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Abstract:  We explore a number of pragmatic principles of communication in a series of computer simulations. These
principles characterize both the environment and the behavior of the interacting agents. We investigate how a common
language can emerge and when it will be useful to communicate, rather than try the task without communication. When we
include the cost of communicating, it becomes favorable to communicate only when expectations are not met.

1 INTRODUCTION
How can a common language emerge without a
central authority? Who decides on word meaning?
When is it more efficient to perform a task alone,
and when is it more efficient to ask others? We have
studied these questions in computer simulations of a
minimal environment where two agents must
communicate about a simple task.

Very recently, a number of researchers have
investigated these questions. (Hutchins and
Hazlehurst, 1995, Mataric, 1993, Moukas and Hayes,
1996, Noble and Cliff, 1996, Steels, 1996a; 1996b;
forthc., Yanco and Stein, 1993, Yanco, 1994). Our
approach relates to the Adaptable Synthetic Robot
Language (ASRL) paradigm developed by Yanco and
Stein (1993) and Yanco (1994).

Yanco (1994) identifies two distinctions among
ASRLs. First, whether the language is pre-engineered
or developed by the agent itself. Second, whether the
agents are capable of adapting the language to their
own needs or not.

Moukas (1996) also mentions the distinction
between direct and stigmetric communication. Direct
communication consists in sending information
intentionally to the recipients, while stigmetric
communication consists in deducing the behavior of
the other agents from environmental cues.

Since our main aim is to explore pragmatic
principles of communication, it is important to keep
the basic setting as transparent as possible. Hence,
the simulations we present in this paper can be
characterized as fixed, pre-engineered and direct.

Our setting consists of two agents engaged in a
simple game. The turns alternate between the two

agents, and their task is to choose one of two
alternatives. At the end of each turn the agent tries
to communicate an expression of its choice to the
other agent, and thus exhibits a cooperative behavior.

One of the alternatives gives a reward, but not the
other. To be successful in the game, the agent should
try to choose the rewarding alternative all the time.
The problem is to know which alternative is better.
The agent can base its choice either on previous
experiences of the task or on information given by
the other agents. However, as the agents from the
outset have no common language, the other agent
will not know the meaning of the communicated
label, and will have to try the task, to figure it out.

A central finding is that the meanings associated
with the labels will stabilize when the appropriate
strategy is used by the two agents. We have also
explored factors that determine when communication
will be useful. The first of these is the cost of
communication and the second is the rate of change in
the environment. If the cost of communication is
very small compared to performing the actions,
communication will be an interesting alternative, as
soon as one is not completely sure whether the
world has changed since the last trial.

2 THE EMERGENCE OF A LEXICON
What is required for a common language to evolve?
In this section we explore the simple scenario
mentioned above where two initially ignorant agents
come to agree on the meaning of two labels.

Our starting point for this presentation will be
the following situation. An agent finds itself in
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front of two closed doors. A prize is placed behind
one of the doors and if the agent chooses to open the
correct one, it will win the prize. In this case, the
agent can choose either door, and the chance of
winning is 50 percent.

Now consider a more advanced version of the
game. Let us assume that the game is played
repeatedly by two players X and Y who take turns at
opening the doors. Every time the agent chooses
correctly, it will receive a new prize. We will also
assume that the correct choice stays the same over a
number of trials, that is, if one door was correct on
the last trial, it is likely to be correct on the current
trial too. Finally, we allow the two agents to
exchange a message between each trial. This message
is posted on the wall in between the two doors, and
must state either ‘A’ or ‘B’.

In a situation like this, it would be useful for the
two agents if they could cooperate and tell the other
one which alternative is correct. The problem, of
course, is that they are not allowed to meet before
the game and decide on which alternative to call ‘A’
and which to call ‘B’. To gain anything from the
communication, the significance of ‘A’ and ‘B’ must
be established throughout the game in some way. The
central goal of this paper is to investigate strategies
of the two agents which will result in consensus
regarding the meaning of the two messages.

