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Abstract* 
We propose that the development of causality can be seen as a 
primitive for understanding and constructing complex systems 
either biological or artificial. Furthermore, we put forward a 
view of development in terms of the control of complexity. 
Although some of these elements are at the moment speculative 
or barely outlined, the theoretical test and verification are part of 
the ongoing research. On the artificial side, we will show how 
developmental principles are used within the architecture of a 
humanoid robot. The reference problem is the ontogenesis of 
sensori-motor coordination. Visual, acoustic and inertial cues 
constitute the sensory repertoire of the robot; computation, in the 
form of mappings, represents its brain activity. The continuous 
and meaningful adaptation during the natural interaction of the 
robot with the environment is one of the key aspects of the 
implementation. 

1. Introduction 
We advocated in the past that the principles of biological 
development are helpful to understand how to design and 
construct complex artificial systems (Metta, 2000; 
Sandini, 1997; Sandini, Metta, & Konczak, 1997). 
Although, there might be a consensus on the “general 
principles” underlying this idea (as others worked pretty 
much along the same direction; for example (Berthouze & 
Kuniyoshi, 1998; Brezeal, 2000; Brooks, 1996; Kozima & 
Zlatev, 2000; Pfeifer & Scheier, 1998; Takanobu et al., 
2000)), we would like to put forward a tentative manifesto 
of what development should mean when applied to, for 
instance, humanoid robots. Many times developmental 
principles have been used as a source of inspiration but in 
a few cases with the intent of building a truly adaptive 
system. Machine learning techniques, for example, have 
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been employed in robotics in a few circumstances 
(Atkeson et al., 2000; Miyamoto et al., 1996; Schaal & 
Atkeson, 1998). The usual procedure though was that of 
collecting the data, training the machine, and eventually 
controlling the robot. These three steps were performed 
off-line and partially by hand, no further adaptation was 
included – there are certainly exceptions such as (Schaal, 
Atkeson, & Vijayakumar, 2000). Our approach is 
different; it is ecological in the sense that what is 
significant is the robot and its environment; the robot has 
to gather its own training set to solve a particular task, and 
in doing so it shows adaptation. We consider a time-
variant system, while the previous case can be regarded 
for any practical purpose as time-invariant. 
It is fair to say that we do not have any all-encompassing 
solution already established, but rather we strive to 
provide principles, which can evolve into a theory of 
developing systems. This theory should tell us both how 
to understand and how to construct developing systems – 
i.e. inherently time-variant (and possibly complicated) 
artificial systems. Quartz et al. (Quartz & Sejnowski, 
1997) pointed out that time-variance poses difficulties, far 
too often overlooked. 
The “understanding” part of this hypothetical theory 
should provide means to identify which elements are 
important to comprehend a biological system. This has 
been called the physiology problem: that is, describe how 
something works (Rosen, 1991). The more powerful 
“constructive” part should provide guidelines and design 
principles on how to build the particular system we 
investigate on (e.g. a humanoid robot). To address the 
physiology problem a developmental approach is 
advantageous. In fact, by studying how the system is 
constructed, we might be able to explain its functions as a 
whole, as well as, the relative role of its components. For 
the second problem, development is essential, because our 
very goal is to mimic it: i.e. to build a system able to grow 



and to show adaptation over a long time span (the whole 
life-cycle). 
Artificial intelligence, artificial life, as well as artificial 
vision, just to mention a few, have made clear that non-
adaptive systems usually fail in the real world (Brooks, 
2001), and real adaptation is difficult to obtain and 
control. What is missing? There are a few proposals 
(Brooks, 2001; Penrose, 1989): we would like to add a 
new one: that the solution has to be found in development. 

