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Abstract: This paper aims to introduce and discuss a geometrically based model, the relative prominence model,
which is inspired by Tversky’s (1977) finding that a factor behind asymmetric similarity seems to be “relative promi-
nence”. The model proposes that the experienced directed similarity from I to J is proportional to some symmetric
similarity measure between I and J, and the quotient between the “prominences” for J and I. Analysis of empirical
data from different areas shows that it is possible for a procedure to estimate the parameters of the model quite well.
The paper is concluded with a discussion of the differences between the relative prominence model and related mod-
els that handle asymmetry in terms of “stimulus bias”.

INTRODUCTION
One way to model similarity is to represent objects in a
space consisting of a number of dimensions, each cor-
responding to some quality (see e.g. Palmer, 1978).
Objects, or mental objects, then, are represented by co-
ordinates in such a space. A common assumption is
that there is an inversely functional correspondence be-
tween distance and similarity for points (objects) in the
space. This assumption underlies all geometric models
of similarity, including the multidimensional scaling
(MDS) family of algorithms (see e.g. Kruskal & Wish,
1978; Shepard, 1962).

When the goal is to describe experienced distances or
similarities rather than ideal ones problems may occur
because the former are not always adequately de-
scribed by metric distance functions. All metric dis-
tance functions must satisfy three basic axioms:
minimality and equal self-similarity (Eq. (1)), symme-
try (Eq. (2)), and triangle inequality (Eq. (3))

(1)

(2)

(3)

for all objects i, j and k, where  is the distance
between objects i and j.

There exists empirical evidence of violations against
each of the three axioms, but the focus in this paper
will be on the violations against the symmetry axiom
(Eq. (2)), i.e. on asymmetry. In his well-known 1977
paper “Features of Similarity”, Tversky presents em-
pirical results from a wide range of domains suggest-
ing that proximity data sometimes reveal significant
and systematic asymmetries, contradicting distance
based models of similarity.

However, there exist geometric models of similarity
which take asymmetry into account. Nosofsky (1991)
shows that asymmetric proximity data on many occa-
sions reflect properties of individual items. He re-
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viewed what he referred to as the additive similarity
and bias model, originally proposed by Holman
(1979), a descriptive model of asymmetric proximity
that incorporates similarity and bias. In this model, the
proximity of stimulus i to stimulus j, , is given
by

(4)

where F is an increasing function, is a symmetric
similarity function and r (row) and c (column) are bias
functions on the individual objects.

Nosofsky point out that a number of well-known mod-
els for asymmetric proximity data are closely related to
the additive similarity and bias model (e.g. Tversky’s
(1977) feature matching model and Krumhansl’s
(1978) distance-density model).

In Nosofsky’s terms, asymmetry may often be charac-
terised in terms of stimulus bias, i.e. a characteristic
pertaining to an individual object1. This is in line with
Tversky’s (1977) work. Tversky found that the direc-
tion of asymmetries appears to be determined by the
relative prominence of the stimuli. Prominence, Tver-
sky argued, seems to be related to salience, intensity,
frequency, familiarity, goodness in form and informa-
tional content. The general pattern observed is that less
prominent objects often are experienced as being more
similar to more prominent objects than the other way
around.

Now, if Tversky is correct, it might be the case that a
traditional geometric model could be augmented with
the notion of relative prominence and so increase its
descriptive and predictive power. In the rest of this pa-
per such a model, termed the relative prominence mod-
el (RPM), will be presented and discussed.

THE RELATIVE PROMINENCE
MODEL
In the relative prominence model, the proximity from
stimulus i to stimulus j is given by

(5)

where  and  are prominences (biases) of j and i.

