
A Distributed Clustering Algorithm

Prototype

Prototype
Prototype

Lund University Cognitive Studies, 74
1998

S–222 22 Lund
Sweden

Department of Mathematics
Uppsala University

nils.hulth@fil.lu.se
grenholm@math.uu.se

Abstract: A new algorithm for clustering is presented — the
Distributed Clustering Algorithm(DCA). It is designed to be
incremental and to work in a real-time situation, thus making
it suitable for robotics and in models of concept formation.
The DCA starts with one cluster (or ratherprototypeat the
center of the cluster), successively adding prototypes and dis-
tributing them according to data density until a certain crite-
ria is fulfilled. This criteria is that new prototypes do not add
enough extra precision in the representation of the data. A
local measure calledroundnessis used to predict how much
extra precision a new prototype will add.

1 INTRODUCTION

In this paper a new algorithm forclustering will be
described. It is called theDistributed Clustering Al-
gorithm (DCA). Clustering is the process of grouping
similar data together. Clustering techniques are being
used in many different areas, such as robotics, vision,
data mining, statistics, cognitive science and machine
learning. The focus of this paper will be on cognition
and robotics. The prime use for clustering in these ar-
eas is for unsupervised concept formation (for a cog-
nitive approach to concept formation, see G¨ardenfors,
1997 and his conceptual spaces). Take as an exam-
ple a robot being fed with data from 38 sensors getting
such information as weight, colour, brightness, smell
and conductivity about an object. Suppose the task of
the robot is to learn to separate and identify different ob-
jects that it encounters. For each object the robot gets
a 38-dimensional vector of sensor data, which can be
seen as a point in a 38-dimensional space. If the robot

looks at several different objects several times,clusters,
or “clouds”, of points will be created, i.e. each object
corresponds to one “cloud”. If the objects are suffi-
ciently different the clusters will be separated, and it
is possible to identify objects based on their cluster be-
longings.

To form these clusters a clustering algorithm is used.
There exist a large number of such algorithms with dif-
ferent characteristics. To be used in a real-time and in-
cremental context as the example above certain features
are necessary. The algorithm must be able to handle
new data without the need to reprocess all the previous
data. It must also be able to automatically determine
the number of clusters needed. Preferably it should not
make any assumptions about the distribution of the data
either. Finally it should be possible to implement the
algorithm in an efficient way.

The DCA is an attempt to create such an algorithm.
This attempt is made since there are very few cluster-
ing algorithms that can handle all of the above require-
ments (see the comparison of the DCA and other com-
mon clustering algorithms in section 4).

The approach used by the DCA is similar in some re-
spects toVector Quantization(VQ) Linde et al., 1980;
Hassoun, 1995, pp109-110. Like the VQ the DCA uses
a number of prototype vectors in the same space as the
training data. An example is said to belong to the proto-
type that is closest to it. This means that the method can
generalise, i.e. categorise examples that have not been
encountered before.

How then is the number of prototypes decided? If
the average distance between examples and their corre-
sponding prototypes is small then the information loss

1

g p y p yp g
ing is also small. A small information loss means that
the prototype is a good representative of its examples.
Quite obviously each extra prototype that is added will
decrease the average distance. But is also true that
sometimes an extra prototype decreases the distance
substantially more than average. To understand this,
consider the examples shown in fig 1a and fig 1b.

The first example demonstrates the advantage of an
extra prototype, i.e. two prototypes clearly reduce the
average distance between a data point and its prototype.
In the second example this is not the case. The division
decreases the distance, but not nearly as much as in the
first example. The prototype in the first example is said
to have a highersplit gain(see appendix A).

This is the feature that is used by the DCA to decide
on the number of prototypes. The DCA starts out with
only one prototype, successively adding prototypes as
long as they decrease the average distance between ex-
amples and prototypes more than would be expected for
a homogenous distribution. Note that this is decidedlo-
cally, i.e. only using the statistics gathered for the pro-
totype about to split.