2. Development itself 
Although a complete account of human sensori-motor 
ontogenesis is outside the scope of this paper, we would 
like to introduce a few aspects that can be seen as the first 
step to theoretically explain development, and to 
investigate which are the applications to artificial systems. 
The main difference in terms of approach can be stated as: 
modularity versus integration. 
The critic we put forward to the modular approach, 
especially in engineering, is that to make the problem 
tractable, very often, complex systems are divided in 
small parts, which are analyzed in isolation. 
A different approach is taken by biological systems. 
Newborns, for example, at birth are an already integrated 
system. Many “modules” are still non-functional or they 
function differently from their “adult” counterpart: neural 
growth is not completed (Leary, 1992), motor control 
limited (Konczak, Borutta, Topka, & Dichgans, 1995), but 
the sensorial, motor and cognitive abilities are nicely 
matched. Adaptation is in the very fabric of the system: 
we can observe the general tendency of a smooth shift 
from simpler to more complicated. 
Thus, developmental studies have the chance to provide 
both theoretical contributions to the understanding of 
time-variance in large-scale systems, and a more complete 
account on what living systems are made of. This 
alternative approach seeks for rules that govern the 
dynamics of the system at different levels (Kelso, 1999), 
where not necessarily the system has to be decomposed in 
any particular way. 
To get closer to the development of causality as a 
primitive, the next step is to try to reformulate 
development in a more computational framework; this can 
be done starting from machine learning theory and 
statistics. 

Complexity control as a model of development 

It has been recognized that learning from examples is an 
ill-posed problem (Poggio & Torre, 1990; Vapnik, 1998). 
Recently a probabilistic-theoretical analysis formalized 
this problem, and we suggest here that it provides hints on 
the nature of development (as introduced in the previous 
section). This is true of course if we admit that a good part 
of learning can be subsumed under the function 

approximation problem1. The typical problem of learning 
from examples is, generally speaking, that of tuning the 
parameters of the approximator in order to get the output 
as close as possible to the examples. While this is sound, 
and would eventually work if we were provided with an 
infinite training set (in the limit), a more accurate analysis 
for a finite training set reveals a different story. In practice 
if we use a learner which has too many parameters to tune 
with respect to the number of training samples, the results 
is what is called “over-fitting”: that is, a very good 
approximation but a very poor generalization. Vice versa, 
being too cautious might lead to an over-smoothing: an 
inadequacy of the model to grasp the complexity of the 
problem. The central issue is thus that of balancing the 
model complexity in order to do what is not too bad. The 
theory, which formalizes this situation, is known as 
Statistical Learning Theory (SLT) (Evgeniou, Pontil, & 
Poggio, 1999; Vapnik, 1998). 
Given SLT, how do we relate it to development? The 
fundamental idea is that complexity control is what 
development is all about. Neural processes, as suggested 
in (Johnson, 1997), come in two flavors: growing and 
pruning (Edelman, 1988). As two view originated from 
this different modes of controlling complexity, often they 
were at odd one to another (Quartz & Sejnowski, 1997). 
SLT instead tells us that the two processes are equally 
necessary. Starting from a psychological perspective, 
Turkewitz et al. (Turkewitz & Kenny, 1982) pointed out 
that the limitation of newborns’ sensori-motor abilities 
might be beneficial for learning – we explain this in terms 
of the control of complexity: it is better to start with a 
simpler system. In distinguishing between learning and 
development, the latter is concerned specifically with the 
control of the complexity and the structure of the learner. 
Learning is the mere adaptation of the parameters 
irrespective of the structure itself. Learning can and must 
be fast to adapt to impelling exigencies –think about the 
amazing ability of biological systems to learn from a 
single example. A more fundamental difference, and 
concurrently, a powerful constraint posed on the 
developing agent is that the training data does not come 
for free: gathering information has always a cost. To get 
representative data of the whole state space can take an 
infinitely long time (the time required is exponential in the 
number of dimensions). The agent cannot devote all its 
effort to exploration because otherwise no task would be 
ever achieved. This issue has been called the exploration-
exploitation dilemma (Sutton & Barto, 1998). Any real 
learning system has to face this problem and adopt 
strategies to cope with it. It is also worth noting that for a 
real agent, the cost of failure might be very high and thus 
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errors must be weighed accurately. The general pattern of 
development, “from simpler to more complex” now 
makes even more sense. We suggest that the initial 
sensori-motor coordination schemes, which are mostly 
reflex-like, might serve exactly this purpose: i.e. 
bootstrapping safely the system. 
It is clear that to put development in its “ecological” 
context shifts the problem towards that of collecting the 
training data. This is to say that we have to deal with 
action, and the very capacity to learn is that of finding 
representative data without incurring into severe penalties 
in terms of basic drives (e.g. feeding, mating, etc). 
Further, the way exploration is performed – the quality of 
training – depends strongly on how the system acts. 
Because of this also perception is doomed to be derived 
from actions. The capacity of categorization emerges out 
of the sensori-motor coordination patterns. Sensory 
processing alone does not make that much sense – action 
must be a prior of perception. 