This model is essentially a special case of the additive
similarity and bias model in that it could be reformulat-
ed as

(6)

1. However, see (Nosofsky, 1991) for cases when asymmetry cannot
be characterised in terms of stimulus bias.

The relative prominence model was originally pro-
posed to describe, and possibly also predict, the subset
of similarity/dissimilarity data collected in direct rating
experiments. Such data are less likely to differ in terms
of self-similarities compared to confusability data, or
data collected by some indirect method. Differences in
self-similarity are something that the model clearly
cannot handle in its present form, and will thus be be-
yond the scope of this paper. Empirically correct or
not, the model is purposely designed so that the mini-
mality axiom is not violated.

In order to describe experienced directed similarity be-
tween objects, the prominence of the objects needs
somehow to be quantified. It is not assumed here that
absolute quantifications of prominence are meaning-
ful, but it is assumed that quantification of relative
prominences are.

EVALUATION OF THE RELATIVE
PROMINENCE MODEL
RPM will here be contrasted with mainly two other
special cases of the additive similarity and bias model.
The first is the additive similarity and bias model when
F in Eq. (4) is the identity function. This model will be
referred to as ASM. The second is a multiplicative var-
iant of the additive similarity and bias model (Eq. (7)),
referred to as AMM.

(7)

Also, a symmetric model, referred to as the average
model (AVG), will be used. The errors for such a mod-
el could be seen as a measure of the magnitude of
asymmetry, in that the error increases with it. When
data are completely symmetric, the error for AVG will
be zero. In AVG, the predicted proximity from i to j,

, is given by

(8)

In some cases (when predictions are supplied in the lit-
erature source) RPM, ASM, AMM and AVG will also
be contrasted with the similarity choice model (SCM),
reviewed in (Nosofsky, 1991). According to SCM, the
probability that stimulus i is identified as stimulus j is
given by

(9)

where  is the bias associated with item j, and
 is the similarity between items i

and j.
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The parameters of RPM, ASM and AMM will be esti-
mated using iterative procedures. These procedures,
summarised in Appendix A, operate directly upon
proximities rather than on distances in a spatial repre-
sentation, meaning that no specific assumptions re-
garding the relationship similarity - distance need to be
made. The iterative procedures try to minimise the glo-
bal squared relative error (GSRE) given by

(10)

where  is the predicted proximity from i to j.
The motivation for using the observed value in the de-
nominator of Eq. (10) is that a given difference be-
tween an observed and a predicted value should be
weighted more for a small observed value compared to
a high. The motivation for raising the expression to the
power of two in Eq. (10) is that the error will be more
distributed over the whole matrix.

In Nosofsky (1991) different models ability to fit ma-
trices of confusion data are evaluated using a likeli-
hood statistic. However, neither row nor column totals
for a matrix of predictions given by RPM, ASM or
AMM need to agree with the observed proximity ma-
trix, making evaluation using such a statistic inappro-
priate. Further, similarity using direct rated data are not
represented as frequencies. Here the different models
will rather be compared using the average relative error

 given by

(11)

where N is the number of off-diagonal cells.

Prominences according to RPM will be presented in
some cases for illustrative purposes, but the focus will
be upon relative errors for the models compared.

The proximity data sets analysed for evaluating the
models will be both direct rated and indirect proximity
data sets (e.g. confusions).

EMPIRICAL EVALUATION OF
RPM - DIRECT DATA

Direct Rating of Pairs of Countries
This study deliberately bears some resemblance to the
study with pairs of countries conducted by Tversky
(Tversky, 1977).

Method
Subjects: Subjects were 5 colleagues (computer scien-
tists) and 1 undergraduate cognitive science student, all
at University College of Skövde, Sweden. No subject
were paid for participation.

Stimuli: Stimuli were 9 countries (i.e. name of coun-
tries): France, Russia, Great Britain, Cuba, Paraguay,
Germany, USA, Brazil and China.

Procedure: The stimuli were presented pairwise in left
to right order on a computer screen using PsyScope
(Cohen, MacWhinney, Flatt & Provost, 1993). All or-
dered pairs of stimuli  (i.e. 72 pairs) were
presented in a randomised order that were the same for
all subjects. For each pair, subjects were asked to rate
how similar the left country was to the right on a 20-
graded scale. Each subject was tested individually.

