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Abstract

We present an attention system that models the dynam-
ics that occur in memory in response to stimuli, which
includes habituation, novelty detection, and forgetting.
We demonstrate how such an attention system can be
used as a trigger for learning perception-action mappings.
We discuss the value of social situatedness in the form
demonstrator-learner interactions, and show results from
both simulations and robot-human experiments of a sim-
ple wall-following task.

1 Introduction

Attention

In our approach to attention, we are mainly inspired
by the Habituation Hypothesis of Selective Attention
(Cowan, 1988), which claims that rather than atten-
tion being a simple �ltering mechanism that selects
certain inputs and disposes of others, it is a system
that continually inspects all its input channels, com-
pares them to descriptions stored in memory, habitu-
ates to familiar stimuli, and has the ability to disha-
bituate if needed.

The role of habituation is to inhibit what is known
as the Orienting Response, which is a combination
of neural, physiological, and behavioural changes
that an organism undergoes when a novel or signi�-
cant stimulus is detected (Sokolov, 1963; Kahneman,
1973). What is interesting is how the orienting re-
sponse is reinstated (dishabituation), and this can
occur due to a number of factors (Balkenius, 2000).
The work we report here directly models two of these
factors: the passage of time (forgetting), and the pre-
sentation of a novel stimulus.

Attention in general involves orienting cognitive
resources to target locations likely to improve signal
detection (Posner et al., 1980). In most of the com-
putational implementations of attention the target
locations are spatial in nature, and usually involve
the computation of a saliency map, where spatial
locations compete in a winner-take-all manner (for
example (Itti and Koch, 2001)).

We are not concerned with spatial attention, i.e.
orienting to salient spatial locations where a loca-
tion's saliency is calculated with respect to its neigh-
bouring spatial locations. Rather, we are looking at

what could be thought of as temporal attention: ori-
enting to salient perceptual instances, where saliency
is calculated with respect to previous experiences.
We do not deal with spatial selection | our system
has to deal with all the perceptual sensors of the
robot.

In other words, rather than asking where are the
interesting locations given a snap-shot of the envi-
ronment, we are asking when should a snap-shot be
taken in the �rst place.

Learning in a social context

We believe that by placing a robot in a social con-
text, one can achieve an implicit transfer of informa-
tion between an experienced demonstrator (human
or robot), and the learner robot. The social con-
text provides a form of joint attention, where the two
agents can share similar experiences. There are many
phenomena that make up the �eld of Social Learn-
ing, and exact de�nitions and ideas vary between re-
searchers (for good overviews, see Galef (1988) and
Whiten (2000)). The one that describes our work
best is Stimulus Enhancement (Spence, 1937), where
the demonstrator merely acts in ways to increase the
chances that the observer perceives given events |
no information about goals is transmitted.

There are di�erent forms of interactions possible
in this demonstrator-learner scenario. The simplest
one is when the learner follows the demonstrator,
copying its actions | in this case the demonstrator
wants the learner to go through certain sensori-motor
experiences relevant to some task. This paper, and
most of our work so far, deals with this kind of inter-
action. However, we believe the social context can
also provide external stimulus rewards, which could
be used as another factor for dishabituation (Balke-
nius, 2000), and we are currently investigating this
idea (see more on this in Section 4).

Physical and social situatedness

By being situated in a physical environment, a robot
learner builds up representations of its perceptual
history, habituating to what it sees often; it begins
to ignore certain information based on the properties
of the particular environment it is in. This governs



how it reacts to stimuli, and further | how it boot-
straps new sensori-motor skills from existing ones.
Being socially situated allows the robot to do the
above more eÆciently and with more relevance to a
particular task, by implicitly utilising the knowledge
of another agent in the environment. The particu-
lar environment and demonstrator play an important
role here: if any of those were to change, the learner's
memory and task capabilities would develop di�er-
ently.

