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Abstract

We describe computer simulation of a number of
associative models of classical conditioning in an attempt
to assess the strengths and weaknesses of each model. The
behavior of the Sutton-Barto model, the TD model, the
Klopf model, the Balkenius model and the Schmajuk-
DiCarlo model are investigated in a number of simple
learning situations. All models are shown to have
problems explaining some of the available data from
animal experiments. The ISI curves for trace and delay
conditioning for all the models are presented together with
simulations of acquisition and extinction, reacquisition,
blocking, conditioned inhibition, secondary conditioning
and facilitation by an intermittent stimulus. We also
present cases where some of the models show an
unexpected behavior.

1 INTRODUCTION
In Pavlov’s (Pavlov 1927) well known experiment, a
dog would repeatedly hear a tone which was always
followed by the presentation of food. When the food
was presented, the dog started to salivate. After a
number of such presentations, the dog  had learned that
food follows shortly after the tone and would start to
salivate already when it heard the sound. The pairing of
a signalling conditioned stimulus (CS) with a
motivationally significant unconditioned stimulus (US)
defines classical conditioning as an experimental
procedure. While the unconditioned stimulus produces
an unconditioned response (UR), the response produced
by the conditioned stimulus is called the conditioned
response (CR) and is used as an index of the learning
process. Initially, no CR is produced, but as learning
progresses, the intensity or probability of the CR
increases.

Classical conditioning has attracted researchers for
many years and many models have been developed.
Recently, attention has focused on the real-time
dynamics of conditioning. Below, we investigate some
well known real-time models of conditioning in a

number of computer simulations. The goal is to
demonstrate their strengths and reveal their weaknesses.

Although traditionally seen as a very simple
phenomenon, classical conditioning has offered
unexpected resistance to theoreticians. Still, almost a
hundred years after Pavlov’s initial experiments, there
exist no model capable of explaining the full range of
phenomena under this heading. During the reign of
behaviorism, classical conditioning was marginalized
and considered to be of little significance. It was never
given a satisfactory explanation, however. In fact,
classical conditioning contains some of the hardest
problems in learning today.

It contains real-time aspects, such as inter-stimulus
(ISI) effects and the modelling of timing and topology
of the conditioned response. The rate of conditioning is
optimal at a certain ISI. For example, in classical eye-
lid conditioning in rabbit, the optimal ISI is
approximately 250 ms and decays exponentially with
time (Smith, Coleman and Gormezano 1969,
Schneiderman and Gormezano 1964). Also,
independently of the ISI, the CR tends to appear
slightly before the US (Desmond 1990).

Conditioning is also sensitive to the statistical
dependency between events (Rescorla 1968). While it
was once believed that the pairing of CS and a US were
sufficient for conditioning, it has been shown that this
is not the case. In an important experiment, Rescorla
(1968) presented dogs with random pairing of CS and
US. On some trials the CS was presented alone, on
some it was followed by the US, and on other trials the
US occurred without the CS. In one experimental
group, the CS did not predict the US, while in the other
it predicted the US at half of the trials. In the first
group, no conditioning occurred, while in the second,
the animals produced the CR. The response occurred at a
rate proportional to the predictive level of the CS.

Furthermore, learning depends on previous
experiences (Kamin 1968). For example, in the
blocking paradigm, a CS does not acquire any
association when it occurs simultaneously with another
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stimulus that has already been conditioned with the US.
Another example is reacquisition which is yet another
example where learning depends on previous
experiences.

The specifics of conditioning is also greatly
influenced by sensory modality and the type of
response. For example, Garcia and Koelling have shown
that some associations are very easy to acquire, for
example, the association of taste to subsequent illness,
while other association, such as taste to shock, is
almost impossible to learn (Garcia and Koelling 1966).

While most contemporary models of conditioning are
good in some areas, they are often much worse off in
other. The main problem that hampers computational
model is that it is very hard to construct a model that
cover a large area of experimental conditions. It is not
uncommon to find broad claims in the literature about
the ability of various models, but at closer examination,
all models generate inappropriate prediction in some
areas. (See sections 3-7). It is most unsatisfactory that
the general opinion is that conditioning is a
phenomenon that is simple to model and that has been
solved a long time ago.