Results
The individual similarity matrices were used for esti-
mating the parameters of RPM, ASM and AMM for
each subject with the procedures described in Appen-
dix A. The average of errors according to Eq. (11) for
each subject were slightly lower for RPM compared to
ASM and AMM, which both were lower than AVG
(see Table 1.).

The average estimated relative prominences (Figure 1.)
according to RPM appear to be relatively intuitive al-
though these stimuli may be susceptible to contextual
effects. For example, it might be that the attention
payed by subjects on certain dimensions differs with
the pair of countries under consideration.
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RPM ASM AMM AVG

.0429 .0488 .0486 .1541

Table 1. Average Model Errors for Describing Country
Proximity Data.
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Figure 1. Estimated Relative Prominences for
Countries
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The “predictive” ability for each of the models was
tested by estimating the parameters using subsets of
the full off-diagonal matrix, and then compare the re-
sulting “predictions” with the full off-diagonal matrix.
The average error curves for about 1200 subsets (even-
ly distributed from 37 to 71 of 72 cell values2) are vis-
ualised in Figure 2.

For this particular data set, the asymmetric models had
a similar or lower error, compared to the lowest error
for AVG, for about 15 or less missing cell values.
There appeared to be no major differences between the
curves for RPM, ASM and AMM.

Direct Rating of Pairs of Colours

Method
Subjects: Subjects were 5 colleagues (computer and
cognitive scientists) and 3 undergraduates (computer
and cognitive science students), at University College
of Skövde and University of Lund, Sweden. No subject
were paid for participation.

Stimuli: Stimuli were 9 quadratic pictures of colours
varying in the G and B dimensions of the RGB-system.
The colours were: 1: (255,0,255), 2: (255,0,192), 3:
(255,0,130), 4: (255,0,64), 5: (255,0,0), 6: (255,33,0),
7: (255,67,0), 8: (255,98,0) and 9: (255,127,0).

Procedure: The stimuli were presented pairwise in left
to right order on a computer screen using a html-
browser (Netscape). All 72 ordered pairs of stimuli
were presented in a block randomised order that were
the same for all subjects. Within each block, the left
stimuli was held constant whereas the right varied be-
tween the remaining 8 stimuli. For each pair, subjects
were asked to rate how similar the right colour was to
the left on a 20-graded scale. Each subject was tested
individually.

2. 37 is the minimum number of cells needed in order to predict
asymmetry.

Results
The same procedure as above was used for analysing
the data. Again, the error where lower for the asym-
metric models compared to the symmetric model (Ta-
ble 2.). RPM had a slightly lower error than ASM and
AMM.

The pattern of prominences according to RPM for the
colour stimuli (Figure 3.) where not as diversed as for
the country stimuli in the previous study. Rather, the
colour stimuli appeared to be characterised with basi-
cally three different relative magnitudes of prominenc-
es.

Regarding the “predictive” ability for the models (Fig-
ure 4.), there generally appeared to be a wider gap be-
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Figure 2. Average Prediction Errors for RPM
(+), ASM (*), AMM (o) and AVG (solid) -

Countries.
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Table 2. Average Model Errors for Describing Colour
Proximity Data.
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Figure 3. Estimated Relative Prominences for
Colours.
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Figure 4. Prediction Errors for RPM (+), ASM
(*), AMM (o) and AVG (solid) - Colours.
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tween the asymmetric models on one hand and the
symmetric model on the other, compared to the coun-
try stimuli (Figure 2.). This may be caused by differ-
ences in contextual effects between the two stimulus
sets when rating the similarity of stimuli. Finally, RPM
generally had a slightly lower error compared to ASM
and AMM.