The next section describes a computational im-
plementation of an attention system with habitua-
tion. Section 3 presents an example of how attention
can be used to trigger learning necessary for the ac-
quisition of new skills. Section 4 briey discusses
the value of the social context, and is followed by a
concluding section.

2 Computational Framework for

Attention

As mentioned in the previous section, by `atten-
tion' we are referring to the interaction of struc-
tures in memory in response to stimuli, rather than
one speci�c mechanism. A computational model
should reect how perceptual information activates
stored structures for comparisons; how structures are
added, updated, and deleted; and how structures ha-
bituate to familiar stimuli, but are able to reinstate
the orientation response if required.
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Figure 1: The attention model.

In our model, inspired by Cowan's model of at-
tention (Cowan, 1988) and depicted in Figure 1, the
activation and comparisons of structures in memory
occur outside of attention, in a passive, automatic
manner. When the orienting response is reinstated
(due to novelty or forgetting), the information goes
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Figure 2: Habituation measure.

through to the focus of attention, which can cause
the creation of new structures in memory, and trig-
ger some higher-level processing, such as learning.

Several unsupervised learning approaches are
suitable for modelling these kinds of dynamics in
memory. We believe the Self Organising Feature
Map (SOFM) is an appropriate tool, and it has been
proven to be very useful in robotic implementations
(Nehmzow, 1999). The SOFM attempts to cover the
sensory input space with a network of nodes, and
edges connecting neighbouring nodes determined by
some distance measure, in our case an Euclidean dis-
tance. This has the e�ect of preserving the topology
inherent in the space. We are interested in a vari-
ation of the SOFM, where structures (nodes in the
network) grow from experience as required, rather
than being speci�ed a-priori.

We have adopted and suited to our purposes an
algorithm developed byMarsland et al. (2001), which
incorporates notions of habituation, novelty detec-
tion, and forgetting. This implementation reects
our biologically-inspired view of attention (as de-
scribed in Section 1) only in the way that nodes of
the SOFM react to stimuli; the notion of edges in the
SOFM does not explicitly stem from any biological
motivations, but rather is an inherent part of the al-
gorithm, necessary for maintaining the relationships
between nodes.

Habituation

The main asset of this algorithm is that it keeps a ha-
bituation measure for each node in the SOFM. This
measure gives an indication of familiarity, i.e. the
frequency of that node's activation, which provides
a useful heuristic. Each time a node is active, its
habituation value decreases exponentially, as shown
in Figure 2, according to:

�
dy(t)

dt
= �[y0 � y(t)]� 1 (1)

where y is the current habituation value, y0 is the ini-
tial habituation value, � determines the habituation
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Figure 3: The SOFM network. Each node in the net-
work has a habituation value that decreases whenever
that node is active, or it is connected to an active node.
A node is active when it matches the current input best.
A familiar input moves the nodes towards it, whereas a
novel one initiates the creation of a new node. Topology
is preserved through the edges connecting the nodes.

rate, and � determines the habituation asymptote.
This equation is used by Marsland et al. (2001), and
is biologically inspired.

In order to eliminate the need to tune many pa-
rameters, we set up a typical scenario, as depicted
in Figure 2: habituation decreases from 1 to 0 (y0
always 1), and always converges on the same asymp-
tote (�x the value of �, in our case to 1:05). The
only remaining parameter is the `time' parameter � ,
and will depend on the time-scale of the particular
application. Further, in addition to the active node,
its neighbours also habituate, but slower, and there-
fore use a di�erent (higher) value of � (we have used
values in the range 50{600, depending on the appli-
cation).

For the algorithm presented below, two further
parameters are required: a `minimal' habituation
threshold (h1 in Figure 2), used to determine if a
stimulus is completely unfamiliar to a node, and a
`full' habituation threshold (h2), used to determined
if a stimulus is very familiar.

