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Abstract: A new algorithm for clustering is presented — the looks at several different objects several tinebssters
Distributed Clustering AlgorithnDCA). It is designed to be or “clouds”, of points will be created, i.e. each object
incremental and to work in a real-time situation, thus makingcorresponds to one “cloud”. If the objects are suffi-
it suitable for robotics and in models of concept formation. ciently different the clusters will be separated, and it
The DCA starts with one cluster (or rathgrototypeat the  is possible to identify objects based on their cluster be-
center of the cluster), successively adding prototypes and didengings.
tributing them according to data density until a certain crite- To form these clusters a clustering algorithm is used.
ria is fulfilled. This criteria is that new prototypes do not add There exist a large number of such algorithms with dif-
enough extra precision in the representation of the data. Aerent characteristics. To be used in a real-time and in-
local measure calletbundnesss used to predict how much cremental context as the example above certain features
extra precision a new prototype will add. are necessary. The algorithm must be able to handle
new data without the need to reprocess all the previous
data. It must also be able to automatically determine
1 INTRODUCTION the number of clusters needed. Preferably it should not
make any assumptions about the distribution of the data
In this paper a new algorithm farlusteringwill be  either. Finally it should be possible to implement the
described. It is called thBistributed Clustering Al-  algorithm in an efficient way.
gorithm (DCA). Clustering is the process of grouping The DCA is an attempt to create such an algorithm.
similar data together. Clustering techniques are beinghis attempt is made since there are very few cluster-
used in many different areas, such as robotics, visioring algorithms that can handle all of the above require-
data mining, statistics, cognitive science and machinenents (see the comparison of the DCA and other com-
learning. The focus of this paper will be on cognition mon clustering algorithms in section 4).
and robotics. The prime use for clustering in these ar- The approach used by the DCA is similar in some re-
eas is for unsupervised concept formation (for a cogspects tovector QuantizatiorfVQ) Linde et al., 1980;
nitive approach to concept formation, sear@nfors, Hassoun, 1995, pp109-110. Like the VQ the DCA uses
1997 and his conceptual spaces). Take as an exara-number of prototype vectors in the same space as the
ple a robot being fed with data from 38 sensors gettingraining data. An example is said to belong to the proto-
such information as weight, colour, brightness, smelkype that is closest to it. This means that the method can
and conductivity about an object. Suppose the task ofieneralise, i.e. categorise examples that have not been
the robotis to learn to separate and identify different obencountered before.
jects that it encounters. For each object the robot gets How then is the number of prototypes decided? If
a 38-dimensional vector of sensor data, which can béhe average distance between examples and their corre-
seen as a point in a 38-dimensional space. If the robaponding prototypes is small then the information loss
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ing is also small. A small information loss means that .
endix A.

the prototype is a good representative of its examplesf?
Quite obviously each extra prototype that is added will
decrease the average distance. But is also true th? THE ALGORITHM
sometimes an extra prototype decreases the distance

substantially more than average. To understand thlsA cluster (i.e. a collection of examples) is described

conS|de_r the examples shown in fig 1a and fig 1b. by a prototype vectop at the centre of the cluster.
The first example demonstrates the advantage of afhe set of allN prototypes{ps pn}is P. An ex-

extra prototype, i.e. two prototypes clearly reduce theample vectore is considered an instance of a cluster

average distance between a data point and its promtypﬁ'described by the prototypa, if the Euclidian dis-

In the second ex_ample this is not the case. The d'V'.S'mt]ancé betweene and all prototypes is smallest for,
decreases the distance, but not nearly as much as in the Ipi — € < |pi —e| for all j # i. This will be written
. 1 — ] - .

first example. The prototype in the first example is said" _
o have a highesplit gain(see appendix A). ase € p;. If two or more prototypes are equally close