As stated above the DCA should be able to operate in
a real-time and incremental context. This makes it de-
sirable to be able to decide beforehand if an addition of
a prototype will decrease the average distance discussed
in the last paragraph. To do this a measure ofroundness
is used. Let all examples that belong to a prototype be
called the cluster of that prototype. Roundness can be
said to measure the shape of the cluster. The closer the
shape is to a ball the higher its roundness value is. A
shape that is stretched out in some directions, or is hol-
low, will get a low roundness value. Low roundness
values indicates a potentially large decrease in average
distance if a new prototype is added. When all proto-
types have clusters that are round enough no more clus-
ters are added.

If there are several differently shaped groups of data
— some spherical, some not — this method will tend to
allocate more prototypes to those that are not spherical.
Implicitly, this means that there will not necessarily be
more prototypes in areas with higher example density,
or at least the prototype density will not have the same

indication of when to spli t a prototype are givenin ap-
pendix A.

2 THE ALGORITHM

A cluster (i.e. a collection of examples) is described
by a prototype vectorp at the centre of the cluster.
The set of allN prototypesfp1; : : : ;pNgis P. An ex-
ample vectore is considered an instance of a cluster
i, described by the prototypepi , if the Euclidian dis-
tance1 betweene and all prototypes is smallest forpi ,
i.e. jpi �ej< jp j �ej for all j 6= i. This will be written
ase2 pi . If two or more prototypes are equally close
one of the closest is randomly selected.

Without loss of generality it is assumed that the ele-
ments of the example vectors are scaled to lie between
0 and 1.

First a rough outline of the algorithm will be given,
followed by a more complete description.

When an example is presented the prototype that
is closest is selected. The selected prototype is then
moved slightly in the direction of the example. This
will, after enough example presentations, lead to a situ-
ation where the prototypes are in the approximate cen-
tre of their respective examples. To control the num-
ber of prototypes two mechanisms are utilised — pro-
totype split and prototype removal. When a prototype
fulfils a certain criterion (e.g. its roundness is too low,
or it is selected more often than the average prototype)
it is divided, i.e. a new prototype is inserted at the same
position. This criterion is represented by the Boolean
functionsplit(i), which, if true, causes a prototype di-
vision. Because of the mechanism used to select and
move prototypes these two “siblings” will start to move
away from each other, defining two new (sub)clusters.
Similarly, when another criterion is fulfilled (e.g. less
than average selection of the prototype) a prototype can
be removed. As with splitting, there is a Boolean func-
tion remove(i) to decide if a prototype should be re-
moved.

1It is assumed that the examples and the prototypes are vectors in
an Euclidian space.

2

p1 is set equal to the first example e0, which under
some circumstances speed up the process.

1. Take the next exampleet and find the prototypepi

that is closest.

2. Changepi according to:

pi(t+1) = (1�k)pi(t)+ket (1)

wherek is positive and close to zero (not bigger
than one). The result is to movepi closer toet .
A typical value isk= 0:01. The same value ofk
is used for all prototypes. For a discussion about
alternative ways of definingk, see section 5.

3. For alln prototypes adjust their respective selec-
tion ratess1; : : : ;sn. This is done using:

sj (t+1) = (1�k)sj(t)+kδ(i; j) (2)

whereδ(i; j) = 1 iff j = i, elseδ(i; j) = 0.

4. If the Boolean functionsplit(i) evaluates to true
insert a copy of prototypepi at the same position
into the set of prototypes. The selection rate ofpi

and the new prototype is set to half ofpi ’s selection
rate before the division.

5. If the Boolean functionremove(i) evaluates to true
prototypepi is removed from the prototype set.

6. Repeat from step 1.

2.2 DEFINING split

There are several strategies for defining thesplit(i)
andremove(i) functions. Each set of functions will of
course determine the behaviour of the algorithm. The
interesting thing is that the utilisation of thesplit(i)
and remove(i) functions make the algorithm adaptive
to changes in the data set.

2Sliding average is an approximation of the mean, using only the
current value and the sliding average at the last iteration. For example,
the sliding average ˜x of x is defined as ˜x(t+1) = (1�c)x̃(t)+cx(t +
1), wherec is a small positive constant.