3. The primacy of action 
The reason why this position is tenable comes from one of 
the most fascinating discoveries of the neurophysiology of 
the last decade: that is mirror neurons (Fadiga, Fogassi, 
Gallese, & Rizzolatti, 2000; Rizzolatti, Fadiga, Gallese, & 
Fogassi, 1996). A lot of discussion has originated from 
this finding, because it is thought to provide the missing 
link between action and perception. Mirror neurons are a 
class of neurons found in the monkey’s frontal cortex 
(area F5). A particular mirror neuron is activated both 
when the monkey executes an action and when it observes 
the same action performed by somebody else: hence the 
name mirror. Recently Fadiga et al. (Fadiga et al., 2000) 
provided evidences of the existence of a mirror system in 
humans. 
The importance of the discovery lies in the possibility to 
relate mirror neurons to gesture recognition (e.g. grasping, 
tearing, holding, etc), language (Fadiga & Gallese, 1997), 
and imitation learning (Rizzolatti & Fadiga, 1998). 
Roboticists too were attracted by this possibility (Mataric, 
2000). 
Another older but important discovery is related to 
another class of neurons in area F5 called canonical 
(Rizzolatti & Gentilucci, 1988). They are what might be 
called the coding of Gibsonian affordances in neural 
terms. These neurons are responsive to action execution 
(grasping for instance) but also when the monkey sees the 
“graspable” object. There is an explicit coding of how a 
given object can be grasped or manipulated: e.g. area F5 
distinguishes between a precision grip and a full palm 
grip. 
To relate this description back to development we need to 
analyze what is learnable and which conditions are 
required for learning to take place. The advantage of this 
line of reasoning is that we may consider only those 

models where temporal consistency is preserved. If we 
assume certain skills and motor control abilities at a given 
age, we may only employ those to further develop new 
modules. Automatically, we rule out impossible solutions 
where a particular feature is used before being learned. 
For example, without any further assumption mirror 
neurons are not learnable. They are at the same time 
needed for imitation, and vice versa, imitation is required 
to build a mirror system (a solution is proposed in the 
following section). 
On a more practical basis, what we propose is to put 
action at the foundation of more cognitive functions, such 
as categorization. Developmentally, if action has to be a 
prerequisite of perception, we should observe a different 
developmental progression of the dorsal versus the ventral 
stream. This question has been investigated, for example, 
by Kovacs (Kovacs, 2000) who provided supporting 
evidence in this direction. Wexler et al. (Wexler, Panerai, 
Lamouret, & Droulez, 2001) addressed a similar issue in 
human behavior and they have recently shown how 
movement can influence perception. From the 
evolutionary perspective this whole schema makes sense, 
since it is likely that cognition emerged on top of a 
preexisting motor control substratum. 
In robotics, theories where action had a sort of primacy 
have been already proposed in the past; for example the 
active vision or purposive vision paradigms (Aloimonos, 
1990; Bajcsy, 1985). The critic we move to those 
proposals (although we generally agree with them) is that 
action was eventually exploited a little. It was never a 
fundamental component in the sense we are proposing 
here. Other approaches where a model of, for instance, 
mirror neurons has been attempted (Mataric, 2000), have 
neglected the learning aspects and the learn-act-perceive 
(in random order) loop that we argue it is fundamental. 
Yet this is not the most fundamental element we need to 
“close the loop”. 