We have already mentioned the first requirement,
the stability of the environment. The correct choice
must not change too much. It is obvious that if the
probability that the correct choice is altered between
two trials is too high, the messages passed between
the two agents will not be of any use. We call this
the principle of stability.

Let us look at this game more abstractly and
simply represent it as the two choices in figure 1.
Each agent has two alternatives, L and R, which they
must choose repeatedly.

L R

Figure 1.  The task consists of iterative choices of
either L or R, where one of them is the correct
choice.

The interaction between the two agents and the
environment is shown in figure 2. The two agents, X
and Y, can communicate with each other with the
two messages ‘A’ and ‘B’. They both also have the
same two possible actions to choose from: L and R.
When these actions are performed in the
environment, they may result in a reward, rX and rY .
We set the reward to 1 if the correct action was
chosen and 0 otherwise. The goal of each agent will
be to collect as many rewards as possible.

However, we do not assume that the agents use
the size of these rewards in their learning. The
rewards are only used to evaluate the performance of
the agents. In the simple scenario we envision, the
agents themselves have no access to these rewards,
except that it tells them that the selected alternative
is correct. Since the communicating agents are
embodied in their environment, this approach avoids
the symbol grounding problem (Harnad, 1990).

X Y
A

B

L R L RrX rY

E

Figure 2.  Two agents X and Y communicates about a
common task. They can chose between the two words
A and B, and at each trial they can perform one of
two actions L or R. When the agent chooses correctly,
it will receive a reward rX or rY respectively.

To emphasize the role of communication in this task,
we will assume that the agents have no memory of
the correct choices on the previous trials. The only
information they can use is the message sent from the
other agent.

Figure 2 also illustrates the second obvious
requirement that is needed for language to emerge.
The interaction of one agent with its environment has
something to say about the actions of the other. This
will be called the principle of a common
environment . In this context, this means that the
agents act as if there were a common environment. It
is the assumption of a common environment that
makes this principle work, not that it exists in an
objective sense.

We now turn to the agents themselves and
consider two important questions. What strategies
can the agent use to construct the meaning of the two
messages, and what structures does the agent need for
those strategies? We will start with the second
question.

We will assume that each agent structures its
experience with the environment and the other agent
as a table. The inclination to choose action a when
message m  is received is represented by the table
entry Im a . The agents derive the probability of
choosing action a  when receiving m , from the
formula,

p(a, m) = Ima  / !i"M Iia ,

where M is the set of all messages. To be successful,
this strategy requires that the other agent tries to
communicate the correct alternative. This will be our
first pragmatic principle: an agent acts as if the
other agent tries to cooperate.

Similarly, to choose the message to communicate
the correct choice, each message M is selected
according to the probability,

p(m, a) = Ima  / !j"A  Imj,

where A is the set of all actions. This strategy
assumes that the agent wants to transmit the correct
message to the other agent. This is our second
pragmatic principle: an agent cooperates by trying to
transmit the correct message.

The different inclinations for the case with two
action and two messages are shown in table 1.
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Choice
L R

Message A IAL IAR
B IBL IBR

Table 1. Linguistic inclinations.
The simplest way to model update of the table
structure is to consider the values in the table as
subjective probabilities. According to the ‘principle
of ignorance’ (Luce and Raiffa, 1957), all values
should be set initially to 0.5, to signify that all
inclinations are equal, that is, that there is no reason
to select one alternative over the other.

2.1 A Symmetrical Update Rule
We now need a strategy to update the values in the
table. The strategy we suggest is that the agent
should try to act according to the message it receives.
By doing so, it will learn about the consequences of
its choice. If the choice is correct, it can assume that
the received message should be associated with the
performed action and updates its table accordingly.
This is our third pragmatic principle: an agent should
try to do what the other agent says.

By interacting with the environment in this way,
the agent will have a chance of learning about the
intended meaning of the message. By using this type
of strategy, it will be the interaction with the
environment and the other agent that serves to
structure the lexicon. The agents do not receive any
direct positive or negative feedback about word
meaning from the other agent.