() ()
termines what to count as stable.

roundness(i) is a measure of how ball-like the body
of examples that belong to clusteri is. R(cr ;d) is a
dimension dependant function that sets the limit for
when a cluster is considered round or not. The param-
etercr is used for tuning the behaviour of equation 3.
roundness(i) is defined as:

roundness(i) =
2�d
p

Ejet �et�1j2�dp
Ejet �et�1j2

(4)

whereE(�) is the sliding average. Ford 6= 2 the theo-
retical maximum (i.e. a hyperdimensional ball) is given
by:

roundnessmax(d) =

�
2d

d+2

�� 1
2�

1
d�2

(5)

Ford= 2 an alternate set of formulas are used:

roundness(i) =
eE(logjet�et�1j)p

Ejet �et�1j2
(6)

and

roundnessmax(2) = e�1=4 (7)

The reason for using thestability function is eas-
ily understood. The statistics forroundnessand
hollownessrest on the assumption that the prototype
is at a relatively fixed position. If this is not the case,
e.g. if the prototype was just split and on it is way to
a new position, it is very likely that the statistics col-
lected will be misguiding. Therefore it is necessary to
make sure the prototype is sufficiently stable before it
is split.

2.3 DEFINING remove

A useful definition ofremove(i) is:

remove(i) = true iff si(t)<
1

γN
(8)

whereN is the current number of prototypes andγ is
a constant indicating how dependent a prototype is on

3

In this section a series of examples is presented to
demonstrate the behaviour of the DCA. The first three
examples are two-dimensional to make visualisation
easier, whereas the fourth is of higher dimensionality.

3.1 A CLUSTERING SEQUENCE

In the figure below a typical sequence is shown. The
two axes represent the two dimensions. The gray areas
represent clusters from where examples are drawn with
uniform probability. As can be seen there are three sep-
arate clusters, two circular and one rectangular. The
small white circles are prototypes. Each snapshot is
taken just before one of the prototypes splits in two (ex-
cept the last one which is taken after the number of pro-
totypes is stable).

As can be seen in the first box the first prototype
moves to stay at the centre of all three clusters. The
stability criterion then becomes high enough so that the
split function can proceed to check forroundness. With
the distributions given in this example the roundness
criterion is low enough to cause a split because of the
hollowness around the first prototype (after it has stabi-
lized). The two prototypes then divide the distributions
between them — one takes the top cluster, and the other

3.2 STABLE STATES

In this section four different examples are given. Each
example shows the result of the clustering process after
it has reached a stable state, i.e. no more divisions occur.

The first case simply demonstrates how a perfectly
round cluster results in only one prototype.

The second case shows again how the roundness cri-
terion works to eventually stop the divisions.

In the third case the examples are drawn from a Gaus-
sian distribution, twice as wide as tall, showing that the
DCA can handle this common distribution too.

3.3 ADAPTIVITY TO CHANGES IN THE

DISTRIBUTIONS

To show the incremental capabilities of the DCA a se-
quence of stable states is used. The distribution in the
first box is used until the DCA is stable and no more
divisions occur. After that the distribution is changed to
that of the second box. The prototypes therefore need
to rearrange themselves, and four of them are also re-
moved because they do not get any examples. But after
that has happened the state is again stable, and the dis-
tribution is now changed to the one in the third and final
box. Both the prototypes in box two reposition them-
selves and then get low enough values of roundness to
cause two splits, which gives the result shown in box
three.

4

15.

Before being used in this example the data was
rescaled to a range from 0 to 1. The parameter value
used where:S= 0:4, R(cr ;16) = 0:65.

Each prototype keeps a count of which letters it has
seen. When asked about which letter it represents it an-
swers with the letter it has seen most times. When a
cluster divides the count is reset. Note that the informa-
tion about the letters is not used in any way to influence
the clustering behaviour.

As can be seen in the figure 2 the DCA reaches a
level of correct classification of about 70%. Also note
that the number of clusters reach approximately 300
and then starts oscillating. This is because some proto-
types do not match enough examples and therefore have
a high risk of being removed. David J. Slate reports in
Slate and Frey, 1991 getting about 80% accuracy using
a Holland-style adaptive classifier system. This accu-
racy is higher, but their system was designed explicitly
for classification. The DCA has, in the form presented
here, no way of using the class information of the ex-
amples.