We believe that the main reason for this situation is
the limited amount of detailed studies that have been
made of the different models. This is partly because it
can be very hard to correctly implement the models.
Very seldom are the models specified at sufficient detail
to allow other researchers to use the models. When
mathematical description are given, they are often
incomplete or confusing.

The rest of this paper is an attempt to compare a
number of computational models of conditioning. We
have chosen a number of popular associative models.
These models were selected since they are fairly similar
and make similar claims about their abilities.

In the next section, we describe the different
experiments used in the study. Section 3 reports
simulations with the model proposed by Sutton and
Barto (1981). The more recent development of this
model, the TD-model (Sutton and Barto 1987) is
described in section 4. In section 5, the same
experiments are tested with the model described by
Klopf (1982, 1988). In section 6, the model developed
by Balkenius (1995, 1996, 1998) is tested. Finally, in
section 7, we investigate the model proposed by
Schmajuk and DiCarlo (1992). The order of the
presentation represents the similarities between the
different models.

2 THE EXPERIMENTS
Some typical instances of classical conditioning
experiments were chosen to test the models. All these
experiments were selected on the grounds that at least
one of the models claim to produce the effect. The
experiment selected where the ones that we considered
most basic for the classical conditioning paradigm.
Some of the models admittedly handle much more
complicated cases than the ones presented, but our main
aim here is to see to what extent the different models
can account for very simple learning situations.
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Figure 2.1. Delay and trace conditioning. In delay
conditioning of type A, the length of the CS (LCS) is
equal to the inter-stimulus interval (ISI), for delay
conditioning of type B, the length of the CS is equal
to the ISI plus the length of the US, that is the CS and
the US terminates simultaneously. For trace
conditioning, the CS terminates before the onset of
the US.

2.1 Acquisition
The experiment described in the introduction has been
termed an acquisition procedure and requires the most
fundamental process in classical conditioning: the
ability to establish an association when a CS is paired
with a US. We use the notation below to describe the
experiment in a general sense.

CS + US ! CS " CR

A CS is first followed by the US at a number of
presentations, and as a result, a CS that is later
presented on its own will be able to produce a CR. All
models tested can obviously model acquisition to some
extent. One would be hard put to claim that a model
describes classical conditioning if this was not the case.

A feature of some empirical studies of acquisition of
associations is that the response level forms an S-
shaped curve similar to a sigmoid function
(Schneiderman, Fuentes and Gormezano 1962). There
are various explanations of this phenomenon, and many
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see it as desirable for a model to exhibit this feature. Of
the models tested in this paper only the Klopf model,
and to some extent, the Balkenius model show this
effect. Interestingly, the Klopf model loses this feature
during reacquisition.

2.2 Inter-stimulus interval effects
The effect of the inter-stimulus interval on the

response level is one of the primary learning effects
described in Sutton and Barto (1990). Empirical studies
have been done with both trace conditioning, where the
CS terminates before the US is presented; and with
delay conditioning, where the CS offset occurs at the
onset of the US, or later (see figure 2.1).

We have tested the various models with three types
of timing. Two types of delay conditioning and one
type of trace conditioning. In the first type of delay
conditioning, that we will call delay A, the CS
terminates exactly at the onset of the US. In the second
type, delay B, the CS continues to be present until the
termination of the US. Finally, in trace conditioning,
the CS and US have fixed lengths and only the ISI
changes. In trace conditioning, the ISI can be both
positive and negative.

The empirically determined profile, according to
Schneiderman (Schneiderman 1966) and Smith et al.
(1969) can be found in figure 2.2. The desirable
behavior is for the response level to have a single peak
at small positive ISI:s, no response at all for negative
ISI:s, and asymptotically declining values as the ISI
grows large.