By �xing these thresholds (h1 = 0:7 and h2 =
0:1), the only free parameter is still the time pa-
rameter, � , and we can use it to control how fast a
stimulus becomes more and more familiar. We can
leave the remaining parameters �xed, and thus easily
adapt the algorithm below to di�erent applications.

The algorithm

Below is a general description of the algorithm, see
also Figure 3. Note that the nodes and edges of the
SOFM form the the memory module of Figure 1.

� For each input, decide which of the existing
nodes in the network best matches it, in which
case that node `�res' and is referred to as the
`winning' node.

� Decide whether the input matches the winning
node well. This is where novelty detection oc-
curs: a threshold (on the Euclidean distance) is
used to judge similarities.

� If the input matches the winning node well, the
winning node and its neighbours habituate, and
move towards the input by some fraction of the
distance between them (update rate).

� If the input doesn't match the winning node
well, it is potentially novel | the habituation
value of the node is used to decide whether it is
novel or not, as follows:

{ if the node has only recently been added
(its habituation value is higher than h1),
then it is still being positioned in the input
space, so we don't add a new node, but
rather update it as described above.

{ otherwise, the node has �red a number of
times, and has probably settled in the right
place of the input space, so a mismatch
means novelty is detected, and a new node
is needed; we insert it half-way between the
input and the winning node (see Figure 3).

� If a node is completely habituated (its habitua-
tion value is less than h2), we `freeze' the node:
the node does not move from where it is, and
cannot be deleted. Once a node has been frozen
for a speci�c length of time, we `un-freeze' it by
setting its habituation value to half the starting
value, thus introducing `forgetting'.

� Finally, a brief note about the construction of
edges. As well as the best-matching node, the
algorithm �nds the second best-matching node.
These two nodes are then connected with an
edge (if not already connected), and this edge
has an `age' value set to 0. The rest of the edges
emanating from the winning node have their age
increased, and when they get old enough they
are deleted; further, any disconnected nodes are
deleted. This has the e�ect of constructing clus-
ters.

To summarise, the system handles attention as
follows. Nodes in the network respond and habituate
to their respective stimuli. When fully habituated,
nodes ignore further stimulation and hence do not
get updated. The orienting response is reinstated ei-
ther due to novelty detection, when a new node is
created, or due to forgetting, when a node is disha-
bituated | in both situations the stimulus is (re-)
attended to.

Notice that there are a few more parameters in-
volved in the algorithm (novelty threshold, update
rate, full-habituation time, maximum edge-age) in



Figure 4: The simulated (left) and physical (right) en-
vironments.

addition to those discussed already. Altogether the
algorithm is quite heuristic and involves many pa-
rameters, some of which arise from the choice to use
the SOFM as a learning tool, and others added to
explicitly model the characteristics of an attention
system.

Some of the parameters are more sensitive (im-
portant) and hence interesting, such as the novelty
threshold, and the length of full-habituation time,
and we regard these as free parameters that have a
signi�cant e�ect on the performance of the algorithm
(the latter is tested explicitly in Section 3). We have
tried to �x the less sensitive and hence less interest-
ing parameters to values that would work across dif-
ferent implementations, and have done so by exper-
imenting with small toy problems. We have imple-
mented the algorithm on three di�erent implemen-
tations, two of which, reported in the next section,
are on mobile robots, the third on a simulated hu-
manoid robot (Maistros et al., 2001). For each im-
plementation the free parameters are re-tuned to �t
the time-scale and the characteristics of the data for
the particular application.

Experimental setup

Throughout this paper we will be looking at experi-
ments involving one task | wall-following, in both a
simulated and physical environment. The simulated
experiments are performed using a Khepera mobile
robot simulator with a learner agent following behind
a teacher agent, both using infra-red sensors (see left
of Figure 4). The input here comes from 6 sensors
around the front of the learner. The physical exper-
iments are performed using a Real World Interface
B21 robot, and a human demonstrator; the robot can
detect and follow the human using its on-board video
camera (see right of Figure 4). The input here comes
from 20 sonar sensors around the top of the robot.
The size of the physical arena is approximately a
4.8m � 6.5m square.

