge was block-randomised with respect
to the order of the pairs between subjects. Further, the
presentation of a single shell was balanced in left-
right-order, i.e. of the total 17 times each shell ap-
peared, it appeared 9 times on one side and 8 times on
the other.

Subjects were divided into two groups, group A and
group B. Which subject that belonged to which group
depended on the order in which the studies was per-
formed. The first subject belonged to group A, the next
to group B, and so on. The difference between the
groups was in which left-right order a single pair was
presented. All pairs that members of group A encoun-
tered as Stimuli x to the left and Stimuli y to the right,
was presented as Stimuli y to the left and Stimuli x to
the right for group B. The reason for using two groups
was to be able to investigate if asymmetry in left-right
order could be traced. However, such an analysis is be-
yond the scope of this paper.

N-(N-1)
2

3. The number of unique pairs of N stimuli =



Subjects

Eleven subjects participated in the study without any
credit. Six subjects were assigned to group A and five
subjects to group B.

Results and Discussion

Number of dimensions and the Nature of the Scale

In order to find the “correct” number of dimensions for
the mollusc shell space, stress versus dimensions was
plotted for the six to one dimensional solutions (Figure
7.).

Stress vs. Dimensions for Mollusc Shells Ordinal
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Figure 7. Stress vs. dimensions for mollusc shells using
KYST euclidian metric (dash dotted) and KYST city-block
metric (dashed).

In all solutions, stress increases smoothly with de-
creasing dimensionality from six to two dimensions,
where there is an apparent elbow, suggesting a two di-
mensional solution.

¥

Figure 8. Scatter diagram provided by KYST for mollusc
shells: distances (vertical) vs disparities (horizontal)

However, before starting the procedure of interpreting
the configurations suggested, it is wise to examine the
relation between the distances in stimulus space and
disparities (transformed data). The scatter diagram in
Figure 8. shows a plot of distances versus disparities. It
is clear that the relationship is approximately linear.
This means that the monotone transformation was line-
ar and that metric scaling could be used instead. In
light of this finding, the scalings were repeated with
metric scaling instead of non-metric scaling4.

Stress vs. Dimensions for Mollusc Shells Interval
0.3 T T T T

0.2 AN 4

Stress

0.1r- ~ > 4

Dimensions

Figure 9. Metric scaling (interval data): Stress vs. dimensions
for mollusc shells using KYST euclidian metric (dash dotted)
and KYST city-block metric (dashed).

The stress vs. dimensions plot in Figure 9. is somewhat
different compared to the one in Figure 7.: the stress
values are generally higher. This could not be viewed
as a disadvantage for metric scaling in this case since
stress values always are higher for the interval level
compared to the ordinal level for same data. There still
seem to be an elbow at two dimensions, even though it
is less clear than above. Therefore, the choice between
a two- and a three-dimensional configuration could be
better grounded on interpretability rather than merely
on stress data.

“Physical” Dimensions

In order to interpret the dimensions of the euclidian
configuration, multiple regression was carried out with
the coordinates of the two dimensional solution as the
independent variables and each of a number of depend-
ent variables. Since the goal was to find a mapping be-
tween the “physical” space (defined by the parameters)
and its corresponding psychological space, the depend-
ent variables consisted of the actual “physical” param-
eters used and transformations of them:

e E: (Parameter E * 100) - 100.
e Vi (Parameter V * 100) - 100.

4. Both types of scaling led to almost identical configurations.



e R (Parameter R * 100) - 100.

. E/V,
« E/R,
. V/R,

e V+R;: This correspond to Girdenfors and Hol-
mqvists V’ (see above).

e E+R;: This correspond to Gérdenfors and Hol-
mqvists E’ (see above).

e AbsWidth: An alternative variable (to E+R,) for
representing the width. For reasons of simplicity,
only the rank order is used here. By definition,
stimuli with (E; = 10 A R;=20) and (E; =25 A R
= 10), got the same rank since they have the same
absolute width.

e AbsHeight: An alternative variable (to V+R,) for
representing the width. Again, for reasons of sim-
plicity, only the rank order is used here. By defini-
tion, stimuli with (V, =10 A R;=20) and (V, =25
A R; = 10), got the same rank since they have the
same absolute height.