All models tested in this paper are affected by
variable ISI:s, albeit for very different reasons, as will
be seen below.
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Figure 2.2. The effect of the inter-stimulus interval
in classical nictitating membrane conditioning.
Delay B conditioning after Scheniderman and
Gormezano 1964). Trace conditioning after Smith et
al. (1969) and Schneiderman (1966).

2.3 Extinction
In an extinction experiment, an earlier acquired response
disappears as the CS is presented on its own without a
subsequent US. The training procedure can be
summarized as,

CS1  ! CS1 " no CR

This is again a very fundamental ability of any
conditioning models since it shows that learning is in

some sense reversible. When the CS is presented on its
own, it no longer predicts the US and should no longer
produce any CR. All the models tested below can handle
this situation, which, of course, is not very surprising.
It is interesting to note that, like for ISI-effects, the
mechanisms behind extinction are somewhat different.

2.4 Reacquisition Effects (Savings effects)
The reacquisition, or savings, effect appears when an
animal relearns an association that has previously been
extinguished. Learning the second time is faster than
during the original learning phase, and it is faster still
the third time (Pavlov 1927).

To test for this effect, one first lets the system learn
an association by pairing a CS and the US. Then the
CS is presented by itself a number of times, until the
response disappears, implying that the association is
extinguished. When the CS is paired with the US again,
the number of trials required to relearn the association
should be less than it was the previous time. If so
desired, this can be repeated any number of times.

We tested the reacquisition effect by running the
association–extinction cycle four times. Of the models
described here, only the Klopf and the Schmajuk-
DiCarlo models show reacquisition effects, and for the
Klopf model, it only appears for the first relearning
phase.

A possibly related effect is called spontaneous
recovery. It results when the CS of an extinguished
association is not presented for a while. When the cue
reappears, the CR too may come back. This is often
assumed to be the result of some type of passive
forgetting during the period without the CS. None of
the models presented can model this aspect of
conditioning.

2.5 Blocking
Blocking, is a very desirable effect for a model to

handle well. It is one of the most well known features
of all classical conditioning (Kamin 1968, Rescorla and
Wagner 1972). The regime for blocking is:

CS1 + US ! CS1 " CR

(CS1+CS2) + US ! CS2 " no CR

The parenthesis is used to indicate that CS1 and CS2
are presented simultaneously. When CS1 already
predicts the US, there will be no conditioning of CS2 to
CR; CS1 blocks CS2. All models tested perform well
on tests for this effect. The blocking experiment shows
that acquisition of an association is not independent of
earlier learning and that all the stimuli present influence
learning in a non-local way.

2.6 Conditioned Inhibition
In Pavlov’s account for extinction, he describes it as the
acquisition of an inhibitory association that removes the
effect of the excitatory association from the CS (Pavlov
1927). That is, extinction is considered an active
process rather than some passive decay of an
association. The existence of an inhibitory association
can be shown in a conditioned inhibition experiment. In
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such an experiment, the animal is first conditioned with
a test stimulus CS2. In a second phase, trials occur
where the CS0 is paired with the US, and trials where
CS0 together with CS1 do not predict the US. Finally,
CS1 is paired with CS2. If CS1 has acquired inhibitory
properties, it will be able to inhibit the CR that CS2
would otherwise produce:

Phase I CS2 + US

Phase II CS0 + US

(CS0 + CS1) + no US

Test (CS1 + CS2) " no CR

It is assumed that CS1 takes on its inhibitory properties
during the trials where it is presented together with CS0
that on its own would predict the US.

2.7 Secondary Conditioning
When CS1 has been associated with an US, CS1
acquires reinforcing properties and can itself be used to
reinforce a CS2. This is called secondary conditioning.
The learning regime for this effect is:

CS1 + US  => CS1 -> CR

CS2 + CS1 => CS2 -> CR

The effect is typically weak and very dependent on the
exact timing of CS1 and CS2, as CS1 will extinguish at
the same time that CS2 is reinforced. All models except
the Schmajuk-DiCarlo model can handle secondary
conditioning effects (but see section 4 about the TD
model). This effect is especially important if one wants
to use classical conditioning as a part of an instrumental
learning system (Klopf, Morgan and Weaver 1993,
Balkenius 1995). In this case, the chaining of responses
is often described as secondary conditioning.