Let us see how these considerations can be
formulated as an update rule for the inclination
table. The main idea is that if any tendency to agree
on the meaning of a message emerges should be
reinforced by further interaction between the agents.
This can be described as an update of the inclinations
with the values in table 2.

Choice
Correct Incorrect

Message Received + # – #
Other – # + #

Table 2.  The changes to the values in the table when
the agent chooses the correct alternative.

The table describes the changes to the various
inclinations when the correct alternative is chosen.
No changes are made when the agent chooses
incorrectly. We keep the inclinations in the range 0 –
 1, where 1 will represent a fully stabilized word
meaning. If the value moves outside this range, the
value is set to the closest value within the allowed
interval. Since the there are only two alternatives
and two messages, we can simultaneously update the
lexicon for both words.

The value # describes how fast the agent should
change its lexicon. In all our simulations, # is set to
0.02, but this value is not at all critical. If a smaller
value is used, the agent will need a longer time to
determine which message indicates which choice. A
larger value will make learning faster, but may also
cause oscillations in the interaction between the
agents if the environment is noisy. As a consequence,

they will never learn a common lexicon. If # is too
small, the values of the matrix will stay close to
0.5 all the time and the probability that the lexicon
will stabilize will become very small.

This update rule is obviously not optimal for this
two-agent task, but will be much more reasonable in
a multi-agent context with more choices and words.

Note that with this update rule, both the received
message and the one which was not received are
updated in the table. This means that the whole table
could in principle be coded by a single parameter.
However, we will see below that all the values are
needed in the more general case.

To investigate this update rule, we have run an
number of computer simulations. In all these
simulations, alternative L was the correct one.
Figure 3 shows how the inclination to use the
message A to mean L develops over time for the two
agents. As can be seen, the value for both agents
start out at 0.5 and approaches 1.0 in about 200
trials. At this time, both agents have acquired the
same lexicon and can successfully communicate about
the task. Of course, the meanings of the messages are
arbitrary and not determined initially. As a
consequence, there are two ways in which a lexicon
can stabilize. In some simulations the two agents
decide to use the message A for L and B for R, in
others they choose the other way around.
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Figure 3 Simulation A1. The development of the
inclination to use A for L for the two agents. The
lexicon stabilizes after close to 200 trials.
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Figure 4. Simulation A2. The development of a
single word meaning in the two agents. The word
mapping changes in both agents simultaneously
indicating that this is a cooperative task.

Figure 4 shows the development of the lexicons for
the two agents in relation to each other. The graph
shows the value of one agent plotted against the
value of the other for the same word-mapping. Both
agents learns approximately at the same rate but
agent X reaches the stable lexicon slightly faster.
The interpretation of this graph is that the
establishment of the lexicon is truly a cooperative
task. Both agents change their inclinations together.
In section 3 below, we will show an example where
this is not the case.

To conclude, we have shown that using the three
pragmatic principles above, and a simple update rule,
a stable lexicon will emerge with which the two
agents can communicate about the game.

2.2 An Asymmetrical Update Rule
While the update rule above certainly works, it is
unrealistic in one important aspect. It assumes that
there are only two alternatives in the environment
and that there are only two possible messages.
Although this is the case in the simple game we
described above, it cannot be true in a more general
setting. We must thus assume that there are a large
number of possible messages and actions and an
update rule cannot rely on this number.

A related problem is that a successful trial where,
for example, A is used to mean L is taken as evidence
for the association of B with R. This resembles
Hempel’s paradox where an observation of a non-
black non-raven is taken as evidence for the fact that
all ravens are black. We certainly do not want an
update rule that works in this way.