* AbsSum: AbsWidth + AbsHeight.

Many of the independent variables have strong inter-
correlation with others. Even so, it is not meaningless
to examine them all since it is not given at hand which
is best in a set of correlated variables.

Interpreting Configurations
Two Dimensional Configurations

The results of the multiple regression analyses for the
dependent variables in the euclidian configuration are
shown in Table 1. below. Normalized regression
weights (Norm. regr. weights) are the regression coeffi-
cients normalized so that their sum of squares equals 1
for every scale. Normalized regression weights could
be used as direction cosines.

KYSTE Norm. regr. weights Mult

Variable Dim. 1 Dim. 2 R? F-ratio P
E, -0,197 0,980 0,955 190,826 0,000
Vv, 0,880 0475 0,962 239,501 0,000
R, 0,104 0,995 0,008 0,062 0,940
E/V, -0,764 0,645 0,760 22,594 0,000
E/R; -0,234 0,972 0,606 11,983 0,001
V/R; 0,898 0,440 0,538 8913 0,003
Vi+R; 0,875 0484 0,885 62,952 0,000
E, +R, -0,174 0,985 0,837 38.809 0,000
AbsWidth -0,173 0,985 0,806 31,261 0,000
AbsHeigh 0,859 0,512 0,885 61428 0,000
AbsSum 0,308 0,951 0,785 28,178 0,000

Table 1. Results from multiple regression analysis for the
two dimensional configuration for mollusc shells KYST -
euclidian.

The results clearly shows that V, and E; (marked with
bold text) seems to be relevant dimensions. The deter-
mination coefficient is in the 0.90°s, and the multiple
correlation is statistically significant at the 0.001 level.
It does not seem to be any more relevant “physical” di-
mensions involved since the other dimensions with
high determination coefficients are highly correlated
with either of V, and E,.

Two dimensional configLIJDri::lnt]iozn — KYST euclidian Interval
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Figure 10. Two dimensional euclidian configuration provided
by KYST. Top: unrotated configuration. Bottom: rotated con-
figuration.

Topmost in Figure 10. above, the “physical” dimen-
sions are plotted in the euclidian configuration as pro-
vided by KYST. The original axes in the configuration
is marked with “Dim.1” and “Dim.2” respectively. The
“physical” dimensions are marked with the name of
the dependent variable.

The ideal is that the configuration is completely or-
thogonal, since perpendicular axes are simpler and
hence scientifically preferable. The dimensions in the
top figure above are not perfectly perpendicular, but
note that a slight rotation of V; clockwise does not



draw away to much from the ideal configuration w.r.t.
the regression analysis. The observant reader probably
have noted that the configuration suddenly “have be-
come” orthogonal (bottommost in Figure .). The rea-
son for this is due to the fact that the author forced V,
to be perpendicular to E,. As a consequence, determi-
nation coefficients etc. from Table 1. should be inter-
preted with care for this configuration. The two
dimensional city-block configuration were analysed
with Spearman rank order correlations (for reasons ex-
plained above) for each of the dependent variables (see
Appendix A). The result were comparable to the euc-
lidian case: V, and E, had the strongest correlations
(.944 and -.938 respectively) and so were the relevant
dimensions also for this configuration.

The determination coefficients for the euclidian config-
uration are not directly comparable with the correla-
tional coefficients from the city-block configuration. In
order to compare them, the Spearman correlation coef-
ficients was calculated also for the euclidian configura-
tion.

The euclidian configuration had slightly larger correla-
tion coefficients (Table 2.) and slightly lower stress
values (see Figure 9.) compared to the city-block. So,
if these measures are considered alone, the euclidian
configuration is preferable, but with a small marginal.