4. Looking for primitives 
To recap we proposed that: i) development can be 
modeled as complexity control, and linked to action by 
the necessity to develop the capacity to collect “good 
data” while interacting with the environment, and ii) the 
ability to act in the real world assumes a pivotal role for 
the acquisition of complex cognitive abilities. 
Although not immediately obvious the key aspect of 
learning and development has to be found in causality. 
Causality has to be intended as the ability to relate action 
execution – as determined by the efferent copy and 
sensory afferences relative to the movement (visual, 
kinesthetic, etc.) – to its sensorial consequences. To put 
things together either biological or artificial systems have 
to use an at least very basic “understanding” of causality. 
If we examine, simple motor control abilities, where, 
qualitatively speaking, coordinate transformations 



regulates the behavior (Laquaniti & Caminiti, 1998), we 
find that all what is needed for learning is to causally 
relate the relevant quantities. Behaviorally, Von Hofsten 
and colleagues (Von Hofsten & Rosander, 1997), for 
example, have shown that the coordination of eye and 
head smooth pursuit develops by first synchronizing the 
movements, and subsequently, by tuning the amplitudes. 
This can be interpreted in terms of causality as the 
necessity to learn the correct relationship between the 
causes and the effects – in engineering terms this is called 
credit assignment. 
Beside motor control, we can show that by exploiting a 
basic understanding of causality we can conceptually 
solve other learning problems such as categorization or 
build a mirror representation. The first problem can be 
tackled by observing that objects can be classified 
pragmatically on the basis of the affordances as 
previously mentioned. Affordances are the characteristics 
of the object available for exploitation by action. For 
example, a glass has the grasping, pouring water into, 
holding, breaking, and so on affordances. In order to learn 
affordances, action is necessary. Learning signal are 
measured directly at the sensory level: for example, 
grasping is successful if the baby acquires possession of 
the object. An object, on this basis is defined as the spatio-
temporal boundaries of the sensory and motor information 
due to the particular action being performed. 
Finally, a new consequence for interpreting the driving 
forces behind development emerges: the progression of 
the ability to detect causally related events becomes itself 
the driving force motivating the learning of more and 
more complex skills. A link of causality to the basic 
“drives” of the agent is realized at this point. Rephrasing 
the grasping example, getting possession of the object is 
reinforced because it is motivationally pleasant. Most of 
the difficulty of the task is though in the understanding of 
causality. The role of the motivations appears to be 
conceptually simpler. 
By rethinking Piaget (Piaget, 1936), where he described 
the ontogenesis of causal understanding, we can focus on 
the development of causality as the most difficult of our 
mental tasks. If we solve it, we have grasped a powerful 
principle to guide a stable learning. This would be the 
building block of a system, which is not limited to any 
particular task, but open to progressive learning. 
As a first step for our theories of development we 
designed and constructed a test bed shaped as a humanoid 
robotic system: Babybot (Metta, Sandini, & Konczak, 
1999). Babybot consists of a robot head, arm, and torso 
for a total of twelve degrees of freedom (see figure 1). The 
sensory system is composed of cameras, microphones, an 
inertial device and motor encoders. Babybot’s vision is 
space variant: the robot observes the world through a 
high-resolution fovea and a progressively lower resolution 
periphery (Sandini & Tagliasco, 1980; Schwartz, 1980). 
Sound is acquired by means of two microphones, and 

plastic earlobes provide directionality. The inertial sensors 
mimic the corresponding biological vestibular system and 
the motor encoders give a sort of kinesthetic sensation to 
the robot. Actuators are torque controlled whenever 
relevant to the robot behavior to simulate the low-stiffness 
characteristics of muscles and to provide a natural 
mechanical compliance. Learning is carried out by 
growing neural networks as described in (Metta, 
Carlevarino, Martinotti, & Sandini, 2000). 
The reference problem we investigated on Babybot has 
been that of sensori-motor coordination, and in particular 
orienting and reaching towards an object identified 
because of vision and/or audition. 
 