Fortunately, this problem is easy to overcome. We
simply remove the lower right update from the
update rule in table 2. The resulting update rule
avoids this problem, but not without some sacrifice.
Since the update is not done symmetrically, the sums
over the rows and columns will no longer be 1. It is,
thus, no longer possible to interpret the inclinations
as probabilities directly. However, it is easy to
derive the desired probabilities when needed, as

described in the beginning of section 2. Since we
divide each value with the sum of its row or column,
the values can still be used to select appropriate
actions or messages.

Another point of concern in the new update rule is
the asymmetry between increase and decrease in the
table. It is no longer obvious that the value # should
be used both to increase and decrease the values in the
table. In a more general setting, there are reasons
why these values should be different, but these will
not bother us here. We will discuss some of these
alternatives in the next section.

Figure 5 shows a simulation using the new update
rule. The graph shows how the inclination to use A
for L (black) and B for R (gray) develops over time.
Remember alternative L was correct all the time.
The general conclusion to draw from the figure is
that only one of the values stabilize. When the
association of A with L reaches its maximum, this
word will be used all the time and the value for B
and R will not change any more. The value at which
the B–R association stays is entirely random.

The interesting property of the asymmetrical
update rule is that messages that do not need to be
used do not converge to any specific value, that is,
the agent does not learn about situations which do
not occur. It is thus possible to use an update rule
which does not change values for events that do not
occur. This is a form of lazy learning where the
agents only agree on the meaning of messages they
have any use for, which is much more realistic than
the previous rule.
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Figure 5. Simulation C (1). The development of the
inclinations to use the words A and B for the correct
choice. Only the meaning of one of the words
stabilizes at 1.00.

2.3 Alternative Rules
The two update rules described above are by no means
the only possible. There exist many alternative
methods when actions and messages are selected. In
this section we will describe some of these
alternatives.

An obvious alternative to the additive change to
the inclinations in the table is to use a Bayesian
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approach instead. In this case, the probability p(m, a)
is set to the conditional probability p(m  | a), which
in turn could be derived from counted co-occurrence
of m and a. That is,

p(m, a) = p(m | a) =

p(m $ a)/p(a) = Nma /Na ,

where Nma  are the number of times m and a have been
used together, and Na  is the number of times a  has
been used at all. The probability for choosing a
certain action based on the received message could be
calculated in a similar way. In the Bayesian approach
however, it is necessary that the agents take into
account all their previous interactions with the
environment and each other.

The Bayesian update rule is similar to having a
large # and immediately update the inclinations to
either 0 or 1. In our simulations above, this would
of course produce an stabilization time of one (1)
iteration instead of our typical 200. In this case, the
first choice made will have dramatic consequences on
the subsequent trials. The construction of the lexicon
will no longer be a cooperative process.

In the update rule we have used, the choice is
stochastic based on the inclination table. The
interpretation of this is that the agent will express
its uncertainty by sometimes choosing the ‘other’
alternative even if there is a marked bias for one of
the alternatives. In this simple setting, with
absolute knowledge of all the states in the ‘world,’
this is not motivated, but in a more complex
environment exploration of alternatives is necessary.
If an agent immediately decides that one combination
of a message and an action is correct, it will not
learn about other possibilities. This is the well
known explora t ion–exploi ta t ion  problem
(Kaelbling, et al., 1996).

It is, however, possible to bias the choice of
message or action to the one with the highest
probability. In the extreme case, the agent could
choose the alternative with the highest probability
all the time, that is, it could use a greedy strategy
(Sutton, 1996). This would also be the Bayesian
solution. A more moderate strategy could be to use a
greedy selection most of the time and to try out
other possibilities with some small probability
(Sutton, 1996) or to derive some more advanced
probability density function from the inclination
table. A common method in reinforcement learning
is to choose alternatives according to the Bolzmann
distribution generated by the individual inclinations
(Balkenius, 1995). However, a more advanced
simulation will be necessary to explore these
possibilities.