Spearman corr. KYST configurations
Variable Euclidian City-Block
E; 0,944 -0,938
Vi 0,944 0,944

Table 2. Comparison of correlation coefficients between
the euclidian and the city-block configurations.

To sum up this subsection, even though it is not per-
fectly clear which configuration and which metric is
the “best”, it is clear that a two dimensional configura-
tion is interpretable.

Three Dimensional Configurations

The results of the multiple regression analyses for the
three dimensional euclidian configuration are shown in
Table 8. below.

V; and E, (bold text) still seem to be relevant dimen-
sions. The aim now is to find the third dimension. Ac-
cording to Kruskal&Wish’s criteria for a good
interpretation, the candidate variables for the third di-
mension are marked with italics. However, no candi-
date is a good candidate for several reasons. One is that
they are all strongly correlated with either V, or E,.
Further, no one of them have a large absolute value for
the direction cosine for the third dimension, indicating
that the angle between the dimension and the direction
of the associated scale is small. This means that no var-
iable from this set could be used as an explanation for
the third dimension.

KYSTE Norm. regr. weights Mult

Variable Dim. 1 Dim. 2 Dim 3 R? F-ratio P
E, 0,203 -0976 -0,082 0,976 187819 0,000
Vy -0,889 -0436 -0,142 0,970 149,175 0,000
R, -0,101 -0,256 -0,961 0,061 0,303 0,823
E/V, 0,654 -0512 0,557 0,835 23,674 0,000
E/R, 0,231 -0,967 0,112 0,600 7,010 0,004
V/R; -0,929 -0,369 0,018 0,542 5,533 0,010
Vi +R, -0,843 -0,449 -0,297 0,900 41,834 0,000
E +R; 0,181 -0,963 -0,198 0,897 40428 0,000
AbsWidt 0,181 -0,969 -0,169 0,858 28,097 0,000
AbsHeigh -0.875 -0,483 -0,029 0.873 32,199 0,000
AbsSum -0317 -0,939 -0,136 0,808 19,665 0,000

Table 3. Results from multiple regression analysis for the
three dimensional configuration for mollusc shells provided
by KYST euclidian.

The same anomalies apply for the KYST-city-block
configuration: the correlation coefficients for V; and E;
are high, but there are no high correlation coefficients
for any of the dependent variables in the third dimen-
sion (see Appendix A). Visual inspection of the config-
urations gave no hint for some meaningful
interpretation either. In other words, a two-dimensional
configuration is obviously better for the mollusc shells
in this case. Note that this is perfectly in line with the
heuristic principle of the “elbow”.

It is interesting to note that one of the parameters used,
R;, seem to have very little importance in the obtained
psychological space. R; alone was actually very badly
correlated in both the two- and the three-dimensional
solutions. This clearly show that MDS is advantageous
over methods that presumes the dimensions involved,
even though it could not be completely excluded that
R had little significance due to the fact that it was only
varied between two values.

To sum up this subsection, even though it is not per-
fectly clear which configuration and which metric is
the “best”, it is clear that a two dimensional configura-
tion is interpretable, and therefore preferable, over a
three dimensional.

THE BEETLE STUDY

Stimuli

As mentioned, the mollusc shell stimuli have a rather
high degree of ecological validity. A problem, though,
is that the “physical” dimensions (or parameters) are,
at least to some extent, dependent on each other, mean-
ing that the underlying “physical” space is non-orthog-
onal. The parameter R, the expansion rate of the
aperture of the shell, affects both the resulting vertical
and horizontal size of the shell. The effect of this non-



independence is that the “physical” dimensions not can
be modified independently of each other.

Because of the anomalies with the mollusc shell
shapes, a new type of stimuli was designed. The choice
fell on beetles. Most people have experience with
them, but it is rare that non-entomologists know any-
thing about categorizing them. According to my own
experience, the one type of beetle most people know is
the ladybird. Besides, any people does not even know
it is a beetle. The advantages with mollusc shells are
also fulfilled by beetles.