EMPIRICAL EVALUATION OF
RPM - INDIRECT DATA
All indirect proximity data referred to below come
from studies reviewed in Nosofsky (1991).

Identification Confusions for Colours
In a study by Nosofsky (1987), identification confu-
sion data was collected as subjects learned to identify
12 Munsell colours varying in brightness and satura-
tion. A version of the MDS model, referred to as the
dynamic MDS-choice model (MDS), was used for fit-
ting the data.

The same data was analysed here, using the confusion
frequencies as a measure of proximity with the direc-
tion from stimuli to response. The errors for describing
the original data (Table 3.) were again slightly lower
for RPM compared to ASM and AMM. In Table 3.
also the error, according to Eq. (11), for the predictions
given by using the dynamic MDS-choice model to-
gether with SCM (Table 1, cumulated, Nosofsky,
1987) is presented. In this case, SCM got a substantial-
ly worse error compared to the other models, including
AVG. Note, however, that the error for SCM and the
dynamic MDS-choice model should be interpreted
with some care since the predictions are derived via the
use of a spatial representation (see Nosofsky, 1987),
whereas the remaining predictions in Table 3. are de-
rived directly from the identification confusion data.

“Same - Different” Confusions for Morse
Codes
Nosofsky (1991) analysed the Morse code “same - dif-
ferent” data reported by Rothkopf (1957), presented in
(Kruskal & Wish, 1978), using Eq. (7), i.e. the special
case of the additive similarity and bias model here re-
ferred to as AMM.

The same set3 of data have here been reanalysed as-
suming that the direction of the proximities was in the
direction from column to row4. The pattern so far (see

Table 4.), that the three asymmetric models describe
empirical data roughly equally well, became broken by
ASM. The morse code data were slightly better de-
scribed by RPM compared to AMM.

Identification Confusions for “Feature sets”
Nosofsky (1991) re-presents two sets of data reported
by Garner and Haun (1978) and the corresponding pre-
dictions according to SCM (Eq. (9)). The data sets
where identification confusions for four symbols under
a state-limited condition and a process-limited condi-
tion.

In the present paper, as in the above case of Nosofsky’s
(1987) identification confusions for colours, the direc-
tion of the proximities were assumed to be in the direc-
tion from stimuli to response. The average errors
according to Eq. (11) are presented in Table 5.. It is
clear that RPM and AMM once again give about the
same average error, but with RPM having a slightly
lower error. Regarding SCM, it had a slightly higher
error than RPM and AMM for the state-limited condi-
tion, whereas it was substantially worse for the process
limited condition.

Conditionally Biased Identification Confu-
sions
Nosofsky (1991) presents a subset of data and predic-
tions according to SCM (Eq. (9)) from a payoff-biased
experiment reported by Kornbrot (1978). In this exper-
iment, subjects were motivated to underestimate mag-
nitudes of loudness stimuli (see Nosofsky, 1991 pp.
132-134 for details).

Again, the direction of the proximities were here as-
sumed to be in the direction from stimuli to response.

3. As in Nosofsky (1991), cell (5,N), which originally were 0, was
here set to 1.
4. Note that an assumption regarding the direction does not affect the
magnitude of the error. However, the relative magnitude of the
prominences will be inverted if the assumption is wrong.

RPM ASM AMM AVG SCM

.0609 .0926 .0780 .3097 .6971

Table 3. Average Model Errors for Describing Identification
Confusion Data (Nosofsky, 1987).

RPM ASM AMM AVG

.0532 .0879 .0580 .1739

Table 4. Average Model Errors for Describing Rothkopf’s
(1957) Morse Code Data.

Set RPM ASM AMM AVG SCM

SL .0106 .0365 .0106 .6409 .0143

PL .0130 .0136 .0135 .2797 .0322

Table 5. Average Model Errors for Garner and Haun’s
“Feature-Set” in the State-Limited (SL) and Process-Limited

(PL) Conditions.
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The errors according to Eq. (11) are presented in Table
6.