2.8 Facilitation by an Intermittent Stimulus
A different type of facilitation of acquisition can be seen
when an extra stimulus CS2 is introduced inbetween
CS1 and the US. If the conditioning to CS1 is weak
due to a long inter-stimulus interval, the extra CS2 will
facilitate conditioning to CS1. The two cases can be
summarized by:

Normal

CS1 + US => CS1 -> weak CR

Facilitated

CS1 + CS2 + US => CS1 -> strong CR

Note that the interval between CS1 and the US is the
same in both cases. One possible explanation for the
facilitation effect is as a form of secondary conditioning.
It is therefore interesting to see that the Schmajuk-
DiCarlo model that does not demonstrate secondary
conditioning still shows the facilitation effect as does
all the models tested.

3 THE SUTTON-BARTO MODEL
The Sutton-Barto (SB) model (Sutton and Barto 1981),
is an early time-derivative model of reinforcement in
conditioning. It works in real-time in contrast to the
Rescorla-Wagner model (Rescorla and Wagner 1972),
from which it is descended. This model is a precursor to
many later computational models, including the TD
model, the SBD model (Blazis et al. 1986) and the
Klopf model (Klopf 1988).

The reinforcement in the SB model is the time
derivative of the sum of the stimulus strengths:

Ẏt = Yt # Yt#$t ,

Y = CSiVi
i
% + VUSUS,

(SB1)
where the Vi is the stimulus strength of CSi, and VUS is
the strength of US. With suitably chosen constants,
these equations will account for all predictions of the
Rescorla-Wagner model.

An eligibility trace mechanism is added to account
for temporal relationships:

Xi,t +1 = (1# & )Xi,t + &Xi,t ,

Xi,t =
1, CSi present
0, CSi absent
'
(
)

(SB2)

The rate of decay & is in the range 0<&<1. *he same
trace is also used in the TD model. The reinforcement
signal and the eligibility trace are combined as:

$Vi = +Ẏ × , i Xi (SB3)

with , i and +i positive constants as in the Rescorla-
Wagner model.

We have run a series of simulations covering all
learning experiments described in the previous section.
During these simulations, the constants chosen were
,i=0.1, +=1, &=0.2; these are the values used by Sutton
and Barto.

As the model is an early one (in fact, it is the oldest
one covered in this paper), it is not surprising that it
has a number of problems with these simulations.

Like the other models, SB has no problems with
acquisition and extinction. Unlike the Klopf and
Balkenius models, SB works over a wide range of CS-
US intervals due to the nature of the eligibility trace
function used. However, SB does not model the S-
shaped acquisition curve that Klopf and Balkenius does.

The Inter–stimulus interval effects are poorly
modelled by this method. For example, the model
shows inhibitory conditioning with ISI close to zero
during trace conditioning (figure 3.1 and 3.2). This
seems to be inconsistent with empirical data (Smith et
al. 1969). The model also fails to account for ISI effects
during delay conditioning, with no decay of asymptotic
learning with longer ISI:s, and with overall learning
level dependent on proximity between CSoff and USoff,
as seen in figure 3.1. As Sutton and Barto notes in
(Sutton and Barto 1990), this model does not, and is not
intended to, account for these effects.



5

0 10 20 30
-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40

ISI (1 tick = 50 ms)

V
0

Delay A
Delay B
Trace

Figure 3.1. The behavior of the SB model during
ISI trials
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Figure 3.2. Inhibitory conditioning when ISI=2,
USlength=2, CSlength=4 during trace conditioning.

No reacquisition effects are modeled by SB. Blocking
effects are handled satisfactory, which is not surprising,
as the capabilities are a superset of Rescorla-Wagner,
and blocking is one of the effects modeled well by that
model.