4 COMPARISON WITH OTHER
ALGORITHMS

Most other algorithms differ in one or several aspects
from the DCA (such as those mentioned above) which
make them hard to compare with the DCA. However,
below a number of algorithms are listed and contrasted
with the DCA.

SOFM Kohonen’sSelf-Organizing Feature MapsKo-
honen, 1989 are topologically arranged nodes on a
grid (of some dimensionality). A prototype in the
DCA is similar to a node in a SOFM, apart from
that changes in a node influences its neighbours
too. This causes a topological mapping from the
data space to the grid, i.e. two neighbouring nodes
will respond to similar examples. SOFM requires
a fixed number of nodes and is not incremental be-
cause the size of the neighbourhooddecreases with
time.

and ART-2 also differ in the number of examples
that need to be shown. ART-2 only needs one ex-
ample to form a new category, whereas the DCA
needs hundreds. This reflects the abstraction levels
of the two algorithms. ART-2 is modelling a high
level categorisation process, whereas the DCA is
thought to work on a lower level of abstraction.

k-means clustering Everitt, 1974 involvesk clusters.
It starts with the centres of the clusters beingk
randomly selected data points (examples); there-
after the remaining data points are successively as-
signed to the nearest (in an Euclidian sense) clus-
ter. After each assignment the centre of the clus-
ter is recomputed to be the centroid of all data
points assigned to it. The DCA is similar to the
k-means algorithm, with the additional feature that
the number of clusters can change to better repre-
sent the data. Also, the DCA does not need to store
all the data points assigned to each cluster, which
makes it computationally more efficient.

Vector Quantization (VQ) The VQ algorithm utilises
a fixed number of prototypes of the same dimen-
sionality as the data. As with the DCA the proto-
types are moved to the centre of the clusters they
correspond to. VQ is also normally incremental.
To overcome the problem to decide on the num-
ber of prototypes the VQ algorithm sometimes is
modified to initially start with an excess of proto-
types. After presenting the data those prototypes
that were not used are removed. However, this
modification only partially solves the problem be-
cause there is no way to get new nodes if data from
new clusters are presented.

Hierarchical clustering Everitt, 1974 is a collective
name of algorithms that build similarity trees of
the data. They work by joining together groups
that are similar, until there is only one group left
(initially the groups consist of single data points).
This method creates a tree where the data points
are the leaves of the tree, and the last group is the
root. Hierarchical algorithms differ from the DCA
in that they require the whole data set (i.e. they

5

0

50

100

0 500000 1e+06 1.5e+06 2e+06

P
er

ce
nt

ag
e

Time (iterations)

Number of clusters Percentage correct

Figure 2: The result of using the DCA on high dimensional data. See text for explanation.

are not incremental) and also need to calculate
the distance between all points (there are shortcuts
though). Hierarchical methods lend themselves to
data that in itself is naturally represented by a tree
(such as taxonomy).

5 DISCUSSION

The reason that the DCA is calleddistributedis that the
actions of each prototype (i.e. movement, division and
removal) are decidedlocally. This is very useful if the
algorithm is to be implemented on a parallel architec-
ture.

However, locallity has some drawbacks. It can never
be guaranteed that the solution obtained is the optimal
solution. The prototypes that DCA calculates might as
well be a local optimum.

Another drawback/feature of the DCA is that it is
history dependent. The final result depends a lot on
the previous distributions. This is because two differ-
ent mechanisms are used for adding and deleting pro-
totypes, i.e. the split mechanism isn’t the inverse of the
remove mechanism.

It is important to notice that without proper prepro-
cessing an iterative clustering method may have a very
hard job on badly scaled data. Take as an example if
one of two sensors is amplified so that its amplitude

is tripled. A previously spherical cluster will now be
stretched out in one of the dimensions. It might be the
case that points within the cluster are now actually fur-
ther away from each other than they are from points
in a neighbouring cluster. This is a problem of having
several dimensions and not knowing how they should
be scaled. The DCA currently does not deal with this
problem.

multidimensional scaling, which the DCA does not
deal with in its current version.