In both experiments, the learner uses its built-
in following behaviour to keep behind the demon-
strator; the demonstrator executes the wall-following
task which involves moving parallel to a wall on ei-

ther side for a �xed length of time, after which an
`interrupt' makes it turn towards the middle of the
arena and adopt a wandering behaviour until a wall
is found again. Since the learner can sometimes lose
the demonstrator (in both experiments), it only in-
spects its perceptual input when the demonstrator is
in sight, that is, when it is in a social context. Oth-
erwise, the attention system would encounter situa-
tions not relevant to the task (see Marom and Hayes
(2001) for more details). This is a form of stimulus
enhancement as described in Section 1.

The algorithm in use

We want to see how well our attention system han-
dles the perceptual data. First we'll show what a
full perceptual dataset from a complete run looks
like. Since in both types of experiments the dimen-
sionality of the sensor space is quite high (6 and 20),
we have used a dimensionality reduction technique
called Principal Component Analysis (PCA), for dis-
play and analysis purposes. PCA �nds the most
statistically signi�cant dimensions, called Principal
Components, in a multivariate dataset (see A�� and
Clark (1996) for more information on PCA).

As the learner is led through the environment, we
save its sensory input at each step into a dataset; the
plots in Figure 5 are projections of the �nal dataset
onto the �rst 2 principal components found by PCA.1

In both experiments we expect to see 3 main clusters,
and they are indeed apparent in the plots: one clus-
ter is the intersection of the 2 apparent lines, which is
the area of low (weak) wall-detection, i.e. `no wall',
and as we move away from this intersection in either
direction, we reach clusters corresponding to `right
wall' and `left wall' (or vice versa), at di�erent dis-
tances from the wall. Note that in the simulation, at
very close distances from the wall there are few data
points (faint clusters). This is because the robot is
usually slightly away from the wall, and this is cap-
tured by more data points (darker clusters).

Next we want to see how the attention system
handles the perceptual data, noting that it receives
them sequentially on-line, not as a complete dataset.
Figure 6 shows the construction of the SOFM net-
work in response to incoming stimuli, at 4 arbitrary
stages. Note that here too we have had to use PCA to
reduce the dimensionality of the SOFM for display
purposes; at each stage there is a di�erent SOFM,
for which PCA �nds di�erent principal components,
and so the axes di�er (in the physical experiments)

1It's important to check how much of the variance is ac-
tually accounted for by the �rst 2 principal components, and
this is given by the sum of their eigenvalues. This gives us an
indication of how representative a 2-dimensional plot is of the
true complexity in the data. In the simulation 2 dimensions
account for approximately 95% of the total variance, com-
pared to approximately 65% in the physical experiment. This
is to be expected as there are many more physical sensors, and
they have much more noise.
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Figure 5: The full perceptual datasets from the simulated (left) and physical (right) experiments, projected for visual
purposes onto 2 dimensions determined by PCA.
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Figure 6: The construction of the SOFM network in the simulated (left) and physical (right) experiments, displayed
at 4 arbitrary stages. These are also projection onto 2 dimensions.

| what is important is the structure of the SOFM
rather than the axes that PCA decides on.

The SOFM starts with 2 random nodes, and cre-
ates new nodes and clusters as it receives the data.
In both experiments the SOFM seems to capture the
structure inherent in the data, suggesting that our
attention system handles the perceptual data as de-
sired.

3 Attention-Triggered Learning

The attention system described above is only re-
sponsible for analysing and structuring perceptual
information, a problem motivated and explained in
(Marom and Hayes, 2001). No learning has yet taken
place in terms of the acquisition of new skills. We
identify two possible ways to utilise the attention sys-
tem, for learning perception-action mappings:

1. since the SOFM algorithm produces distinct
representations of the perceptual space, one can
directly associate (link) them with correspond-
ing motor representations (grouped similarly or
otherwise). We have implemented this approach
and report it elsewhere (Maistros et al., 2001).

