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Abstract: A mobile robot navigating in an unstructured environment faces many difficult problems for which vision may
potentially offer useful solutions. The XT-1 (eXpectation based Template matching) architecture was developed in an attempt
to address many of these problems with similar constructions. The current system handles such diverse problems as landmark
and place recognition, the generation of orienting and anticipatory saccades, smooth pursuit, as well as visual servoing during
locomotion.

1. INTRODUCTION

The XT-1 (eXpectation based Template matching)
architecture can roughly be divided into subsystems
for navigation and target tracking. The tracking
system has been successfully implemented in a robot
(figure 1). We are currently moving the navigational
system from an experimental set-up to a real mobile
robot (figure 2).

The emphasis of the architecture has been the actual
tasks that a mobile robot needs to perform rather
than the more theoretical aspects of computer vision.
Although we view such work as important, the
ultimate success for computer vision in robotics
depends on its ability to generate useful information
in a sufficiently short time (and at a sufficiently low
cost, Horswill and Yamamoto 1995). In order for a
robot to react to unexpected changes in the
environment, the through-put of the system must be
fairly high. As a result, the quality of the computed
values often needs to be reduced. However, a rough
localization immediately is usually better than a
more exact one a few minutes later. Similarly, for
target tracking, the important aspect is to keep the
target in view, not to track it optimally.

Figure 1. The LUCS Active Stereo Vision Head. The head
has four degrees of freedom (pan, tilt, 2×vergence) and is

controlled by the vision-architecture described in the text.

To accomplish this feat, we have made heavy use of
expectations which greatly reduces the amount of
computations that need to be performed. For
example, in the tracking subsystem, expectations of
the target position constrain the region of the image
that needs to be searched. In the navigational
subsystem, place expectations are computed from
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earlier visual fixes together with path-integration
during locomotion (Gallistel, 1990). These place
representations constrain which landmarks can be
expected and, consequently, which set of features that
needs to be searched for in the image. A related aspect
of the architecture is its use of a low-level
attentional system which selects areas of the image
where useful information is likely to be found.

A further important feature of the architecture is
that it takes biology seriously. An enormous body of
data is available about the mammalian visual system
and it would be ignorant not to take it into account.
This does not mean that one should necessarily try to
model every detail of any real visual system. Many
operations do have different computational
realizations that are better suited for digital
hardware. However, it appears that the overall task of
a mobile robot is sufficiently close to that of an
animal that the overall visual architectures should be
very similar. From biology, we also borrow the idea
that the visual system should be judged by how well
it suits the needs of the robot rather than on any other
ground (McFarland, 1993).

2. OVERVIEW OF THE
ARCHITECTURE

The architecture can be divided into five conceptual
levels: low-level processing, attentional processing,
single feature processing, spatial relations, and
place/object-recognition (See figure 3). At each higher
level the representations becomes more complex, but
the processing is fundamentally heterarchical: the
information flow is both bottom-up and top-down, as
well as lateral.

The first level is concerned with l o w - l e v e l
preprocessing of the video-images. A scale-space
pyramidal edge-detection constitutes the first stage at
this level. In the second stage, the difference between
successive edge images is used as a quick-and-dirty
motion detection.

The second process level deals with attentional
processing based on the input from the first level. A
primitive attention module directs the attention of
the tracking subsystem to sudden motion in the scene
and triggers an orienting saccade toward it. When the
navigational subsystem is disengaged, this primitive
attention system is used to select targets for the
tracking system. This module is inhibited while the
camera-head is moving. A second parallel system
directs attention to potentially good features in the
image. These regions of the image are used as candidate
landmarks at the higher levels.

Unlike the two previous levels which perform global
computations, only local features are processed at the
third level. The single feature processing is applied to
regions of the image that have been selected, either by
the attentional systems, or by top-down influences
from higher levels. The feature-correlator is the
central component of this level and is used both to
compute optic flow and to locate landmark and target
features in the image. A search-field module is used to
control where in the image it is fruitful to compute
local feature correlation. This module reduces the
amount of computation required by the system.

Figure 2. The mobile robot that will navigate using visual
landmark recognition together with dead-reckoning.

At the fourth level, the spatial relations between
individual features are used to represent landmarks in
the navigational subsystem. Such collections of
features can also be sent to the tracking system when
the robot needs to pursue a goal. When the tracking
system acts on its own, the optic flow calculated at
the lower level controls a segmentation process
where a region of homogeneous motion is selected as
target.

Finally, at the fifth level, the angular relations
between landmarks come together to form the
representation of places. Such relations can be seen as
second order-spatial relation, i. e., relations between
collections of features which themselves are grouped
with their spatial relations. Note that using this
scheme, no object recognition or complicated
segmentation is necessary to categorize a place. At a
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Figure 3. Overview of the XT-1 vision architecture.

first approximation, it appears that also object
recognition is a process at this level.

3. THE USE OF EXPECTATIONS

It is a formidable task to build a 3-dimensional model
of an unknown object from a visual observation in a
natural environment. No algorithm exists today that
can use a bottom-up approach to do this for an
arbitrary scene. It is much easier to compute the
position and orientation of a specific shape in an image
using a top-down approach and most applications of
computer vision choose this latter method instead.
However, with a top-down approach comes the
problem of selecting the appropriate models to test
against the environment.

The remedy to this problem is, of course, to know
which model to apply already. In this case, only a
single model needs to be matched against the image.

While this may appear to beg the question, we want
to argue that, at least for a mobile robot, this is true
most of the time. For example, once the robot has
managed to determine its position the first time, it
can use dead-reckoning to update its position and
orientation. As a result, it will always have a fairly
accurate estimate of its location even before the
visual system is engaged. This, in turn, implies that it
can select the correct landmarks to look for in the
scene most of the time. There exists much evidence
for the use of such mechanisms in animal navigation
(Gallistel, 1990).