. . .. one of the closest is randomly selected.
This is the feature that is used by the DCA to decide Without loss of generality it is assumed that the ele-

on the number of prototypes. The DCA starts out with :
: . ments of the example vectors are scaled to lie between
only one prototype, successively adding prototypes a5 and 1

long as they decrease the average distance between ex—F. N h outl f the alaorith il be ai
amples and prototypes more than would be expected fc%r Irst a rough outline ot the algorithm will be given,

a homogenous distribution. Note that this is decitbed ollowed by a more complete description.
cally, i.e. only using the statistics gathered for the pro- When an example is presented the prototype that
totype about to split. is closest is selected. The selected prototype is then

As stated above the DCA should be able to operate ilmoved slightly in the direction of the example. This

a real-time and incremental context. This makes it deW'”’ after enough example presentations, lead to a situ-

sirable to be able to decide beforehand if an addition of"tion where the prototypes are in the approximate cen-

a prototype will decrease the average distance discussgﬁ’ of their respective examples. To control the num-

in the last paragraph. To do this a measur@ahdness er of profcotypes two mechanisms are uiilised — pro-
is used. Let all examples that belong to a prototype b °tYpe split a_nd p.rot(.)type re”f'o"a'- When a prototype
called the cluster of that prototype. Roundness can b Ifils a certain criterion (e.g. its roundness is too low,

said to measure the shape of the cluster. The closer ¥ it ‘? §elec'ged more often than _thg average prototype)
shape is to a ball the higher its roundness value is. Atls _(3_|V|de$,h|_.e. a_tne_vv prototype Is |:1s§rtt)edﬂ? t tge slame
shape that is stretched out in some directions, or is hofOSoN. 1MIS critérion 1S represented by the Boolean

low, will get a low roundness value. Low roundnesst_m_CtionSp”t(i)’ which, if true, causes a prototype di-
values indicates a potentially large decrease in avera asion. Because of the me‘(‘:har)lsm"usfed to select and
ove prototypes these two “siblings” will start to move

distance if a new prototype is added. When all proto- ¢ h other. defini bcl
types have clusters that are round enough no more clu way from each other, defining two new (subjclusters.

ters are added imilarly, when another criterion is fulfilled (e.g. less

If there are several differently shaped groups of dat han average selection of the prototype) a prototype can

— some spherical, some not — this method will tend to e removed. As with splitting, there is a Boolean func-

allocate more prototypes to those that are not sphericaﬁ'.onvgzmové') to decide if a prototype should be re-

Implicitly, this means that there will not necessarily be M°

more prototypes in areas With higher example density, 1jtis assumed that the examples and the prototypes are vectors in
or at least the prototype density will not have the samen Euclidian space.
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. termines What to cbunt as‘ stablé.
some circumstances speed up the process.

roundnes§) is a measure of how ball-like the body
1. Take the next exampe and find the prototypp; of examples that belong to clusteis. R(c,d) is a

that is closest. dimension depgndant_function that sets the limit for
when a cluster is considered round or not. The param-
2. Changep; according to: eterc, is used for tuning the behaviour of equation 3.

roundnes§) is defined as:

*Y/Ele —a_1|2d

wherek is positive and close to zero (not bigger roundnesf) = > (4)
. VE|&—a-1
than one). The result is to moyg closer toe. _ o
A typical value isk = 0.01. The same value ¢f ~ WhereE(-) is the sliding average. Faf# 2 the theo-
is used for all prototypes. For a discussion aboufetical maximum (i.e. a hyperdimensional ball) is given

pi(t+1) = (1-K)pi(t) + ket 1)

alternative ways of definink;, see section 5. by:
3. For alln prototypes adjust their respective selec- od \ a2
tion ratessy, ..., S, Thisis done using: roundnesgax(d) = (d—-|-2> (5)
sj(t+1) = (1—K)sj(t) + k3(i, j) (2) Ford = 2 an alternate set of formulas are used:
G e Sy (loglee—&—1])
whered(i, j) = 1iff j =i, elsed(i, j) = 0. roundnesé) — e ®)

VEla—a_1?