A
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Figure 11. Top: “physical” dimensions for the beetle stimuli.
H correspond to the absolute size of the head, L correspond to
the length of the abdomen, and W correspond to the width of
the abdomen.> Bottom: The complete “physical” room for the
beetles used in the study.

The beetles used in the following study was created by
Niklas Mellegérd at University College of Skovde,
who did the artistic work, and the author, who stood
for the entomological details. The stimuli bears, on
purpose, no resemblance to any particular type of ex-
isting beetle. Even though, my personal opinion is that
the stimuli look realistic. In some cases, beetles bears
some resemblance to ants, and in order to decrease this
possibly disturbing factor, we provided the beetles

5. This picture is a slight variation of the one presented in (Mel-
legérd, 1995).
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with a salient proboscis that was held constant among
them. Once a prototype6 beetle was created, it was
easy to create different variations of it by using mor-
phing techniques. The beetle stimuli varied in three
“physical” dimensions: the absolute size of the head,
the length of the abdomen and the width of the abdo-
men (see Figure 11.). The head varied between two pa-
rameter values, 0.75 and 1.25. The length and width of
the abdomen varied between three parameter values,
0.5, 1.0 and 1.5. The parameter values of the head are
interpreted as (Parameter value * 100)% area of the
head compared to the prototype. The parameter values
for length and width have the same interpretation, ex-
cept that they are relative to the prototype’s length and
width respectively rather than to the area. The images
corresponding to the complete variation of the “physi-
cal” parameters are shown in Figure 12. and Figure 13.

Figure 12. Beetles with the head parameter set to 0.75. The
width parameter correspond to the horizontal axis; beetles
have, in left to right order, values 0.5, 1.0 and 1.5. The length

parameter correspond to the vertical axis; beetles have, in bot-
tom to top order, values 0.5, 1.0 and 1.5.

Figure 13. Beetles with the same width and length parameter

values as in the figure above. The head parameter is held con-
stant at 1.25.

The proboscis, the antennas, the legs and the thorax is
constant among stimuli.

6. The word prototype is meant to be interpreted as in the context of
engineering rather than psychology.



Method

Also this study was in form of a session with Psy-
Scope, programmed by Mans Holgersson and the au-
thor. The session consisted of a background phase, a
presentation phase, an instruction phase and a similari-
ty rating phase.

Before a session the experimenter informed the subject
personally that a typical session would take about 20—
30 minutes, that there would be breaks and that in-
structions would be given on the screen.

The Background Phase

The first screen told subjects that the purpose of the
study was to investigate how people judge similarity
between stimuli, in this case about insects. In contrast
to the mollusc shell study, subjects were also provided
with some background to the test, in form of a scenar-
i0. The scenario told that, some months ago, a zoologi-
cal expedition arrived at a small island outside New
Guinea. There they found a genus of insects that was
previously unknown to science. This genus had a char-
acteristic in form of the strange proboscis.

After this, subjects were told that they were to see a
collection of pictures of insects belonging to the genus
in order to get an idea about the variation of stimuli.

The Presentation Phase

During the presentation phase beetles were presented
one by one in randomised order between subjects.
Each picture was presented for three seconds.

The Instruction Phase

After the presentation phase, subjects were told that
the insects not yet had been divided into species, but
that experience says that appearance usually gives a
good guidance to this work. Therefore, the first step
was to divide them in to groups after their appearance.
In order to do this, however, the zoologists needed in-
formation about how people judge the similarity/dis-
similarity between insects. Subjects were told that this
was their specific task.

Further, subjects were instructed to tell how similar or
dissimilar the two insects were in each pair they were
to see. The ratings should be done using a nine-graded
scale where the most similar pair/pairs should have the
value “1”, and the most dissimilar pair/pairs should
have the value “9”. As in the mollusc shell study, sub-
jects were told that they could base their personal rat-
ings on whatever attribute they felt were relevant, but
that they should try to be as consistent as possible dur-
ing the session.