2. use the attention system purely as a trigger, and
perform the actual learning on the raw sensori-

motor information; while the system is paying
attention, pass the information to a separate
learning system.

In this paper we will investigate the usefulness of the
attention system in the second scenario mentioned
above. We can draw inspiration for choosing this ap-
proach from dual-process theories of memory, which
claim that the process of familiarity detection is dis-
tinct from actual storage and recall (O'Reilly et al.,
1998). We present here results mainly from learn-
ing in the simulated experiment, and briey mention
results from the physical experiment, which we are
currently analysing.

The learning of perception-action mappings is
achieved using a feed-forward neural network with
back-propagation (backprop). The input layer con-
sists of units representing the perceptual sensors (6
units), the hidden layer consists of 2 units, and
the output layer consists of 1 unit, which is a pre-
processed representation of the motor outputs, cor-
responding to a tendency to turn2. We are going to

2computed using a moving average of motor commands as
follows: the motor commands are 0, �1, and 1 corresponding
to a forward move, right turn, and left turn, respectively; these
values are saved into a short moving window on which the
average is calculated; the value used in the output neuron is
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Figure 7: The patterns passed on to the backprop network form learning events. Left: activation of perceptual sensors.
Right: activation of pre-processed motor values, representing tendency to turn. Emergent perceptual events are marked
by the vertical lines.

train this network to distinguish between moving for-
ward (low turn-tendency) when the robot is parallel
to a wall, and moving around randomly with turn-
ing (high turn-tendency), when not next to a wall.
We are not teaching the robot how to turn towards
or away from a wall, and rely on low-level coded be-
haviours for these purposes.

Whenever the learner is attentive, its raw sensor
values and (processed) motor values are used to make
up a supervised learning-pattern for the backprop
network. The network then performs the usual back-
propagation of the error in the output unit, resulting
in weight updates.

Perceptual events

We want to see how well the learning system copes
with and without attention. We recall that the atten-
tion system is attentive whenever a node responds to
the input, which occurs when nodes are not fully ha-
bituated. We can examine the learning patterns that
are passed on to the backprop network, as a result
of the attention triggering. For the most simpli�ed
case, we do not allow habituated nodes to dishabitu-
ate (forget), so the learning network is only exposed
to stimulus `events' once, where by `event' we mean a
sequence of similar stimuli, grouped by one or more
nodes (a cluster) of the SOFM.

This situation is depicted in the left plot of Fig-
ure 7. It shows the perceptual activations of the
learner's 6 sensors as it is led through the environ-
ment (0-1 on the left of the robot, 4-5 on the right,
and 2-3 in front; see Figure 8), although only the 4
side sensors are active . What is clearly visible is the
emergence of the events, and we have superimposed
vertical lines and labels to mark them.

Initially the learner is exposed to the wall on the
left (event 0); then it is exposed to a new event (event
1), which corresponds to not sensing the wall any-

the absolute value of this average, since we are not interested
in direction of turn, only in `tendency to turn'.

0

1

5

4

2 3

motors

Figure 8: A diagram of the simulated Khepera robot.

where (recall that the demonstrator turns away from
the wall at regular intervals and wanders in the mid-
dle of the arena); another new event is then encoun-
tered (event 2) | the wall being sensed on the right;
and �nally the �rst event is sensed again, because
the SOFM nodes for this event did not fully habitu-
ate the �rst time; no further attention is given, as all
the nodes are fully habituated, and no novel stimuli
are encountered.