4. If the Boolean functiorsplit(i) evaluates to true
insert a copy of prototypp; at the same position and
into the set of prototypes. The selection ratepf
and the new prototype is set to halfmfs selection roundnesgay(2) = e/ @)

rate before the division. The reason for using thstability function is eas-

ily understood. The statistics foroundnessand
hollownessrest on the assumption that the prototype
is at a relatively fixed position. If this is not the case,
6. Repeat from step 1. e.g. if the prototype was just split and on it is way to
a new position, it is very likely that the statistics col-
lected will be misguiding. Therefore it is necessary to
make sure the prototype is sufficiently stable before it
There are several strategies for defining gmit(i)  is split.

andremovéi) functions. Each set of functions will of

course determine the behaviour of the algorithm. The 3 DEfRINING remove

interesting thing is that the utilisation of theplit(i)

and removei) functions make the algorithm adaptive A useful definition ofremovei) is:

to changes in the data set.

5. Ifthe Boolean functiomemovéi) evaluates to true
prototypep; is removed from the prototype set.

2.2 DEFINING split

1
removéi) =true iff s(t) < — 8
2gliding average is an approximation of the mean, using only the é ) S( ) yN (8)
current value and the sliding average at the last iteration. For example, . .
the sliding average of x is defined a(t + 1) = (1 — ¢)X(t) + cx(t + whereN is the current number of prototypes ayis

1), wherec is a small positive constant. a constant indicating how dependent a prototype is on



. . . . 3.2 STABLE STATES
In this section a series of examples is presented to

demonstrate the behaviour of the DCA. The first thredn this section four different examples are given. Each
examples are two-dimensional to make visualisatiorexample shows the result of the clustering process after
easier, whereas the fourth is of higher dimensionality. it has reached a stable state, i.e. no more divisions occur.

3.1 A CLUSTERING SEQUENCE

In the figure below a typical sequence is shown. The O 5606 6060 o o
two axes represent the two dimensions. The gray areas

represent clusters from where examples are drawn with
uniform probability. As can be seen there are three sep-
arate clusters, two circular and one rectangular. The The first case simply demonstrates how a perfectly
small white circles are prototypes. Each snapshot isound cluster results in only one prototype.

taken just before one of the prototypes splits in two (ex- The second case shows again how the roundness cti-
cept the last one which is taken after the number of proterion works to eventually stop the divisions.

totypes is stable). In the third case the examples are drawn from a Gaus-
sian distribution, twice as wide as tall, showing that the
DCA can handle this common distribution too.

o o o 3.3 ADAPTIVITY TO CHANGES IN THE
DISTRIBUTIONS

To show the incremental capabilities of the DCA a se-
guence of stable states is used. The distribution in the
first box is used until the DCA is stable and no more
divisions occur. After that the distribution is changed to
that of the second box. The prototypes therefore need
to rearrange themselves, and four of them are also re-
moved because they do not get any examples. But after
that has happened the state is again stable, and the dis-
© © © © tribution is now changed to the one in the third and final
box. Both the prototypes in box two reposition them-
As can be seen in the first box the first prototypeselves and then get low enough values of roundness to
moves to stay at the centre of all three clusters. Th&ause two splits, which gives the result shown in box
stability criterion then becomes high enough so that théhree.
split function can proceed to check faundnessWith
the distributions given in this example the roundness
criterion is low enough to cause a split because of the
hollowness around the first prototype (after it has stabi- |00 00 oo
lized). The two prototypes then divide the distributions % o -
between them — one takes the top cluster, and the other

o O O O O O O O O O O
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that need to be shown. ART-2 only needs one ex-
ample to form a new category, whereas the DCA
needs hundreds. This reflects the abstraction levels
of the two algorithms. ART-2 is modelling a high
level categorisation process, whereas the DCA is
thought to work on a lower level of abstraction.