 

Figure 1 The Babybot. See text for details. 

5. A practical implementation 

Learning to act 

Babybot is capable of learning coordinate movements 
starting from an initial stage where the control is mostly 
reflex driven. The initial reflexes here provide a way to 
initially direct learning along a particular route. Examples 
are an initial tendency to perform small saccades although 
embedded in a strong noise, and a complex synergy 
mimicking an early human reflex called Asymmetric 
Tonic Neck Reflex (Metta et al., 1999). The exploration 
of the environment, besides being initiated from the very 
beginning of the robot’s “life”, is driven by a combination 
of the reflexes with an endogenous noise generation 



process. The latter is meant to mimic all the limitations 
and the defective control present at birth because of 
uncompleted neuronal growth (e.g. myelination) or 
excessive connectivity (Leary, 1992). 
The specific sequence of developmental events is roughly 
similar to that observed by Von Hofsten and colleagues 
(Bertenthal & Von Hofsten, 1998) in humans. During the 
first stages only eye movements are attempted and an 
appropriate map is learned which causes the robot to 
improve its gazing performance. Concurrently, self or 
externally generated movements contribute in stimulating 
the vestibular system. Another neural network, together 
with basic visual processing abilities learn how to tune the 
robot’s vestibulo-ocular reflex (VOR) (Panerai, Metta, & 
Sandini, 2000). In a successive stage, head movements are 
initiated, and a new map connects them with the VOR and 
the already formed eye movements. This developmental 
trend is beneficial to the robot for at least two reasons: i) 
learning can address one problem at the time, and 
consequently the correct explorative strategy can be 
applied without disturbing the functioning of other 
modules; ii) the remaining degrees of freedom are 
coordinated simply by stereotyped reflexes that although 
non-adaptive provide a way to keep the system in a status 
of ongoing exploration. During a successive stage 
Babybot learns another map to convert gaze direction into 
reaching commands (Metta et al., 1999). The control 
schema of the arm is biologically inspired from the theory 
of Bizzi and colleagues (Mussa-Ivaldi & Bizzi, 2000; 
Mussa-Ivaldi & Giszter, 1992). More maps, with the help 
of vision, can be learned: i) to control the head 
movements in order to attend an auditory stimulus; ii) to 
align auditory and visual map of space in order to 
integrate, when feasible, the sensory cues. 
It is worth stressing that learning here is continuously 
carried out on-line – this is not commonly the case in 
robotics. We did not distinguish between the training and 
testing stage. The robot explores and acts (exploits) at the 
same time. 
Figure 2 shows the relationships and time sequence of 
learning events of the Babybot. As an example of the 
behavior of the algorithms employed within the Babybot’s 
architecture, figure 3 shows the acquisition of the 
movement of the head to attend an acoustic stimulus. In 
particular, the mean and standard deviation of the error are 
shown (both computed over a moving window of 150 
samples). After the activation of the learning procedure 
(vertical solid line) a sharp increase of the motor 
performance can be noticed. The topmost panel shows the 
map as obtained at the end of the learning phase: the 
output is the required saccadic command, the input the 
initial error in terms of the two sensory cues used to 
localize a sound source in space. The first is the interaural 
time difference (ITD) and can be associated to the 
position of the target along the horizontal direction. The 
second is the interaural level difference (ILD) and under 

certain conditions measures the location of the sound 
source in the vertical direction. Note, as in figure 3, 
vectors point toward the origin (0,0) of the map. This is 
expected since the movement has to zero the error 
between the gaze and the target. Finally figure 4 presents 
the results of the tuning of the maps used to generate 
saccades by applying a variable resolution schema. In this 
case, we tested the effect of visual resolution in learning 
to perform saccadic eye movements. In particular we 
compared the learning performance in two conditions. In 
the first the resolution of the retina is maximum and does 
not vary with time. In the second we simulated the 
maturation of the retina and the corresponding increase of 
resolution with time. Although eventually the two maps 
should converge to the same final result, it is easy to see 
that the time-varying resolution case converges much 
faster to a usable map (learning is faster). The relative 
error between the two is more than 50% of the total 
learning for the period tested. 