On the right of Figure 7 we see the pre-processed
values from the motors, used to train the backprop
network. We use the perceptual event-markings from
the left plot to show how motoric events coincide
with perceptual ones. Frequent activations corre-
spond to a higher tendency to turn (hence `wander-
ing'), and this appears to occur when there is no wall
stimulation; low frequencies correspond to low ten-
dency to turn, or high tendency to move straight for-
ward, which appears to occur when a wall is sensed
on either side (hence `wall-following'). The two plots
in Figure 7 therefore suggest that the backprop net-
work would learn the correct mappings.

Full exposure vs. high selectivity

Figure 7 clearly shows the bene�t of attention-
triggered learning: the attention system has reduced
the exposure of the learning system to 3 `events', or
approximately 2400 learning patterns (out of 50000
| the length of a single run). If the learning network
can form the correct perception-action mapping, this
is of great value.

Unfortunately, this is not always the case: sin-
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Figure 9: Convergence of the backprop weights of the fully exposed (left) and highly selective (right) networks at
the learning phase, as input-output patterns are passed through from the attention system. Perceptual events are
distinguished by di�erent line types.

gle presentation of events is not always suÆcient for
weight convergence. Also, the learner can be `un-
lucky' if at the particular times that the attention
system triggers learning, the demonstrator is doing
something distracting from the task (such as turning
away from the wall because of the interrupt, or even
turning away because the learner is in the way!)

However, if we use the forgetting mechanism as
described in Section 2, the learning system can be
re-exposed to events. The actual number of times
the learning system is exposed to the same event is
governed by how long we let a node in the SOFM
stay fully habituated before we dishabituate it. If we
make this length 0, this is equivalent to no attention-
triggering at all, since the attention system is al-
ways attentive. In contrast, if we make the full-
habituation length very high, the network is exposed
to very little information, as we have seen in Figure 7.

We compare the performance of these extremes in
both the learning and recall phases. Figure 9 shows
how patterns, passed through from the attention sys-
tem, a�ect the convergence of the network weights.
Perceptual (input) and motoric (output) events are
shown as in Figure 7 (perceptual events are distin-
guished by two di�erent line types), together with
the weights: 12 input-to-hidden weights (6� 2), and
2 hidden to output weights (2�1). The left plot is for
a full-habituation length of 0, and the right plot for
40000 (henceforth referred to as the `fully exposed'
and `highly selective' networks, respectively).

Although the highly selective network receives
very few patterns, these patterns form a range of
experiences as representative as the fully exposed
network, where in the latter there is a lot of repe-
tition. The weights of the highly selective network
are therefore able to converge, almost to the point
of convergence of the fully exposed network. In fact,
less selective networks would reach that convergence

point because they would be exposed to more pat-
terns. Note that the fully exposed network converges
quite early.

To see the importance of the �nal convergence
point of the weights we look at the output re-
called by the networks after learning is completed.
To do this we let the robot wander around on its
own randomly in the environment (with an obstacle-
avoidance competence) such that it picks up random
perceptions that trigger the di�erent output values
learned through the weights (no attention is used).
Figure 10 shows the distributions of the output re-
called by the fully exposed and highly selective net-
works.

The two peaks in the output recalled by the fully
exposed network show that this network learned to
distinguish between the two types of perceptual ex-
perience: one requiring very low turn-tendency (val-
ues close to 0), corresponding to moving parallel to a
wall, and the other requiring a higher turn-tendency,
corresponding to moving randomly when not near a
wall. We also see two peaks in the output recalled by
the highly selective network, which suggests that it
too has learned to distinguish the experiences; how-
ever, in absolute value the output is higher than from
the fully exposed system, and the left peak is perhaps
not close enough to 0. This is not surprising, and is
due to the weights converging at di�erent points, as
discussed above.