The Similarity Rating Phase

The similarity rating phase was exactly the same as in
the mollusc shell study except for the stimuli. In other
words, the same screen layout (see Figure 14.), the
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same randomisation technique and grouping was used.
Also the number of stimuli was the same.

= %

Large Similariy L arge Dissimifarity

Figure 14. Example of a screen during the similarity rating
phase.

Subjects

Ten subjects (most of them students) participated with-
out credit. Four of them were assigned to Group A and
six of them to Group B.

Results and Discussion

The same methodology and approach as for the mol-
lusc shells was used, i.e. non-metric scaling at the ordi-
nal level was used first.

T

Figure 15. Scatter diagram provided by KYST for beetles:
distances (vertical) vs disparities (horizontal)

Since the scatter plot of distances versus disparities
(Figure 15.) showed that a linear function could be
used, the analysis described is completely based upon
scaling at the interval level.



Number of dimensions and the Nature of the Scale

Stress vs. Dimensions for Beetles Interval
0.4 T T

Stress
o
N
T
I

Dimensions

Figure 16. Stress vs. dimensions for beetles using KYST eu-
clidian metric (dash dotted) and KYST city-block metric
(dashed).

According to the stress vs. dimensions plot in Figure
16. a three-dimensional configuration should probably
be used. However, it might be wise to find out what
further explanation we get for the proximities using a
three-dimensional solution rather than a two-dimen-
sional. With this question in mind, both the two- and
the three-dimensional solutions will be examined.

“Physical” Dimensions for Beetles

The dependent variables used for multiple regression
for the configurations was:

e Head: 0.75 for “small” heads and 1.25 for “large”
heads.

e Length: 0.5, 1 and 1.5. Note that Length corre-
spond to the relative length of the abdomen.

e Width: 0.5, 1 and 1.5. Note that Length correspond
to the relative width of the abdomen.

e Width/Length: The variable correspond to the
shape of the abdomen.

e Area: coded as Width * Length. Note that this vari-
able correspond to the relative size of the area of
the abdomen.

Interpreting Configurations
Two Dimensional Configurations

The results of the multiple regression analyses (Table
8. below) show that Head and Width/Length seem to
be the most relevant variables. The determination coef-
ficients are sufficiently high and the levels of signifi-
cance are better than .001. Further, Head and Width/
Length are approximately perpendicular to each other
(Figure 17.).

KYSTE Norm. regr. weights Multiple

Variable Dim. 1 Dim. 2 R? F-ratio P
Head 0,936 -0,353 0878 53,960 0,000
Length -0,530 -0,848 0,682 16,098 0,000
Width -0,080 0,997 0,400 4991 0,022
Wi/Le 0,302 0,953 0875 52,715 0,000
Area -0,994 -0,110 0,123 1,050 0,374
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Table 4. Results from multiple regression analysis for the
two dimensional configuration for beetles provided by
KYST euclidian.
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Figure 17. Top: Dimensions Head and Width/Length plotted
in the KYST-euclidian configuration. Bottom: Rotated con-
figuration. Stimuli are coded according to their “physical” pa-
rameters: Head (S for small or B for big), Length (S, M for
medium or B) and Width (S, M or B).

The analysis of the KYST-city-block configuration
lead to approximately similar results. Head and Width/



Length have the largest correlation coefficients (see
Appendix A), -.867 and .898 respectively.

Goodness of fit are very similar for both configura-
tions, but in terms of Spearman rank order correlation
(Table 8.), the euclidian configuration is preferable
over the city-block.

Spearman corr. KYST configurations
Variable Euclidian City-block
Head 0,867 -0.867
Length -0,787 -0.525
Width 0,577 0,734
Wi/Le 0979 0,898
Area -0479 0,294

Table 5. Comparison of the correlations of the euclidian
and the city-block configurations.