Secondary conditioning with no overlap between
CS0-US or CS1-CS0 works as expected; CS1 is
reinforced by CS0 , albeit weakly, as CS0  is
simultaneously extinguished. However, when the inter-
stimulus intervals are short enough to make the stimuli
overlap, an erroneous inhibitory conditioning is
produced. Briefly, the reason is that when CS0 and US
overlap, V0 is initially small, making Ẏ  small. Thus,
change in X  is the primary factor in changing V0. The
greatest change in X  is for CSoff, and when overlapped
with US, this negative change will influence V0,
producing the effect. The analogous effect is achieved
for phase two of secondary conditioning, as V0 is large
and V1 is small.

Facilitation effects are modelled fairly well; the
stimulus trace model used directly facilitates this effect.

4 THE TD MODEL
The TD (temporal difference) model (Sutton and Barto
1987) was introduced as an extension of the earlier
Sutton-Barto model (Sutton and Barto 1981), which in
turn was a real-time extension of the Rescorla-Wagner
model (Rescorla and Wagner 1972). According to the
TD-model, the goal of conditioning is to predict the

temporally discounted value of all future rewards. At
time t, this prediction is called Vi  and is calculated as
the sum of all weights Vi for the CSi:s at time t:

Vt = max( ViCSi% , 0). (TD1)

Here, the weight Vi represents the contribution from
CSi to the total prediction. During learning, these
weights are updated according to the following equation,

$Vi = + - t +1 + .Vt +1 # Vt( ) × , i Xi , (TD2)

where -/+1 represents the strength of the US at time
t+1, . is the discount factor, ,i and + are learning rate
constants, and Xi  is a trace of stimulus CSi. Thus, the
first term of (TD1) can be seen as the expected change
in US from t to t+1 (called reinforcement by Sutton),
while the second term is a function of temporal
proximity to the CS. The definition of Xi  is identical
to (SB2) above.

This section describes a number of simulations of the
TD model. The actual code was downloaded from R.
Sutton's web-site and interfaced with our simulator. The
model itself is, thus, identical to Sutton’s
implementation. Using this implementation, we have
successfully reproduced the simulation data as presented
in Sutton and Barto (1990).

The TD model is able to reproduce several aspects of
classical conditioning. Most importantly, it models the
ISI-dependency shown in empirical studies. Figure 4.1
shows the asymptotic value of the weights as a function
of the ISI for trace conditioning.

Unlike the other models discussed in this paper, the
ISI-curve is an emergent effect of the learning equations
and handles a variety of different ISI:s and stimulus
lengths.

The TD-model also handles blocking effects in a
satisfactory manner, but the presence of secondary
conditioning depends on the stimulus length. This
appears as a shortcoming of the model. However, the
existence of secondary conditioning is somewhat
controversial. Some studies have shown the existence of
this effect, but in many cases, it has been hard to
reproduce (See Klopf 1988). It may be the case that
these results could be explained by differences in
stimulus length, but this is debatable.
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Figure 4.1 The ISI curve for the TD model.
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Figure 4.2. Secondary conditioning in the TD
model with and without overlapping stimuli. The
upper curves show V1 and the lower curves show V2.
(TOP) With non-overlapping CS1 and CS2, the
secondary conditioning effect is clearly visible.
(BOTTOM) With overlapping conditioned stimuli, V2
shows inhibition rather than excitation.

Interestingly, the TD model suffers from a similar
problem as the Sutton-Barto model for secondary
conditioning: overlapping CSs produce inhibition rather
than excitation, as shown in figure 4.2. The reason this
effect is not apparent for first-order acquisition, is that
US level is not taken into account when computing Vi ,
in contrast to the Sutton-Barto model.

The results for blocking, inhibitory conditioning and
facilitation are the same as for the Sutton-Barto model;
the model performs reasonably well. Like the SB
model,  the TD model does not show the S-curve for
acquisition. A related shortcoming is that the TD model
does not show any reacquisition effects or spontaneous
recovery.