There are several extensions/modifications that can
be made to the DCA. Some of them have been tried,
others have not. What is important to remember though,
is that the changes should be made so the properties of
the DCA are kept — incremental operation, local deci-
sions, no assumptions about distributions and that the
number of prototypes depend on the data. All these
properties are very useful for robotic and cognitive ap-
plications. Below a number of changes are suggested:

Density matching requires that the density of the pro-
totypes is proportional to the probability density
of the examples, i.e. if two clusters are of the same
shape and size, but examples are twice as likely
to be coming from one of them, then there should
also be twice as many prototypes representing that
cluster. Using the DCA algorithm, the easiest way
to accomplish this is to allow split because of high

6

object clustering (and possibly classification) the
value could correspond to innate values (c.f. Fris-
ton et al., 1994).

Positioning of new prototypesdirectly at the exam-
ple that caused the split. When a new example
is shown and a split occurs the new prototype is
given the same position as the example (c.f. ART
networks and new categories). This could possibly
speed up the process slightly.

Adaptive k values is a common way to guarantee the
convergence of the prototypes in case of stable
example distributions. With this extension each
prototype would have its individualki , defined as
ki = k0nε�0:5

i wherek0 is a constant giving the ini-
tial value ofki , ni is the number of examples seen
by that prototype andε is a number between 0 and
0:5 determining how fast the prototype converges.
Note thatε = 0:5 giveski = k0, i.e. no conver-
gence.

Local Principle Component Analysis (PCA) per-
formed at each prototype. This is because not all
clusters need to have the same actual dimension-
ality. PCA could be used at each prototype (each
prototype having their own covariance matrix) to
determine the most important axes.

6 ACKNOWLEDGEMENTS

Many thanks to Christian Balkenius for criticism and
constructive ideas. This work was supported NUTEK,
the Swedish National Board for Industrial and Tech-
nical Development, within the ”Complex Systems” re-
search program, project P10522-1; Software Principles
for Complex Systems Interconnections and also partly
supported by the Swedish Foundation for Strategic Re-
search.

REFERENCES

Carpenter, G. A. and Grossberg, S. (1991). Art2:
Self-organization of stable category recognition. In

D fferent al Operators I. Springer, 2nd edition.
Kohonen, T. (1989).Self-Organization and Associative

Memory. Springer-Verlag, Berlin, 3 edition.
Linde, Y., Buzo, A., and Gray, R. M. (1980). An al-

gorithm for vector quantizer design.IEEE Transac-
tions on Communications, 28:84–95.

Slate, D. J. and Frey, P. W. (1991). Letter recognition
using holland-style adaptive classifiers.Machine
Learning, 6(2).

A THE ROUNDNESSCONDITION

A crucial step in the DCA is the decision whether or not
to split a prototype in two. If we follow the rule that a
prototype should be split whenever its example space is
not round enough, we need to find and explain a good
measure of roundness.

In the following, µ will denote the probability dis-
tribution of examples associated to a prototype at the
origin. We want the algorithm to be local, and therefore
require that roundness be a function ofµ, which is not
influenced by the distribution of examples in other parts
of the space.

A natural idea is then to measure the mean distance
dc between example and prototype. If we split the pro-
totype at the origin in two,dc will decrease, and it is
reasonable to split if the change indc is substantially
greater than what we obtain for uniform distribution in
a ball.

Assume therefore thatµ is absolutely continuous at
the origin, and that we split one prototype at the orign
in two, located attξ and�tξ, wheret is small. Then
the decrease ofdc will, to the first order, bet∆, where

∆ = ∆µ(ξ) = E
jξ �xj
jxj

; (9)

andx denotes a sample fromµ. It is therefore reason-
able to define thesplit gain of µ as the supremum of
∆µ(ξ) for ξ on the unit sphere.

The integral of∆µ over the unit sphere will always
have the value 2ωd�2=(d�1), whered is the dimension
andωk is the area of the unit sphere inRk+1. Hence the
split gain is minimal iff∆µ is constant.