Before being used in this example the data was
rescaled to a range from 0 to 1. The parameter value
used whereS= 0.4, R(c;,16) = 0.65.

Each prototype keeps a count of which letters it has
seen. When asked about which letter it represents it an-
swers with the letter it has seen most times. When a
cluster divides the count is reset. Note that the informak-means clustering Everitt, 1974 involvesk clusters.
tion about the letters is not used in any way to influence It starts with the centres of the clusters being
the clustering behaviour. randomly selected data points (examples); there-

As can be seen in the figure 2 the DCA reaches a after the remaining data points are SUCCGSSiVG'y as-
level of correct classification of about 70%. Also note  signed to the nearest (in an Euclidian sense) clus-
that the number of clusters reach approximately 300  ter. After each assignment the centre of the clus-
and then starts oscillating. This is because some proto-  ter is recomputed to be the centroid of all data
types do not match enough examples and therefore have ~ points assigned to it. The DCA is similar to the
a high risk of being removed. David J. Slate reportsin ~ k-means algorithm, with the additional feature that
Slate and Frey, 1991 getting about 80% accuracy using  the number of clusters can change to better repre-
a Holland-style adaptive classifier system. This accu-  sentthe data. Also, the DCA does not need to store
racy is higher, but their system was designed explicity ~ all the data points assigned to each cluster, which
for classification. The DCA has, in the form presented ~ makes it computationally more efficient.

here, no way of using the class information of the €X\jactor Quantization (VQ) The VQ algorithm utilises
amples. a fixed number of prototypes of the same dimen-
sionality as the data. As with the DCA the proto-
types are moved to the centre of the clusters they
correspond to. VQ is also normally incremental.
To overcome the problem to decide on the num-
ber of prototypes the VQ algorithm sometimes is
modified to initially start with an excess of proto-
types. After presenting the data those prototypes
that were not used are removed. However, this
modification only partially solves the problem be-
cause there is no way to get new nodes if data from
new clusters are presented.

4 COMPARISON WITHOTHER
ALGORITHMS

Most other algorithms differ in one or several aspects
from the DCA (such as those mentioned above) which
make them hard to compare with the DCA. However,
below a number of algorithms are listed and contrasted
with the DCA.

SOFM Kohonen'sSelf-Organizing Feature Mapso-
honen, 1989 are topologically arranged nodes on a
grid (of some dimensionality). A prototype in the Hierarchical clustering Everitt, 1974 is a collective
DCA is similar to a node in a SOFM, apart from name of algorithms that build similarity trees of

that changes in a node influences its neighbours
too. This causes a topological mapping from the
data space to the grid, i.e. two neighbouring nodes
will respond to similar examples. SOFM requires
a fixed number of nodes and is not incremental be-
cause the size of the neighbourhood decreases with
time.

the data. They work by joining together groups
that are similar, until there is only one group left
(initially the groups consist of single data points).
This method creates a tree where the data points
are the leaves of the tree, and the last group is the
root. Hierarchical algorithms differ from the DCA

in that they require the whole data set (i.e. they



Percentag

100 T

50,

=
kKl
i
| | |
1e+06 1.5e+06 2e+06

0
500000
Time (iterations)

Percentage correct

Number of clusters

Figure 2: The result of using the DCA on high dimensional data. See text for explanation.

are not incremental) and also need to calculatés tripled. A previously spherical cluster will now be
the distance between all points (there are shortcutstretched out in one of the dimensions. It might be the
though). Hierarchical methods lend themselves tacase that points within the cluster are now actually fur-
data that in itself is naturally represented by a tregher away from each other than they are from points
in a neighbouring cluster. This is a problem of having
several dimensions and not knowing how they should

(such as taxonomy).
be scaled. The DCA currently does not deal with this

5 DiIsSCUSSION problem.
multidimensional scalingwhich the DCA does not

eal with in its current version.