To conclude, a fully exposed network converges
quite early, suggesting that exposure to so many pat-
terns is not needed. Further, such a network obvi-
ously does not make any use of the attention sys-
tem. On the other extreme, we see from a very se-
lective network that single presentations are perhaps
not quite enough, although the network learns rea-
sonably well.
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Figure 10: Distributions of the output recalled by the fully exposed (left) and highly selective (right) networks after
learning is complete; the recall is triggered by input from a wandering behaviour in order to see all the possible values
learned by the network.
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Figure 11: The number of patterns passed through from the attention system to the backprop network (left), and the
energies acquired at the testing phase (right), as a result of di�erent full-habituation lengths of the attention system
at the learning phase. Each point is an average of 100 runs (the error bars in the left plot are of negligible lengths and
therefore not shown); the length of a single run is 50000.

The e�ect of habituation

A good compromise must exist between these two ex-
tremes. In what follows, we look at the performance
of a range of networks by modifying the length of
the full-habituation time. In the plots of Figure 11,
the independent variable is this length of time, where
the experiment was repeated 100 times for each value
shown. First, to show the e�ect of habituation on the
exposure length, we plot the number of patterns pre-
sented to the network through attention-triggering,
in the left of Figure 11.

As expected, when there is no attention trigger-
ing, the learning is exposed almost all the time (the
only times it is not are when the learner loses the
demonstrator). Attention triggering provides a sub-
stantial reduction in exposure, and the less forgetting
we allow (i.e. longer time before dishabituation), the
more reduction we get.

We have seen what the recalled output looks like
(Figure 10), but how does this translate to the ability
of the robot to reproduce the task of wall-following?
To test this we place a threshold on the output neu-

ron to determine whether to adopt a `move-forward'
(low output), or a `wander' behaviour (high output).
If we consider the fully exposed system as producing
the most `correct' learning, we can decide on such
a threshold using the left of Figure 10 | a suitable
threshold would be approx. 0:015.

The learner is placed in the environment on its
own, its perceptual input is passed to the backprop
network (no attention is used), where an output is
computed. Further, a built-in `obstacle-avoidance' is
used to turn the robot when it is facing a wall, and
prevent it from hitting obstacles.3

Equipped with this combination of built-in be-
haviours and recall from the backprop network, we
calculate an energy measure which is the accumu-
lation of the robot's side sensors sensing the wall.
We use this as a measure of the robot's ability to
perform the task (higher energies correspond to bet-

3We have only taught the robot what to do when there is
a wall parallel to it, on its side; any other competencies would
require a higher representational complexity, i.e. more output
units, which we leave for future work.



ter wall-following). The right of Figure 11 shows
the (95% con�dence intervals of the) di�erent en-
ergies acquired. In addition, the energies acquired
by a hand-crafted wall-following behaviour, and a
random-wander behaviour are shown.

We see that the energy only starts to drop when
nodes stay fully-habituated for longer than 10000
steps, which is a �fth of the total run length. Below
this time, the networks are re-exposed to events just
enough times to ensure that the weights converge to
a `desired' point, and hence recall the `desired' out-
put.

To summarise, there is a substantial reduction in
the exposure of the learning system due to attention-
triggering (left of Figure 11), and this does not cause
a signi�cant decrease in the performance provided
that forgetting is allowed reasonably frequently. In
these cases the performance is almost as good as a
hand-crafted behaviour. When forgetting is less fre-
quent, the performance drops, but is still better than
a random behaviour.

Learning on a real robot

We are currently implementing the learning back-
prop system discussed in this section on the physi-
cal robot mentioned in the previous section (see Fig-
ure 4). `Attention' on a real robot is much harder,
as one is dealing with real, noisy data. Furthermore,
our robot uses 20 perceptual sensors, compared with
6 in the Khepera mobile robot simulation, making
the problem even harder.

Experimentation is also much harder as it is less
practically possible to perform many experiments
and control for all environmental conditions a�ect-
ing the sensors (lighting, air-moisture etc.) We will
discuss some early results here, but mention that we
do not have enough data yet, and require more ex-
perimentation.