Three Dimensional Configurations

Table 8. show the results for the multiple regression
analyses for the euclidian three dimensional solution.

KYSTE Norm. regr. weights Mult

Variable Dim. 1 Dim. 2 Dim 3 R? F-ratio P
Head 0,821 -0,276 -0,499 0,976 188,719 0,000
Length -0,441 -0,668 -0,600 0,887 36,712 0,000
Width -0,104 0,615 -0,781 0,881 34,688 0,000
Wi/Le 0,276 0,958 0,076 0,895 39,691 0,000
Area -0,336 -0,008 -0,942 0.866 30,190 0,000

Table 6. Results from multiple regression analysis for the
three dimensional configuration for mollusc shells provided
by KYST euclidian.

The three-dimensional configuration is not as simple to
interpret as the two-dimensional since all determina-
tion coefficients are relatively high. Two sets of dimen-
sions are possible: {Head, Length, Width} and {Head,
Width/Length, Area}. Both are approximately equally
good w.r.t. the determination coefficients. However, af-
ter visualisation of the two alternatives (Figure 18. and
Figure 19.), it is clear that the second is the better in
that the axes are relatively perpendicular to each other.
Also, for example, the obvious order of the beetles
w.r.t. the shape of the abdomen is left unexplained if
Width and Length are used as primitive axes.
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Head vs. Width and Length vs. Width.
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Figure 19. The three-dimensional KYST configuration unro-
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Length, Head vs. Area and Width/Length vs. Area.
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Table 8. show the Spearman rank order correlations for
the KYST city-block configuration.

KYST C Spearman corr. coeff.

Variable Dim. 1 Dim. 2 Dim 3
Head 0,803 0,503 0,246
Length -0,551 0,459 0,538
Width 0,092 -0,695 0,656
Wi/Le 0451 -0.814 0,067
Area -0,321 -0,158 0,878

Table 7. Results from multiple regression analysis for the
three dimensional configuration for beetles provided by
KYST city-block.

In this case, merely by inspecting the table of correla-
tions, it is clear that {Head, Width/Length, Area} is a
better alternative than {Head, Length, Width}. The dif-
ferences in correlation coefficients between the sets are
substantial.

Of the two euclidian alternatives {Head, Width/
Length, Area} is chosen. Before the rotation, Head and
Area were to be perpendicular to Width/Length. Since
the original configuration was almost orthogonal, only
small adjustments was needed (i.e. the axes chosen are
almost optimal, and the configuration is unchanged).

The two final three dimensional configurations (i.e. the
euclidian and the city-block) could now be compared
(Table 8., Figure 20. and Figure 21. below).

Spearman corr. KYST configurations
Variable Euclidian City-block
Head 0,867 0,803
Length -0,813 -0,551
Width -0,559 -0,695
Wi/Le 0970 -0.891
Area -0,842 0,878

Table 8. Comparison of the correlations between the euclid-
ian and the city-block configurations.

In both configurations Width/Length seems to be a
more important dimension than compared to Area. Es-
pecially in the city-block configuration, Head also is
weighted heavier than Area.

To summarize this pilot study, the psychologically mo-
tivated space underlying similarity judgements be-
tween the beetles (at least for this subset) seems to be
adequately described by the dimensions Head, Width/
Length and Area. With respect to the correlation coef-
ficients alone, the distances between beetles in the
space are better described by euclidian distances.
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GENERAL DISCUSSION

The two studies accounted for both serve as examples
of that MDS really is a useful tool for finding a config-
uration reflecting subjects perceived similarities be-
tween stimuli. However, if the configurations will be
used as a base for a more general psychologically mo-
tivated space, the work does not stop here. There are
still some questions that need to be answered.

The Euclidian or the City-Block metric?

First, in the studies above, both euclidian and city-
block configurations were derived and compared brief-
ly. It is clear that the configurations derived in the pilot
studies were interpretable. However, it was not very
obvious which underlying metric described similarities
between stimuli the more adequately. The question is
on what basis such a conclusion could be derived.