The reason that the DCA is callédstributedis that the
There are several extensions/modifications that can

actions of each prototype (i.e. movement, division an
removal) are decideldcally. This is very useful if the be made to the DCA. Some of them have been tried
“others have not. What is important to remember though,

algorithm is to be implemented on a parallel architec
is that the changes should be made so the properties of

ture.
However, locallity has some drawbacks. It can neveg,e pea are kept — incremental operation, local deci-
be guaranteed that the solution obtained is the optimaljong o assumptions about distributions and that the

solution. The prototypes that DCA calculates might as, ;mper of prototypes depend on the data. All these
properties are very useful for robotic and cognitive ap-

well be a local optimum.
Another drawback/feature of the DCA s that it is pjications. Below a number of changes are suggested:

history dependent. The final result depends a lot on
the previous distributions. This is because two differ-Density matching requires that the density of the pro-
ent mechanisms are used for adding and deleting pro-  totypes is proportional to the probability density
totypes, i.e. the split mechanism isn’t the inverse of the  of the examples, i.e. if two clusters are of the same
remove mechanism. shape and size, but examples are twice as likely
It is important to notice that without proper prepro- to be coming from one of them, then there should
cessing an iterative clustering method may have a very  also be twice as many prototypes representing that
hard job on badly scaled data. Take as an example if  cluster. Using the DCA algorithm, the easiest way
to accomplish this is to allow split because of high

one of two sensors is amplified so that its amplitude
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value could correspond to innate values (c.f. Fris«ohonen, T. (1989)Self-Organization and Associative

ton etal., 1994). Memory Springer-Verlag, Berlin, 3 edition.

Linde, Y., Buzo, A., and Gray, R. M. (1980). An al-
gorithm for vector quantizer desigrEEE Transac-
tions on Communication28:84—95.

late, D. J. and Frey, P. W. (1991). Letter recognition
using holland-style adaptive classifierdMachine
Learning 6(2).

Positioning of new prototypesdirectly at the exam-
ple that caused the split. When a new example
is shown and a split occurs the new prototype is
given the same position as the example (c.f. ARTS
networks and new categories). This could possibly
speed up the process slightly.

Adaptive k values is a common way to guarantee theAt THE ROUNDNESSCONDITION
convergence of the prototypes in case of stable

example distributions. With this extension eacha crucial step in the DCA is the decision whether or not
prototype would have its individu&l, defined as o split a prototype in two. If we follow the rule that a
ki = konf~*®° wherek, is a constant giving the ini- prototype should be split whenever its example space is
tial value ofk;, nj is the number of examples seen not round enough, we need to find and explain a good
by that prototype andis a number between 0 and measure of roundness.
0.5 determining how fast the prototype converges. |n the following, p will denote the probability dis-
Note thate = 0.5 giveski = Ko, i.e. no conver- tribution of examples associated to a prototype at the
gence. origin. We want the algorithm to be local, and therefore
o . require that roundness be a functionwfwhich is not
Local Principle Component Analys!s .(PCA) PEr  influenced by the distribution of examples in other parts

formed at each prototype. This is becau_se not_al f the space.

clusters need to have the same actual dimension- A natural idea is then to measure the mean distance
rhc between example and prototype. If we split the pro-
totype at the origin in twod; will decrease, and it is
reasonable to split if the change dg is substantially
greater than what we obtain for uniform distribution in
6 ACKNOWLEDGEMENTS aball.
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able to define thesplit gain of p as the supremum of
Ay(&) for € on the unit sphere.
REFERENCES The integral ofA, over the unit sphere will always
have the value®@y_»/(d — 1), whered is the dimension
Carpenter, G. A. and Grossberg, S. (1991). Art2:anday is the area of the unit sphereRft™. Hence the
Self-organization of stable category recognition. Insplit gain is minimal iffA, is constant.