3 POWER AND PERSUASION
In the above examples, the establishment of a
lexicon was a cooperative task, but does this always
have to be the case? Is it possible for one agent to
have greater power than the other over word
meaning? In this section we show that this can indeed
be the case. If one of the agents comes to the game
with a preset lexicon, it will be able to convince the
other one that it is the correct one. As we will see,

the process is more akin to stubbornness than to real
power.
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Figure 6. Simulation H (1). When agent X (gray)
comes to the game with a predefined lexicon, the
other agent will conform in less than 100 trials.
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Figure 7.  Simulation H (2). The relative change in
the lexicons of the two agents. Only agent Y changes
its values to any large extent.

We ran a number of simulations where the table for
agent X was set to a stabilized lexicon. The lexicon
for the other agent was initialized to 0.5 for all
values. The resulting simulation is shown in figure
6. The value for agent X (in gray) stays mainly the
same all the time while the value for the other agent
moves at a high pace toward 1. It is interesting to
note that learning for agent X was much faster in
this case compared to when they had to cooperate.
Since agent X acts as if its lexicon was correct, the
game looses one degree of freedom which helps the
acquisition of a common lexicon. Figure 7 shows the
same simulation in an alternative way as the relative
change of each agent. Since agent X is reluctant to
change its lexicon, agent Y has no choice than to use
the same mapping between words and actions.
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These simulations show that the power to decide
on word meaning can be modeled simply as an
initially larger separation between the different
words. Agent X has better ability to discriminate
which will be transferred to agent Y as a result of
their interaction. This does not mean that agent Y
has nothing to say about word meaning. If it manages
to construct its own discrimination, it can in
principle convince the other agent that this is the
correct one, but the probability for this will be very
low.

The presented simulation used the extreme case in
which one agent had a completely converged lexicon
while the other had none at all. In general, the
agents can have lexicons anywhere between these two
extremes, and their relative influence on the
emerging lexicon will be proportional to this. It is
also possible for different agents to have lexicons
that are more or less converged in different areas. It
can know the meaning of some words better than
others.

4 A CHANGING WORLD
We saw above that the lexicon used by the agents
would only converge for the words that where
necessary to solve the task. Since the same alternative
was correct all the time, the agents choose to use
only a single word. An objection to these
simulations is that if the same alternative is correct
all the time, it would be easier to remember this
instead of trying to communicate with the other
agent between each trial.
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Figure 8. The utility of communication. The filled
black dots indicate communication, and the gray
unfilled reliance on own experience. The average
reward decreases when the environment changes
more frequently, but the situation can be overcome to
some extent if the agents communicate with each
other. N.B. the logarithmic scale. Values are
calculated as the mean over 10 runs.

To make communication more useful, we introduce
an element of chance in the game. Instead of keeping
the correct alternative fixed, we change which action
is correct with some probability. In this case, the
agents can gain something from communicating with

each other. When the correct alternative changes, the
first agent to notice this change can inform the other
about the change. Because of this communication, the
other agent will receive more rewards than if no
communication took place. Since the agents
cooperate, both will gain something from this
communication in the long run.

The basic reason for communicating is that two
agents can make more observations than a single one.
If they communicate about their findings, both
agents will gain more experience than an agent that
does not communicate. In the simple game used here,
the usefulness of communication is rather limited
since the game is so easy, but there is nevertheless a
little to gain from communicating with each other.

We ran a number of simulations that tried to
address these questions. As could be expected, it
turned out that agents that communicates with each
other will initially be worse off than agents that do
not communicate. The reason for this is that it takes
some time for the lexicon to stabilize. During this
time, the communicating agents will do a lot
mistakes and lose many rewards. The agents that do
not communicate will only lose their reward when
the environment changes and will gain more rewards
during this period.

In the long run, however, the communicating
agents will earn more rewards, since on the average
they will only miss a reward on every second change
of the environment. In the example game used
throughout this paper, the effect is very small
however, and it did not seem possible to set up a
simulation where it would be possible to show this
effect in a graph of limited size. Again, we expect
this effect to be much larger if more than two
alternatives were present.