We have identi�ed the emergence of perceptual
and motoric events as in Figures 7 and 9 (it is hard to
show, graphically, the activation of 20 sensors with-
out grouping them!), but have not yet been able to
achieve satisfactory weight convergence. This could
be due to not having enough data | we are currently
running more, longer experiments.

However, looking at the output recalled from the
network, as in Figure 10, is quite encouraging. We
have had to do this slightly di�erently: the robot's
wander behaviour sees much less of the wall than in
the simulated experiment, so by feeding the back-
prop network input from a wander behaviour alone
we would not see two peaks as in Figure 10. There-
fore in addition to inspecting the output from a wan-
der behaviour, we also inspect the output resulting
from a hand-crafted wall-following behaviour. If the
network has learnt correctly we expect the distribu-
tions of the two cases to be di�erent, with lower val-
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Figure 12: Distributions of the output recalled by a fully
exposed network on the physical robot, after learning is
complete; the recall is triggered by input �rstly from a
wandering behaviour and secondly from a hand-crafted
wall-following behaviour.

ues being recalled by the wall-following behaviour as
it involves the robot being parallel to a wall most of
the time (but not all the time).

The output recalled by a fully exposed network,
learning approx. 6000 patterns out of a possible
10000 (10000 steps correspond to approx. 40 min-
utes. of experimentation), is shown for wander and
wall-following behaviours, in Figure 12.

We see that on average the wall-following be-
haviour triggers lower outputs than the random be-
haviour (and these di�erences are statistically sig-
ni�cant). We cannot expect the distributions to be
completely separated because each behaviour shares
some experiences of the other, but it is encouraging
to see the di�erences mentioned.

4 Social Situatedness

The value of the social context has not been explic-
itly stressed in the paper, but is implicitly evident.
Through a `following' behaviour, the learner is ex-
posed to the parts of the environment deemed impor-
tant by the demonstrator. This helps the learner in
the perceptual `analysis' of the environment, in terms
of the task (Marom and Hayes, 2001), and therefore
in the construction of an attention network.

An interesting comparison would be between our
attention-triggered learning system, and a reinforce-
ment learning system, where the robot learns on its
own. We would expect the socially-situated robot to
learn faster, as it would not take it as long to discover
the critical (rewarding) parts of the environment. We
leave this for future work.

Finally, we are interested in implementing an-
other form of social interaction, which could serve the
role of an additional factor of dishabituation. When
a neutral stimulus is followed by a rewarding one, the
organism responds to the neutral stimulus, and this
is a form of classical conditioning (Balkenius, 2000).



In the physical experiment reported above we
have also used an additional stimulus: the human
demonstrator waves a red glove to signal to the robot
at critical parts of the task. The rewarding stimulus
in this case is rather arti�cially implanted to draw at-
tention, so strictly speaking this is not classical con-
ditioning in the sense that the rewarding stimulus
does not naturally occur in the environment without
the presence of the demonstrator. Nevertheless, for
a robot learning noisy data on-line, this could pro-
vide another useful enhancement | we are currently
analysing the results.

5 Conclusion

We have presented an attention system, motivated
from psychology and neurophysiology. With this sys-
tem, a robot, situated in a physical environment, is
able to build up perceptual representations of its ex-
periences, and habituate to stimuli present in the
environment. Additionally this system is capable of
reinstating a reaction to the environment if this is
needed, either due to novelty or to the passage of
time (forgetting). In future work the system will
also be supplemented with a mechanism for utilising
stimulus rewards.

Social situatedness is a source of implicit infor-
mation transfer. The input from an external source,
in the form of a demonstrator, is of signi�cant value
for this system, as it provides it with relevant and
well-structured experiences in terms of a particular
task. We have discussed experiments from both a
simulated environment, and a physical one involving
a human demonstrator.

Lastly, we have also seen how the attention sys-
tem is useful as a triggering mechanism for learning
new reactive skills, and since the system determines
when learning of perception-action mappings is trig-
gered, the level of exposure provided by the attention
system is important.
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