When the choice of the metric is based on the relation
between primitive physical parameters and the config-
uration as above, configurations based the city-block
metric has an obvious disadvantage in that they are
non-rotatable. However, this problem may be over-
come by arranging the points so that they are organised
according to the dependent variables and the difference
between the stress values of the “original” and the “ro-
tated” configurations are as small as possible.

There are two main classes of stimulus dimensions.
Garner (Garner, 1974) call pairs of dimensions that are
processed independently (e.g. hue and shape) separa-
ble dimensions, whereas pairs that are processed as an
unanalyzable whole (e.g. hue and brightness) are
called integral. An operational test for classifying
whether stimulus dimensions are integral or separable
is to analyse direct scaling data with an MDS-proce-
dure, as described above (see e.g. (Maddox, 1992) for
a description of, and especially criticism of, this test).
If the euclidian distance metric fits the data best, the di-
mensions are assumed to be integral. If the city-block
metric fits best, the dimensions are assumed to be sepa-
rable. On the contrary, according to Melara (Melara,
1992), one can almost always find evidence for a city-
block distance function for any pairs of perceptual di-
mensions.

In both pilot studies described above, especially in the
case of the mollusc shells, the information obtained
does not really suggest which metric is the more suita-
ble. It may also be questioned if this choice should be
based on non-substantial differences. However, the
choice could be based upon further empirical studies.
Under the assumption that integral dimensions are bet-
ter described by euclidian distances, and that separable
dimensions are better described by city-block, some
other method, for example a filtering task (see e.g.
(Maddox, 1992)), could be used in order to find out
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whether V, and E; are separable or not. In light of the
result, the suitable metric and configuration could be
used.

Deriving and Using the Psychologically Moti-
vated Space

Now, what can be said about the derived spaces, and
how can we use them? First, it is important to be aware
of that MDS merely is a tool, or a guide, for under-
standing. Shepard, discussing MDS (Shepard, 1972,
pp- 10-11) warns: “In particular, it may serve as a
guide — but never as a substitute — for careful under-
standing or creative thought.” In other words, care
should be taken, both with the search for and with the
use of MDS derived configurations.

The configurations derived as above could not be used
for evaluating categorization rules etc. directly. They
must first be normalized. It is probably not meaningful
to “overinterpret” a configuration derived by MDS as
above, but rather derive an averaged space reflecting
the main characteristics of it. This could be done by
deriving mapping functions, either by creative think-
ing, or with the help of some mathematical tool, e.g. a
neural network. Of course, it is always possible to cal-
culate the stress value, even for a configuration derived
by the use of mapping functions.

With help of “true” mapping functions and the “physi-
cal” parameters for a stimuli, the location in the psy-
chologically motivated space could be calculated. This
in turn leads to that categorization rules etc. could be
evaluated.

Criticism of Results and Methodology

The studies and the analyses of them may be criticised
in several ways. All scalings have been based on aver-
aged ratings from different subjects. The reason for do-
ing so have been to show the methodology, and
therefore individual differences have been of second-
ary importance. However, without taking individual
differences into account may result in a psychological
space which is not relevant for anyone.

Shepards’ comment from above, that formal tools
should not substitute creative thought, was in the con-
text of MDS, but is here believed to be more general.
However, it can be questioned how much mathematics,
statistics etc. can be violated without the reasoning be-
ing ad hoc. Some violations must be allowed, other-
wise formal tools could certainly be used as a
substitute for creative thought. For example, mapping
functions derived as suggested above will probably
rely upon some assumptions, and the question is if
these are relevant or not. In principle, this and other
questions regarding the reliability of a psychologically
motivated space, should probably be answered empiri-



cally. What could be done is to do multidimensional
scaling for other sets of stimuli and compare/calibrate
the space until no calibration is needed. Certainly, the
more observations, the more reliable will the psycho-
logical space and the mapping functions be.