This is also illustrated in figure 8, where the
average reward after 2000 trials are plotted against
the probability that the correct choice will change.
The black dots indicate the situation where the two
agents communicate with each other, while the gray
unfilled dots show the situation where each agent
only uses its own previous experience to choose. The
graph shows that the largest gain of communication
is obtained when the world changes. However, the
gain diminishes when the changes are so frequent that
the agents have not the time to report them to each
other before the next change occurs.

When the environment changes, it becomes
necessary to send two different messages rather than
a single one. Figure 9 shows how the word meaning
changes over time. The dotted line shows when the
correct alternative changes. When the black bar is
drawn in the bottom of the graph, alternative L is
correct. When it is draw in the top, alternative R is
the correct one. The graph shows the development of
the values of ILA  (black) and IRB  (gray). When L is
the correct alternative, the main change is in the
value for ILA . When R is correct, the main change is
in IR B . This illustrates the general principle that
agents communicate about and learn words for the
current state of their environment (see figure 5).
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5 THE COST OF COMMUNICATION
In the previous section we saw that in a changing
world, it can pay to communicate with each other.
We did assume, however, that the communication
itself was free. What happens if we put a cost on
communication? In this case it would be favorable
only to communicate when one has something to say.
An obvious strategy would be to only communicate
if one believes that the other agent does not know
the correct alternative. This is summarized in our
last pragmatic principle: an agent should
communicate only when its own or the other agent’s
expectations fail.

Unfortunately, this requires that each agent keeps
a model of the other agent, which seems like a large
effort only to avoid some redundant communication.
However, there is a simpler way to avoid unnecessary
communication. Let us assume that each agent
remembers the last message sent or received. It can
then compare the message it would otherwise have
sent with this previous message and refrain from
talking if the two messages are identical.

We thought initially that agents using this
strategy would acquire their lexicons at a slower
pace than agents that communicate all the time. Our
simulations did not confirm these expectations,
however. It turned out that the time for the lexicon
to stabilize is identical in the two cases. If the agent
act according to the principle above, no information
is lost even though the rate of communication is
much lower. Consequently, there is no change in the
speed of convergence of the lexicons.

The simulation shown in figure 10 shows the
accumulated reward for agents that communicate all
the time (gray) and agents that communicate only
when expectations are not met (black). After the
characteristic first period when the lexicon is
acquired, the two curves take off at different slopes.
Since a cost of 0.2 was withdrawn from the
accumulated reward every time the agent
communicated, agents that only communicate when
necessary will bring in more rewards than agents
that communicate all the time.
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Figure 9.  Simulation J (8). See the text for further
explanation.
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Figure 10. Agents that only communicate when the
environment changes bring in more rewards than
agents that communicate all the time. The directions
of the graphs change approximately at the time when
the lexicon has been established.

6 DISCUSSION
The simulations that we have set up are deliberately
kept simple. We believe that it is fruitful to discuss
some of the fundamental bases of language
simulation before getting to a level where such
discussions are impossible because of the rapidly
increasing complexity. The task so far more
resembles the conventionalizing of left- or right-
hand side driving, and the changing world
corresponds to the government’s decision to change
this convention, as happened last time in Sweden
1967. When the drivers come to a new road they
communicate what they think is the correct lane to
the others.

This brings up the issue of stakes in the game. If
we conceive of the game as one of traffic
conventions, it becomes clear that the speed and
accuracy of the conventionalizing process is
important, as all other cases will lead to inevitable
collisions, normally associated with great loss.

In language there are no such strong environmental
constraints. If the linguistic emphasis is on
descriptive language, as in Hutchins and Hazlehurst
(1995) or Steels (1996), the stakes are even smaller,
and the connection between linguistic conventions
and action is weaker. (In a larger context, the gains
of linguistic ability have to be reconsidered, as the
largest gain is perhaps the function of language to
structure our cognition.)

Our pragmatic approach places itself somewhere in
the middle. Our agents are rewarded when they
develop a functioning language, but they cannot take
advantage of their increasing rewards to change their
behavior strategies, only enjoy the reward they are
getting.