5 THE KLOPF MODEL
The Klopf model was introduced in 1982 as the Drive-
Reinforcement (DR) model (Klopf 1982), but we
present the model as described in Klopf (1988). In this
model, the output at time t, the UR or the CR, is given
by the value y(t). This is calculated as the sum of all
CS representations xi multiplied with their
corresponding weights wi. The value 0 is a threshold
which was set to 0 in the simulations reported by Klopf
(1988).

y(t) = wi (t)xi (t) # 0
i=1

n

% . (K1)

During conditioning the weights change according to
the equation,

$wi (t) = $y(t) cj wi (t # j) $xi (t # j)
j =1

/

% , (K2)

where cj are learning constants, |wj| are the magnitude of
the individual weights, and $xi the change in the CS
representation. It is stated in Klopf (1988) that only
positive changes should be considered in the equation
above. That is, if $xi is less than 0 it is set to 0 for the
purposes of equation (K2). It should also be noted that
there are both excitatory and inhibitory weights in the
model. These are treated separately and are constrained to
stay on the positive and negative side respectively. It is
also required that the weights must be larger than 0. In
the simulations in Klopf (1988), a minimum of 0.1 is
used.

Equation (K2) illustrates a fundamental assumption
of the Klopf model: that changes in the output should
be correlated with changes in the inputs to determine
whether learning should occur. When both the input and
the output changes, the weights should increase. To
allow non-zero ISI:s, each CS is assumed to leave an
eligibility trace in the system. This is represented by
the sum in equation (K2) which is used as a memory
that extends backward in time.

The model is able to mirror a complex ISI-curve
since an array of learning constants, ci, are used to
determine the shape of the curve. The constants are
explicitly chosen to reflect the ISI-curve for classical
delay conditioning (Klopf 1988). Figure 5.1 shows the
simulation result for the same experiment as the TD
model described above.
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Figure 5.1. The ISI curve for the Klopf model.

Although the Klopf model has the ability to produce a
range of ISI-curves depending on the learning rate
constants, it has almost no predictive value in this area
since the curve is essentially rigged by the constants ci.
A further limitation is the fixed length memory buffer
used for the eligibility trace. The use of a memory
buffer limits the temporal resolution of the model as
well as the length of the ISI.
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The model also shows the initially accelerated S-
shapes learning curve that is observed in animals. This
is the result of the multiplication of wi in the eligibility
trace. This makes learning faster when the weights are
larger.

This unusual aspect of the learning equation also
results in reacquisition effects. Since the weights are
larger after extinction than before any learning has taken
place, learning will be faster in the second acquisition
phase. Although Klopf (1988) presents a simulation
where the reacquisition effect is clearly visible, this
effect only occurs for the first reacquisition. All
reacquisitions after the first one are identical for the
parameters used in Klopf (1988). See figure 5.2. This
was not illustrated in the original article. Also note that
the S-shaped learning curve disappears for the
reacquisitions.

The reacquisition effect depends on the learning rule
where the weight change depends on the magnitude of
the weight. A larger weight will change more than a
smaller one for the same reinforcement signal. This
aspect of the model is also the reason for the initially
accelerated S-curve in acquisition.

Klopf (1988) reports simulation of secondary
conditioning which were reproduced by our simulator. It
is interesting to note that this experiment results in the
inhibitory effect illustrated above when run with the TD
model. The Klopf model also handles blocking in an
satisfactory manner.

Also facilitation by an intermittent stimulus is
modelled correctly. This effect is both visible at an ISI
smaller than the length of the eligibility trace, and at
larger ISI where the mechanism if effect extends the
length of the fixed memory buffer.

6 THE BALKENIUS MODEL
Like the Klopf model, the model presented in Balkenius
(1995, 1996, 1998) is based on a neural interpretation
of the conditioning mechanism. But contrary to the
Klopf model, the Balkenius model uses a network rather
than a single node. Like the Klopf model, the Balkenius
model separates inhibitory and excitatory learning, but
this is made explicit in the formulation of the model.
Here, only the positive side of the network is described.
The equations for the negative side are identical. The
output of the model is given by,

CR(t) = x+ (t) # x# (t), (B1)

x+ (t) = wij
+ (t)CSi (t # j)

j =0

/

%
i=1

n

% . (B2)

The extra index j in equation (B2) corresponds to a
tapped delay-line for each CS with length /. This
approach differs from the eligibility traces used in the
other models but have a similar role. The representation
is usually called a multiple-element stimulus trace and
has the advantage that it can support more complex
associations that a single eligibility trace. On the other
hand, it requires many more variables since the number
of weights must equal the length of the stimulus trace.