Our approach can be called expectation-based vision
since it emphasizes the top-down influences on visual
processes. It differs from other model-based
processing in one important aspect: it does not put
any formal requirements on the top-level
representations except that they should facilitate the
processing at lower levels. The expectations we use
are in the form of elastic templates, that is,
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collections of features together with their
approximate spatial relations.

In the XT-1 architecture, such expectations are used
to control almost all processing. The expected place
is used to select the landmarks that will be visible
from the current location. These, in turn, select the
features to be searched for in the image. For example,
if you know you are in the kitchen, there is no need to
apply templates for showers and beds (cf. Rumelhart
et al., 1986). This does not mean that one is unable to
recognize a shower in the kitchen, but it requires that
the system gives up the hypothesis of being in a
normal kitchen.

Expectations are also used in other ways, for example
to generate anticipatory saccades toward landmarks
that are not currently in view, and outside the visual
system for spatial navigation (Balkenius, 1995a).
Below, we describe in more detail how the idea of
expectations are implemented in the two major
subsystems.

4. TARGET TRACKING

One of the most significant visual processing stages in
the complex vision machinery is the object tracking
module. Since in any realistic setting, the visual
system will continuously be in motion, it must be
able to track any object of interest before it can be
categorized or recognized. With no such module, the
visual processes would not be able to account for
complex visual tasks such as: smooth pursuit,
landmark and object recognition.

The tracking module in the XT-1 architecture is based
on the search-light metaphor (Crick, 1984), since it
puts the selected object in focus of attention. Let us
consider the interactions between modules
participating in the tracking process. The modules
that are involved are: primitive attention, optic-flow,
segmentation from motion, the feature correlator,
the search field and the tracking module (See figure
3).

first, the optic-flow is calculated only in image areas
where something is in motion. This is a result from
the optic-flow computations being data-driven by
inputs from a low-level primitive attention system.
The optic-flow computations are based on a
correlation method where features are correlated in a
restricted search area, the search field, between two
successive images. The search field is intimately
connected with expectations since expectations of the
target location and movement govern the shape of the
search field. For example, when an object moves fast
in a certain direction, the search field enlarges in that

direction. This is an adaptive regulation which makes
it possible for the tracking process to follow fast
moving objects.

Second, in the segmentation module, a winner-take-all
principle decides which local motion-direction is
selected as a target. In the next stage optic-flow is
used to make figure-from-ground separation. This
process integrates optic-flow information and
categorize regions of the image with coherent motion.
To do this, a neural network classifies motion-
directions into eight categories. Neighbouring regions
with the same direction preference are evaluated as a
group and the largest group is selected as the object of
interest.

Finally, the tracking module computes the target
position and controls the movement of the camera
head. Another function of the tracking module is to
select features that could belong to the current target
and handle them to the feature correlator. In this way,
expectations of the target are used in a top-down
fashion to control the recognition process.

5. NAVIGATION

The central task of the navigational system is to
recognize places. Like the tracking subsystem, place
recognition is performed on a number of levels. The
modules used are: feature selection, f ea ture
correlator, the search field, a landmark module and a
place  module. The search field and the feature
correlator are shared with the tracking subsystem.
The other modules are specific to the navigational
system.

The feature selection unit picks out features where
high contrasts or edges are salient. A stochastic
process chooses between features to pick out the
sixteen most suitable features. The selected features
are glued together by their spatial relations which are
learned by the landmark module. A landmark is
represented as a set of features at both a fine and a
coarse scale, together with the spatial relations
among them. The fine scale is a 256×256 pixels edge-
filtered image, and the coarse scale is a 32×32 pixels
edge-filtered image. The two different scales
emphasize different aspects of the image. We have
found that different environments put varying
demands on such representations. To make the
landmark module to work properly, more than one
scale is necessary.

The landmark module recognizes landmarks and is
used to generate angles to target objects. As input, it
takes expected landmarks from the place-module.
Since the relations between features have previously
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been learned, the landmark module can use
expectations of where features are to be found to
speed up the recognition process. At the start of the
recognition process, the search field is enlarged to its
maximum, but for each feature that is found, the
search field can be shrunk.

In detail, the landmark module consist of a modified
ART 2 network (Carpenter and Grossberg, 1987),
that learns to recognize features. When the landmark
module has to learn new landmarks, sixteen new
features are selected that are chosen by the feature
selection unit. Since the spatial relations between
features are allowed to vary slightly in the
recognition phase, landmarks are tolerant to slight
variations in size and orientation. Moreover, since we
allow some of the features to be missing, the
landmarks are stable against partial occlusion.

The place system trades memory for computational
power. The heavy use of expectations makes the
computational requirements much smaller than for
most vision systems. On the other hand, a lot of
template data needs to be stored. In the current
implementation, the memory requirements are
approximately 16kByte/m2 in a normal office
environment. However, hard-disk memory is cheap,
processor speed is expensive.

6. RESULTS AND FURTHER
RESEARCH

All the modules in the architecture have been
implemented and tested with real video-input.
However, all the modules in the architecture have not
yet been run simultaneously. Today, both major
subsystems operate successfully in real time using
fairly modest computational resources.

We believe that the architecture already contains
sufficiently many levels for most robot tasks. The

further development of the architecture will be
toward including more modules at each level rather
than extending it upwards. For example, it will be
necessary to include modules for obstacle avoidance
and stereo processing.

In the future, we will also investigate how vision
should interact with motor control in the different
behavior systems of a mobile robot (cf. Balkenius
1995a). It will also be necessary to further study how
vision should interact with other sensory systems
(Balkenius 1995b).
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