6. Conclusions 
This paper dealt with the problem of defining the 
foundations of a theory that should encompass both the 
design and understanding of complex systems. The pillars 
of the theory are to be found in development. We showed 
that learning theory could describe (by means of the 
concept of complexity control) one of the goals of a 
developing agent – i.e. stable and effective adaptation. We 
argued also that learning in the real world could only be 
obtained if a further optimization of resource expenditure 
is carried out in order to gather “good” training data. It is 
clear that the training data has to be collected by means of 
actions. As soon as action becomes the concern, we are 
forced to consider the perceptual component as bounded 
to action itself. We believe that this provides a new 
vantage point to interpret difficult problems both in 
neuroscience and robotics. By framing categorization and 
action under the same explanatory principle, we expect to 
get new “algorithms” to solve old problems such as those 
found in artificial vision. At least, this is now completely 
formulated in an ecological context: the robot within its 
environment. Yet to solve the learning problems, we have 
to resort to an even more basic principle that is causality. 
Goal directness and causality are shown to conceptually 
solve learning in a general sense (not in the sense of 
providing a new algorithm). Object recognition, mirror 
neurons, reaching and motor control learning problems 
become all subsumed under the general problem of 
understanding cause-effect relationships. The 
development of the “understanding” of causality can now 
be seen as the driving force of stable learning. 
Finally, we presented the initial implementation of the 
theory on a humanoid robotic platform. We have shown 
that i) the robot successfully employs some developmental 
principles to learn sensori-motor coordination; ii) learning 



is completely carried out on-line; iii) the system is already 
integrated. Clearly motor control is only the very first 
problem to be solved. 
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Figure 2 The developmental progression of the Babybot. A representation of how the various phases of the 
robot’s development are interrelated. See text for further description. 
 

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000

trials

st
an

da
rd

 d
ev

ia
tio

n[
de

g]

pan error

tilt error

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000
trials

av
er

ag
e 

[d
eg

]

pan error

tilt error

-15-10-5051015

-15

-10

-5

0

5

10

ITD [samples]

IL
D

 [d
B

]

 
Figure 3 Example of learning curves relative to the 
acquisition of the controller of the head. 
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Figure 4 Variable vs. constant resolution map. From 
top to bottom: i) the motor error measured at the end 
of the saccade (in radians); ii) the resolution of the 
map over time (expressed in pixels); the maximum 
resolution is 1 pixel; iii) The relative error between 
the variable and constant resolution map. 

 

 



References 
Aloimonos, J. (1990, June). Purposive and 

Qualitative Active Vision. Paper 
presented at the Proc. 10th Internat. 
Conf. on Pattern Recognition,, Atlantic 
City, U.S.A.,. 

Atkeson, C. G., Hale, J. G., Pollick, F., Riley, 
M., Kotosaka, S., Schaal, S., Shibata, 
T., Tevatia, G., Ude, A., Vijayakumar, 
S., & Kawato, M. (2000). Using 
Humanoid Robots to Study Human 
Behavior. IEEE Intelligent Systems, 46-
56. 

Bajcsy, R. K. (1985). Active Perception vs. 
Passive Perception. Paper presented at 
the Third IEEE Workshop on Computer 
Vision: Representation and Control, 
Bellaire (MI). 

Bertenthal, B., & Von Hofsten, C. (1998). Eye, 
Head and Trunk Control: the 
Foundation for Manual Development. 
Neuroscience and Behavioral Reviews, 
22(4), 515-520. 

Berthouze, L., & Kuniyoshi, Y. (1998). 
Emergence and Categorization of 
Coordinated Visual Behvior Through 
Embodied Interaction. Machine 
Learning(31), 187-200. 

Brezeal, C. L. (2000). Sociable Machines: 
Expressive Social Exchange Between 
Humans and Robots. Unpublished PhD, 
MIT, Cambridge, MA. 