SUMMARY

The main purpose with this paper was to describe how
a psychologically motivated conceptual space could be
obtained with MDS (multidimensional scaling) and
how it could be expressed it in terms of a more primi-
tive “physical” (or mathematical) one.

A conceptual space consist of a number of quality di-
mensions, each representing some quality of a concept.
For theoretical reasons especially, it is desirable that a
conceptual space is psychologically motivated, i.e.
psychological similarity should be reflected by dis-
tance relationships between “points” representing
stimuli, concepts etc. For practical purposes it is also
desirable that the space is expressed in terms of a more
primitive “physical” (or mathematical) one. If these re-
quirements are fulfilled, a conceptual space could be
used as a base for description and prediction etc. of
complex cognitive behaviour like concept formation.

By letting subjects rate the similarity between pairs of
systematically varied stimuli and then analyse the rat-
ings with MDS, specific psychologically motivated
configurations can be derived. Then, by interpreting
and generalising the configurations in terms of “physi-
cal” or mathematical parameters, it is possible to de-
rive more general psychologically motivated spaces.

The idea was demonstrated practically with the aid of
two relatively equal experimental pilot studies: In the
first study, rather “ecologically valid” depictions of
mollusc shells were used as stimuli. The stimuli were
generated, hence also described, by three “physical”
parameters. The MDS analysis indicated that the psy-
chologically motivated space mainly could be de-
scribed by two dimensions. By testing the different
parameters and transformations of these, it became
clear that two of the primitive parameters could be
used as constituting the dimensions. In the second
study depictions of beetles, also these “ecologically
valid”, were used as stimuli. In this case, the psycho-
logically motivated space came to consist of three di-
mensions that could be described by one primitive and
two transformations of primitive parameters. In both
the pilot studies, configurations based on both the euc-
lidian and the city-block metric were analysed. This
analysis gave no obvious results, especially not in the
case of the mollusc shells.

Possible ways of deciding what metric should be used,
like basing the choice upon the results of operational
tests of integrality/separability, and possible ways of

17

obtaining a more general psychologically motivated
space, were discussed. The paper was concluded by a
critical discussion of the method used.
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APPENDIX A

— Spearman rank order correlations for configurations
based on the city-block metric

KYST C Spearman corr. coeff.

Variable Dim. 1 Dim. 2
E; -0,315 -0,938
Vi 0,944 -0.243
R, 0,075 0011
E/V, 0,877 0,502
E/R, -0,298 -0,794
VR, 0,749 0,169
V +R, 0,925 0,235
E +R, 0,279 0,900
AbsWidth -0,254 -0,861
AbsHeigh 0,887 -0,236
AbsSum 0413 -0,735

Table 9. Spearman rank order correlations for the two di-
mensional configuration for mollusc shells provided by
KYST - city-block.

KYST C Spearman corr. coeff.

Variable Dim. 1 Dim. 2 Dim 3
E, -0,275 -0,944 -0,007
Vi 0944 -0,262 -0,131
R; 0,096 -0,032 -0,225
E/V, 20,865 0481 0,143
E/R, -0,298 0,793 0,063
V/Ry 0,749 -0,185 -0,122
Vi+R; 0931 -0,260 -0,191
E +R, 0,235 0912 0072
AbsWidth -0,207 -0,878 -0,067
AbsHeigh 0,900 -0,254 -0,153
AbsSum 0459 -0,750 -0,067

Table 10. Results from multiple regression analysis for the
three dimensional configuration for mollusc shells provid-
ed by KYST city-block.

KYST C Spearman corr. coeff.

Variable Dim. 1 Dim. 2
Head -0.867 -0,375
Length 0459 -0,525
Width -0,039 0,734
Wi/Le -0,350 0,898
Area 0.294 0,143

Table 11. Results from multiple regression analysis for the
two dimensional configuration for beetles provided by
KYST city-block.