The reinforcement, that is, the weight change, is
calculated as,

R+ = US + & $xt +1
+ # $xt +1

#( ) # $xt
+ # $xt

#( )[ ]+
. (B3)

In this equation, &  is the discount factor which is
responsible for secondary conditioning. This equation
can be compared to equation (TD1) for the temporal
difference model. In that model, the absolute values are
used in the learning equation. In this model, it is instead
the changes that contribute to the reinforcement. This is
consistent with the idea that the model tries to predict
the level of the US rather than the integral over it as the
TD model.

Like in the Klopf model, changes in the US level are
correlated with changes in the CS levels and during
conditioning, the weights change according to the
equation,

$wij
+ (t) = . + R+ $CSi (t # j)[ ]+ , (B4)

where .+ is the learning rate.
The Balkenius model differs from the other models in

the way the ISI effect is modelled. In the TD and Klopf
model, it is the result of the eligibility trace. In this
model, it results from secondary conditioning within the
stimulus trace. Figure 6.1 shows the ISI curve for the
model with the discount factor of & = 0.90. The curve
directly reflects the discount factor since the asymptotic
value of the weights converges to & i-1 for an inter-
stimulus interval, i 1 0.

A surprising effect of the stimulus representation is
that the model predicts the S-shaped learning curves for
ISI:s larger than 1 tick. Figure 6.2 shows three
simulations with different ISI:s. For an ISI of 1 tick,
the learning curve is similar to that of the TD model,
but for a larger ISI, the curve is initially accelerating,
giving rise to the characteristic S-shape.

0 1000 2000 3000 4000 5000 6000

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

time (1 tick = 500 ms)

y

Figure 5.2. The reacquisition effect in the Klopf model. The reacquisition effect only appears the first time.
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Figure 6.1. The ISI-curve for the Balkenius model
for & = 0.9.
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Figure 6.2. The shape of the learning curve for the
Balkenius model depends on the ISI. For an ISI larger
than one, the curve shows the characteristic S-shape.
An ISI of 1, 5, and 10 ticks are shown in the figure.

This explanation of the S-shaped curve is radically
different from the one offered by the Klopf model. In the
Klopf model, the learning equation itself is constructed
to give the S-shaped acquisition curve, while in the
Balkenius model, it is the result of the mechanism for
secondary conditioning given by equation (B3). For an
ISI of 2 ticks, the initial acquisition curve is quadratic,
for an ISI of 3 ticks, it is cubic, and so forth.

Secondary conditioning is also handled by the model.
In fact, the Balkenius model is the only model of the
three to give robust secondary conditioning on both the
experiment described in Klopf (1988) and the one in
Sutton and Barto (1990). The TD model did not do well
on the Klopf experiment, and the Klopf model was not
able to handle the experiment used for the TD model.
This however, is done at the cost of ignoring the
difference between trace and delay conditioning.

Like the other two models, blocking is handled
without problems. It appears that since Rescorla and
Wagner (1972), blocking is the first experiment to be
tested for any model of conditioning.

A shortcoming of the model is that it is not able to
model reacquisition effects. Like in the Klopf model,
the weights reflect the fact that earlier conditioning has
occurred, but this is not utilized in the learning
equation.

A further problem with the Balkenius model is that it
does not distinguish between delay and trace

conditioning. Since only positive changes in the CS is
used in the model, trace and delay conditioning will
appear identical to the learning mechanism. Empirical
data suggests that this should not be the case since delay
conditioning usually results in faster and stronger
conditioning.

Finally, it is possible to raise the same objection to
the multiple element stimulus trace in this model as to
the eligibility trace in the Klopf model: it limits the
temporal resolution and sets a fixed length on the
memory for passed events.