Brooks, R. (1996, November 4-8). Behavior-
Based Humanoid Robotics. Paper 
presented at the IEEE/RSJ IROS’96, 
Osaka, Japan. 

Brooks, R. (2001). The relationship between 
matter and life. Nature, 409(1), 409-
411. 

Edelman, G. M. (1988). Neural Darwinism: The 
Theory of Neuronal Group Selection. 
Oxford: Oxford University Press. 

Evgeniou, T., Pontil, M., & Poggio, T. (1999). A 
unified framework for Regularization 
Networks and Support Vector Machines 
(AI Memo 1654). Boston, MA: MIT. 

Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, 
G. (2000). Visuomotor neurons: 
ambiguity of the discharge of ’motor’ 
perception? Internation Journal of 
Psychophysiology, 35(2-3), 165-177. 

Fadiga, L., & Gallese, V. (1997). Action 
representation and language in the 

brain. Theoretical Linguistics(23), 267-
280. 

Johnson, M. H. (1997). Developmental Cognitive 
Neuroscience ( 3 ed. Vol. 1). Malden, 
MA and Oxford UK: Balckwell 
Publisher Inc. 

Kelso, J. A. (1999). Dynamic Patterns: the self 
organization of brain and behavior. 
Cambridge, MA: MIT Press. 

Konczak, J., Borutta, M., Topka, H., & 
Dichgans, J. (1995). Development of 
goal-directed reaching in infants: Hand 
trajectory formation and joint force 
control. Experimental Brain Research, 
106, 156-168. 

Kovacs, I. (2000). Human development of 
perceptual organization. Vision 
Research, 40, 1301-1310. 

Kozima, H., & Zlatev, J. (2000). An Epigenetic 
Approach to Human-Robot 
Communicaation. Paper presented at the 
IEEE International Workshop on Robot 
and Human Communication, Osaka, 
Japan. 

Laquaniti, F., & Caminiti, R. (1998). Visuo-
motor transformations for arm reaching. 
European Journal of Neuroscience,, 10, 
195-203. 

Leary, D. D. M. O. (1992). Development of 
connectional diversity and specificity in 
the mammalian brain by the pruning of 
collateral projections. Current Opinion 
in Neurobiology(2), 70-77. 

Mataric, M. J. (2000). Getting Humanoids to 
Move and Imitate. IEEE Intelligent 
Systems, 18-24. 

Metta, G. (2000). Babybot: a Study on Sensori-
motor Development. Unpublished Ph.D. 
Thesis, University of Genova, Genova. 

Metta, G., Carlevarino, A., Martinotti, R., & 
Sandini, G. (2000). An Incremental 
Growing Neural Network and its 
Application to Robot Control. Paper 
presented at the International Joint 
Conference on Neural Networks, Como, 
Italy. 

Metta, G., Sandini, G., & Konczak, J. (1999). A 
Developmental Approach to Visually-
Guided Reaching in Artificial Systems. 
Neural Networks, 12(10), 1413-1427. 

Miyamoto, H., Schaal, S., Gandolfo, F., Gomi, 
H., Koike, Y., Osu, R., Nakano, E., 
Wada, Y., & Kawato, M. (1996). A 
kendama learning robot based on bi-
directional theory. Neural Networks, 
9(8), 1281-1302. 



Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor 
Learning through the Combination of 
Primitives. Philosophical Transaction 
of the Royal Society: Biological 
Sciences, 355(1404), 1755-1769. 

Mussa-Ivaldi, F. A., & Giszter, S. F. (1992). 
Vector field approximation: a 
computational paradigm for motor 
control and learning. Biological 
Cybernetics, 67, 491-500. 

Panerai, F., Metta, G., & Sandini, G. (2000, 
April 2000). Learning VOR-like 
stabilization reflexes in robots. Paper 
presented at the 8th European 
Symposium on Artificial Neural 
Networks, Bruges, Belgium. 

Penrose, R. (1989). The Emperor’s New Mind. 
Oxford: Oxford University Press. 