prototype having their own covariance matrix) to
determine the most important axes.
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andx andy denote independent samples from the dis__clearly sufficient to prove tha,|x—y|*¢, for pin M,

o _ . . is minimized by a ball with center at the origin.
tribution . Whend = 2 we instead use the expression Let pbelong toM. As the barycenter s at the origin,

exp(log|x—y|) the variance of distance equals twice the (_:entral mo-
(Ex—y@)i2 (11)  ment, i.e.E[x—y|? = 2E|x|2. The mass outside a ball
of radiusR is therefore less than/2R?. Letv be the
Some good properties of this definition is that it givesmeasure obtained from by moving all mass outside
a stronger condition than split gain (Theorem 1), that itthis ball to the origin. By dividingR¢ into spherical
is maximal on balls (Theorem 2), and that this maximaishells, we can show that the roundnessied greater
value is easily computable (Theorem 3). than that ofv, if Ris chosen larger thagy, wherecq
A weakness of the definition is its numerical insta-only dependsl.
bility in high dimensions. Furthermore, it is singular ~ Let m be the infimum of|x—y|2~¢ for pin M. By
when the supporft is not full-dimensional. We can the preceding paragraph is strictly positive, and it
avoid these problems by replacing the expori@natd)  is possible to find a sequence of distributiggssuch
by 1. The resulting roundness condition still gives goodthat allp, have support in a ball of radiwg, and such
practical results. Eu|X—y/?"9 — m. By functional analysis, there is a
weakly convergent subsequenceppf If we call the
limit distribution , it will be a minimizing distribution.
B MAXIMUM ROUNDNESS Hence there is at least one distribution that maximizes
roundness.
We now turn to the question of what a minimizing
distributiont looks like. By the calculus of variation,
we must have

Theorem 1 For each real number & roundnesgax
there is another number ™ gaingin, such that when-
ever the roundness s, the split gain< Ts. We can
choose Jas a continuous and strictly decreasing func-
tion of s, and such thatspproaches gaigin, as s ap- /|x_y|2*ddp(x) > A+ B|y|2, (12)
proaches roundneggx -

i i with equality on the support gf. HereA andB are
Proof 1 We assume that the dimensidn> 3. The  g,,0 gonstgnts. We noF\:\f)appclgthe Laplace operator to
remaining cases are analogous. Then defy@s the  ph giges of this equation. Some properties of the fun-
supremal split gain, given that the roundness is at leagf, mental solution of the Laplace operator can be found

s. To calculate these values seems to be difficult, buf, Hormander, 1990. Using these, we conclude that
numerical approximations should be possible to obtainy ¢ als— 208 times the volume measure on the
(d 1

It is immediate thafs is a decreasing function &f —2)ay— . .
. ., support ofy, wherewy_1 is the area of the unit sphere
In order to prove the remaining statements, we consider o R ;
e o—d N . in R4, Hence a maximizing distribution is uniformly
the infimum ofE|x — y|<~¢ over all distributiongu with L .
2 . distributed on its support.
E|x—y|* =1 and split gair> d. Here, as beforesand N N
: A, Now, for a minimizing distribution, we can compute
y denote independent samples from the distribufipn 2—d (@201 < th | ¢
and| - | is Euclidean distance. By a small modification 2= EIYI” . B= » Wheresis the volume o

—2ds
of the proof of Theorem 2 below, we can show that thist® SUPPOrt oft. This gives

infimum is attained. In fact, we need only modifyas . 4 ([d=2)wg_1
little as we please near the origin, in such a way that EX—Y|* ¢ =A+BE|y]? =E|y]* ¢ - gz )
andv have the same split gain. (13)

But since this infimum is attaineds is continuous Out of all uniform distributions iM, uniform distribu-
from the left. On the other hand, any distributipn tion on the ball makes both the first and second term
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2

2d
Elx—y> = 3D2E|y?= -
x=Yl M =g13
Efx—y* ¢ ?=

3DA + BEly| (14)

T d+ 2

and the estimate follows from the definition of round-
ness.O