In this particular case, the magnitudes of the errors
were high for all models, saying that no one of them
described the data set very well. However, although not
low, RPM and SCM had substantially lower errors
compared to the other, and RPM, in turn, had a slightly
lower error than SCM.

DISCUSSION
Evaluation using seven asymmetric data sets, both di-
rect rated data and confusion data, shows that the rela-
tive prominence model tend to describe proximity data
slightly better than ASM and AMM. However, it is dif-
ficult to say how general this result is since it is based
upon the use of estimation procedures that lead to sub-
optimal rather than optimal results. A possibly more
important property of the relative prominence model is
that it incorporates one bias parameter (prominence)
per object and therefore is simpler than ASM and
AMM that incorporates two (row- and column - bias).

The relative prominence model as presented here does
not predict any differences regarding self similarity be-
tween stimuli. This could mean that the model may be
more appropriate for stimulus sets where the differenc-
es are not too small, compared to stimulus sets with
very small pairwise differences (see also (Melara,
1992) for a discussion of differences between confusa-
bility and similarity), and also that it is more appropri-
ate for studies of higher level cognition than pure
perception.

A gain with using a simple model like RPM is that the
vague concept of prominence could be studied and
possibly be more well understood. This in turn could
have implications for e.g. theories of concept forma-
tion. Studies of relative prominence could be per-
formed by searching for relations between relative
prominences and properties of the proximity data stud-
ied. For example, above, the relative prominences for
direct rated colours were presented (Figure 3.). If the
relative prominences for the colours would mainly
have been determined by their focality, something that
sounds quite intuitive, the prominence would have
been the largest for Colour 5 and decrease with “high-
er” and “lower” numbers in the figure. Since this was
not the case, it means that other properties of the stim-
uli have to be considered.

Finally, it is here suggested that studies of prominence
should be performed also on the individual level (i.e.
on individual data), not only for summary data as in
this paper.
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APPENDIX A

The RPM-, ASM, and AMM - procedures
1. Initiate  for all i, j by setting

RPM:

ASM and AMM:

2. Initiate prominences/biases

RPM: initiate  to a random number for all i

ASM and AMM: initiate ,  to a random
number for all i (note: ,  could be negative for
ASM)

3. Calculate “proposed” prominences/biases:

RPM: for each i, calculate the averaged “proposed”
prominence from all j, PP(ij), given j’s current promi-
nence

ASM and AMM: for each i, calculate the “proposed”
changes of ,  given all other objects current
values of r and c

ASM

(row):

ASM
(col):

AMM
(row):

AMM
(col):

where PCr(i) and PCc(i) are the “proposed” changes
for r(i) and c(i) respectively.

4. RPM: for each i, adjust the prominence proportional
to the average proposition from all j.

ASM and AMM: for each i, adjust the prominence pro-
portional to PCr(i) and PCc(i) respectively.

5. Calculate the error according Eq. (10) and save the
fitted parameters if the error is the lowest so far.

6. Repeat steps 3 - 5 N times.

7. Given the best parameter values so far, adjust
for all i, j so that the error according to Eq. (10) is min-
imised.

s i j,( )

s i j,( ) p i j,( ) p j i,( )#=

s i j,( ) p i j,( ) p j i,( )+
2

-------------------------------------=

ip

r i( ) c i( )
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-------------------------+

2
--------------------------------------------------------=

r i( ) c i( )
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--------------------------------------------------------------------
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N

%=

PCc i( ) p j i,( ) s i j,( )– r j( )– c i( )–
2

--------------------------------------------------------------------
j 1=

N

%=

PCr i( ) p i j,( ) s i j,( ) r j( ) c i( )# #( )–
2

---------------------------------------------------------------------
j 1=

N

%=

PCc i( ) p i j,( ) s i j,( ) r j( ) c i( )# #( )–
2

---------------------------------------------------------------------
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N
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