Pfeifer, R., & Scheier, C. (1998, March, 8-12). 
Representation in Natural and Artificial 
Agents: an Embodied Cognitive Science 
Perspective. Paper presented at the 
Natural Organisms, Artificial 
Organisms, and Their Brains, Bielefeld, 
Germany. 

Piaget, J. (1936). The origin of intelligence in 
children (M. Cook, Trans.). London: 
Interntational University Press, Inc. and 
Routledge & Kegan Paul Ltd. 

Poggio, T., & Torre, V. (1990). Ill-Posed 
Problems and Regularization Analysis 
in Early Vision.: MIT A.I. Laboratory,. 

Quartz, S. R., & Sejnowski, T. J. (1997). The 
neural basis of cognitive development: 
A constructivist manifesto. Behavioral 
and Brain Sciences(20), 537-596. 

Rizzolatti, G., & Fadiga, L. (1998). Grasping 
objects and grasping action meanings: 
the dual role of monkey rostroventral 
premotor cortex (area F5). In G. R. 
Bock & J. A. Goode (Eds.), Sensory 
guidance of movement, Novartis 
Foundation Symposium (pp. 81-103). 
Chichester: Wiley and Sons. 

Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, 
L. (1996). Premotor cortex and the 
recognition of motor actions. Cognitive 
Brain Research(3), 131-141. 

Rizzolatti, G., & Gentilucci, M. (1988). Motor 
and visual-motor functions of the 
premotor cortex. In P. Rakic & W. 
Singer (Eds.), Neurobiology of 
Neocortex (pp. 269-284). Chichester: 
Wyley. 

Rosen, R. (1991). Life Itself. In C. U. Press 
(Ed.), Life Itself (0 ed., pp. 1-38). 

Sandini, G. (1997, April,). Artificial Systems and 
Neuroscience. Paper presented at the 
Proc. of the Otto and Martha Fischbeck 
Seminar on Active Vision. 

Sandini, G., Metta, G., & Konczak, J. (1997, 
November). Human Sensori-motor 
Development and Artificial Systems. 
Paper presented at the AIR&IHAS ’97. 

Sandini, G., & Tagliasco, V. (1980). An 
Anthropomorphic Retina-like Structure 
for Scene Analysis. Computer Vision, 
Graphics and Image Processing, 14(3), 
365-372. 

Schaal, S., Atkeson, C., & Vijayakumar, S. 
(2000, April). Real-time robot learning 
with locally weighted statistical 
learning. Paper presented at the 
International Conference on Robotics 
and Automation, San Francisco. 

Schaal, S., & Atkeson, C. G. (1998). 
Constructive Incremental Learning from 
Only Local Information. Neural 
Computation(10), 2047-2084. 

Schwartz, E. L. (1980). A Quantitative Model of 
the Functional Architecture of Human 
Striate Cortex with Application to 
Visual Illusion and Cortical Texture 
Analysis. Biological Cybernetics, 37, 
63-76. 

Sutton, R. S., & Barto, A. (1998). Reinforcement 
Learning: an Introduction. Cambridge: 
MIT Press. 

Takanobu, H., Guglielmelli, E., Tabayashi, H., 
Narita, S., Takanishi, A., & Dario, P. 
(2000, 7-8 September). Waseda-SSSA 
joint research for human and humanoid 
robot interaction. Paper presented at the 
First IEEE-RAS Conference on 
Humanoids - Humanoids 2000, 
Cambridge, MA. 

Turkewitz, G., & Kenny, P. A. (1982). 
Limitation on Input as a Basis for 
Neural Organization and Perceptual 
Development: a Preliminary Theoretical 
Statement. Developmental Psychology, 
15, 357-368. 

Vapnik, V. N. (1998). Statistical Learning 
Theory. New York: Wiley. 

Von Hofsten, C., & Rosander, K. (1997). 
Development of Smooth Pursuit 
Tracking in Young Infants. Vision 
Research, 37(13), 1799-1810. 

Wexler, M., Panerai, F., Lamouret, I., & 
Droulez, J. (2001). Self-motion and the 
perception of stationary objects. Nature, 
409, 85-88. 