0 10 20 30 40

0.00

0.10

0.20

0.30

0.40

ISI (1 tick = 10 ms)

CR

Delay A
Delay B
Trace

Figure 7.1. The ISI-curves for the SD-model.

7 THE SCHMAJUK-DICARLO MODEL
The Schmajuk-DiCarlo (SD) model was introduced in
1992 and was shown to model a number of classical
conditioning phenomena (Schmajuk and DiCarlo 1992).
Especially interesting is its ability to model the effect
of various types of configurational stimuli and the
effects of hippocampal lesion on conditioning. Here,
however, we will only investigate the more fundamental
abilities of the model. The complete characterization of
the model can be found in Schmajuk and DiCarlo
(1992) and we will only describe the equations
responsible for the dynamics found in the simulations.
A stimulus, CSi, gives rise to a short-term memory
trace Xi that is described by,

dXi

dt
= #K1Xi + K2 K3 # Xi( )CSi . (SD1)

K1, K2 and K3 are constants that determine the passive
decay of the trace, the rate of increase, and the
maximum level of the trace, respectively. The
associative strength, VSi changes according to the
equation,

dVSi

dt
= K5K6 1# VSi( )EO, (SD2)

where K5 is an output level constant and K6 is the
learning rate constant. EO describes the error in the
prediction of the model. This error is calculated as the
difference between the US level and the sum of all
stimulus traces multiplied with their respective weights,

EO = US # K5XiVSi
i
% . (SD3)

In the simulations, we followed the complete
description of the model given in Schmajuk and
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DiCarlo (1992), and the equations above should serve
only as an indication of the dynamics of the model and
not as a complete description.

The ISI curves for the model are shown in figure 7.1.
Together with the TD model, the SD model is the only
one to model the difference between the trace and delay
conditioning in a qualitatively correct way.

The SD model also correctly models blocking and
conditioned inhibition. Of the models we tested, the SD
model is the only one to show a reacquisition effect that
increases with each repeated relearning. This is shown
in figure 7.2 where four acquisition and extinction
phases are presented.

A serious difficulty for the SD model is that it does
not allow for secondary conditioning. This is a direct
consequence of equation (SD3). Since the change in
associative strength depends on the difference between
the US and the aggregate prediction given by the sum in
equation (SD3), there is no room for secondary
conditioning.

It is interesting to see that the SD model is able to
model facilitation but not secondary conditioning. This
implies that secondary conditioning is not necessarily
required for facilitation.

8 DISCUSSION
The models in this study have different objectives and

it is thus not surprising that the performance differs
dramatically for various experiments. None of the
models claim to provide a model of all of classical
conditioning phenomena; indeed, they are intended to
provide an explanation of only a few specific
experimental situations. The experiments themselves
were chosen for their appearance as examples in the
texts describing the various models, or their widespread
use as examples of classical conditioning.

The results should thus not be interpreted as a
ranking of the models, but instead be seen as an aid to
understanding of the strengths and weaknesses of each
model, and to gain a better understanding of the field of
conditioning.

Conspiciously absent are statistical models and
experiments such as Gallistel (1992). Nor have we
included attentional models (Grossberg 1975). We
intend to extend these simulations with many more
models and experiments; the present study can rightly
be seen as a pilot study in preparation for a much more
complete work.
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Figure 7.2. The reacquisition effects in the SD-model. This is the only model where each subsequent acquisition is
faster than the previous one.

SB TD Klopf Balken-
ius

SD

Trace
   Conditioning

+ + + + +
Delay

   Conditioning
- + +- + +

ISI-curve - + +- +- +
S-shaped

   Acquisition
- - + + -

Extinction + + + + +
Reacquisition - - +- - +
Blocking + + + + +
Secondary

   Conditioning
+- +- + + -

Spontaneous
recovery

- - - - -
Conditioned

Inhibition
+ + + + +

Facilitation + + + + +

Table 8.1. Summary of the study. + indicates that the model handles this effect, - that it does not, and +- that it
handles it in some cases. This table should not be taken as a ranking of the models.
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