The traffic analogy also breaks down as soon as we
consider extensions of the game. Three directions of
growth are obvious: more words, more actions, and
more agents. As soon as one of these dimensions is
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changed, the dynamics of the game will change
radically.

To introduce more actions and more words means
that the knowledge obtained from an incorrect choice
is of much less value than before, and the update
system has to be reconsidered. It will also be
possible to introduce an asymmetry between the
number of words and the number of actions, and to
force the agents to assign the words that are needed
rather than the words that are available. Following
Steels (1996) it would also be possible to let the
agents themselves construct and choose words
depending on the distinctions that they need to make.

With more possible actions and a more
complicated word–action structure, the question of
what is meant by a certain label will arise, and the
underdetermination of natural language will come
into play. The general problem is known as Gavagai
after Quine, but since then several constraints have
been formulated for what meanings can be assigned
to. The most well-known of these constraints are the
contrast principle and the whole-object assumption.
(Baldwin, 1994, Clark, 1987, Markman, 1991)

The introduction of more agents, on the other
hand, will give rise to “social” problems, where the
agents depart from total cooperation. Some
interesting issues are:

The introduction of credibility, i.e. the judgement
of the predictions of the other agents. This assumes
the modelling of the other agents with respect to
different factors as well as keeping track of how
well a certain agent does in reporting the correct
action to the others.

An element of competition. If linguistically
transmitted knowledge becomes valuable, agents can
be induced to use it as a means in trading. Combined
with a credibility model, agents can choose only to
communicate with the ones that have shown credible
in the past. This will lead to the formation of
coalitions.

The formation of coalitions. In a multi-agent
environment it is possible to model a situation where
isolated language islands emerge, where only some of
the agents establish a common lexicon.

Distributed reward. Yanco and Stein (1993), in their
simulations of leader–follower communicative
behavior, introduced task-based reinforcement so that
neither the leader or the follower is rewarded until
the task is performed correctly. This idea combined
with more free coalitions can be used for the
performance of more complex tasks, where the task
is impossible to perform for an isolated agent, but
where collaborating agents together can perform the
task and share the reward.

The purpose of all these extensions is to
investigate the possibility to simulate the pragmatic
principles found in natural language and studied in
e.g. Winter (1994; 1996), Winter and Gärdenfors
(1995).

7 SUMMARY AND CONCLUSION
In the preceding, we have given an account for some
basic simulations of primitive communicative
behavior. In contrast to many other models (for
example Hutchins and Hazlehurst, 1995) these are
based on a simple table representation rather than on
artificial neural nets. This has several advantages. It
reduces the complexity and the run-time of the
simulations. A typical run takes about 1 second on a
Power Macintosh™.

Our simulations are based on direct
communication, where the agents’ communication is
deliberate and distinct from the rest of their
behavior. This is in contrast to stigmetric
communication, where the agents deduce the
information communicated from changes in the
environment (Moukas and Hayes, 1996).

The simulations were based on a number of
principles which characterize both the environment
and the behavior of the agents. The principle of a
common environment makes sure that the agents have
something to communicate about, while the principle
of stability assures that the environment is
deterministic enough for communication to be useful.

The pragmatic principles that are modelled in this
environment resembles the cooperative principle of
Grice (1975). The agent acts as if the other agent
tries to cooperate, tries to do what the other agent
says, and cooperates by trying to transmit the correct
message. When the agents use update rules for their
lexica which exploit these principles, the emergence
of a common language is based on the cooperation of
the agents.

We have strived for a minimal implementation of
these principles to allow a clear analysis of the
strategies used. In more complicated systems, many
interesting properties are obscured by the complexity
arising from the interacting principles.

To explore the cost of communication, we
introduced a changing environment. In this case, it
was favorable for the agents to communicate only
when their expectations were not met. It was also
possible to model different power over language as
an initial difference in the lexica of the two agents.
An agent with an initially better discrimination
between messages will have greater power over the
resulting common lexicon.
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