7

whered 6= 2 is the dimension, j � j is Euclidean distance
andx andy denote independent samples from the dis-
tributionµ. Whend= 2 we instead use the expression

exp(logjx�yj)

(Ejx�yj2)1=2
: (11)

Some good properties of this definition is that it gives
a stronger condition than split gain (Theorem 1), that it
is maximal on balls (Theorem 2), and that this maximal
value is easily computable (Theorem 3).

A weakness of the definition is its numerical insta-
bility in high dimensions. Furthermore, it is singular
when the supportµ is not full-dimensional. We can
avoid these problems by replacing the exponent(2�d)
by 1. The resulting roundness condition still gives good
practical results.

B MAXIMUM ROUNDNESS

Theorem 1 For each real number s� roundnessmax,
there is another number Ts � gainmin, such that when-
ever the roundness� s, the split gain� Ts. We can
choose Ts as a continuous and strictly decreasing func-
tion of s, and such that Ts approaches gainmin, as s ap-
proaches roundnessmax.

Proof 1 We assume that the dimensiond � 3. The
remaining cases are analogous. Then defineTs as the
supremal split gain, given that the roundness is at least
s. To calculate these values seems to be difficult, but
numerical approximations should be possible to obtain.

It is immediate thatTs is a decreasing function ofs.
In order to prove the remaining statements, we consider
the infimum ofEjx�yj2�d over all distributionsµ with
Ejx�yj2 = 1 and split gain� δ. Here, as before,x and
y denote independent samples from the distributionµ,
andj � j is Euclidean distance. By a small modification
of the proof of Theorem 2 below, we can show that this
infimum is attained. In fact, we need only modifyν as
little as we please near the origin, in such a way thatµ
andν have the same split gain.

But since this infimum is attained,Ts is continuous
from the left. On the other hand, any distributionµ

clearly sufficient to prove thatEµjx�yj2�d, for µ in M,
is minimized by a ball with center at the origin.

Let µ belong toM. As the barycenter is at the origin,
the variance of distance equals twice the central mo-
ment, i.e.Ejx� yj2 = 2Ejxj2. The mass outside a ball
of radiusR is therefore less than 1=2R2. Let ν be the
measure obtained fromµ by moving all mass outside
this ball to the origin. By dividingRd into spherical
shells, we can show that the roundness ofµ is greater
than that ofν, if R is chosen larger thancd, wherecd

only dependsd.
Let m be the infimum ofEjx� yj2�d for µ in M. By

the preceding paragraph,m is strictly positive, and it
is possible to find a sequence of distributionsµk such
that allµk have support in a ball of radiuscd, and such
Eµkjx� yj2�d ! m. By functional analysis, there is a
weakly convergent subsequence ofµk. If we call the
limit distributionµ, it will be a minimizing distribution.
Hence there is at least one distribution that maximizes
roundness.

We now turn to the question of what a minimizing
distributionµ looks like. By the calculus of variation,
we must haveZ

jx�yj2�ddµ(x)� A+Bjyj2; (12)

with equality on the support ofµ. HereA andB are
some constants. We now apply the Laplace operator to
both sides of this equation. Some properties of the fun-
damental solution of the Laplace operator can be found
in Hörmander, 1990. Using these, we conclude that
µ equals� 2dB

(d�2)ωd�1
times the volume measure on the

support ofµ, whereωd�1 is the area of the unit sphere
in Rd. Hence a maximizing distribution is uniformly
distributed on its support.

Now, for a minimizing distribution, we can compute
A= Ejyj2�d, B=�

(d�2)ωd�1
2ds , wheres is the volume of

the support ofµ. This gives

Ejx�yj2�d = A+BEjyj2 = Ejyj2�d�
(d�2)ωd�1

2ds
):

(13)
Out of all uniform distributions inM, uniform distribu-
tion on the ball makes both the first and second term

8

B = �
2

Ejx�yj2 = 3D2Ejyj2 =
2d

d+2

Ejx�yj2�d = 3DA+BEjyj2=
2d

d+2
; (14)

and the estimate follows from the definition of round-
ness.2

9

