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Abstract
In this paper we propose a model of symbolic procedure
formation in the brain and its control architecture. In the
model, a procedure in the brain is composed of multiple
functional parts that realize subfunctions of the required
computation. An internal attention vector sequence selects and
activates these functional areas, and the processing circuit is
realized. To evaluate the plausibility of the model, a computer
simulation for acquisition of the reinforcement learning
procedure for a navigation task is conducted. Two types of
agents with different functional parts have acquired the
learning procedure, and the relation of the result with the
development of individual is discussed.

1. Introduction
Higher cognitive functions of the brain, such as
language and planning, are said to be symbolic. Piaget
interpreted the developmental process of infants as the
development of symbolic processing ability. But when
asked ÒWhat is a symbol in the brain?Ó, we cannot
provide an answer right now. In the engineering field,
symbolic processing is well known computational
process. But in the real world, it is not suitably
applicable due to, for instance, the symbol grounding
problem. On the other hand, it is obvious that brain
symbolic processing is grounded to the real world. The
understanding of brain symbolic processing is an
important research issue.

The development of intelligence in infants gives us a
hint towards resolving this problem. Adult intelligence
is very complex and is difficult to model. Studying
infant intelligence reveals the step-by-step acquisition
process of adult intelligence. By tracing the steps and
formulating a computational model of each stage, we
may reach a stage never reached before without
complication.

In this report, we study the mechanism of
intelligence that behaves as symbolic, but actually based
on a continuous computational process. For its
realization, we first study the acceleration phenomenon
of infant word acquisition process, and propose a
hypothetical model of the mechanism of mental
procedure formation for problem solving in the brain.
Then, as an example, we show a possible design for the
Q-learning procedure acquisition model using a
computer simulation of a navigation problem. Here, we
discuss on the acquisition of procedure, and not on the

learning. In this research, Q-learning is just an example
of procedure.

In the model, the internal procedure is composed of
a sequence of subfunctional module combinations. The
functional module combination is commonly observed
in the brain as the selective activation of task related
cortical areas. When we observe the system behavior
from the outside, the search process of the combination
resembles a symbolic thinking process. Finally, we
discuss how our model explains infant intelligence
development. In our view, the primary stage of
intelligence development can be understood as the
accumulation of mental functional parts and the
improvement of their combination search skills. We
discuss the importance of the mental procedure in
addition to the physical body for the realization of
grounded symbols.

2. Symbolic looking processing in brain

Concept of symbolic processing

Although the symbolic processing mechanism in the
brain is not clarified as yet, there are some features that
are commonly observed in the so-called symbolic
behaviors. The most typical ones are (1) handling of
internal representations, (2) discrete handling of discrete
representations and (3) inclusion of the search process.
On the other hand, the processing of a task that initially
requires intentional search becomes automatic after a
few iterations. The automatization of the mental process
is essential for development to realize the stepwise
increment of processing power. A model of symbolic
processing development would have to explain the
origin of the discreteness, the nature of handling, and
the process of automatization.

Implication from language development

Now we consider the case of vocabulary acquisition. In
the development of infant language ability, there is a
phenomenon of word acquisition acceleration called
Òvocabulary spurtÓ that starts around 20 months from
birth. As this behavior is not reported in chimpanzees,
there should be some mechanism behind it that is
specific to humans and human intelligence. As one of
the mechanisms, some learning strategies called ÒbiasÓ
have been reported (Imai, 1999). The object whole bias,
for example, is the tendency to attach a name to the



entire object, not a part or an attribute such as color or
size of the object. It is reported that an infant has some
rules for shape bias or category bias that enable quick
learning of words. However, these rules do not apply
always. The application of each bias is controlled
depending on the situation. Infants never apply shape
bias to an object that does not have rigid shape, such as
clay or liquid. That is, the brain internal behaviors that
correspond to various word learning biases are paired
with the conditions of application. In real conditions,
one of the biases that are suitable for the situation is
selected and applied.

From the fact that the infant word learning process is
slow at the initial stage of word acquisition, it is obvious
that an infant acquires the application situations of the
learning rules and internal learning behaviors itself in
the process of language learning.

Thus we ask, what is the brain mechanism of the
internal behavior that actually represents the learning
biases? As the selected bias differs depending on the
situation, one simple way is that the brain automatically
activates a corresponding neural circuit when it
recognizes a specific situation. By increasing the
number of situation-learning action pairs through the
language learning process, the brain system increases its
operable situations and accelerates the word learning
rate (Omori and Shimotomai, 2000).

Then, what constitutes the body of internal actions in
the brain? And how does it correspond to symbolic
processing in brain? In the next section, we propose
brain architecture model that realizes the symbolic
internal process depending on a situation.

3. Procedure representation by functional
parts combination

Computational procedure in brain

From the noninvasive measurement of the brain,
activation of different cortical areas depending on a task
is reported. As different cortical areas are assumed to
have different functions, we can imagine that the brain
system combines different functional parts, cortical
areas, to form the brain circuit that finds an answer or
proper output for the input of the moment.

For the realization of the combination process, we
introduce the notion of internal attention that activates
each cortical area separately. Due to the neural
connections that exist between most of the cortical
areas, the activation of necessary cortical areas
automatically and immediately leads to the formation of
a neural circuit that processes an input signal and
generates an output or internal state without any change
of the connections. The internal attention becomes a
vector that selects necessary cortical areas, functional
parts, to realize the processing.

Based on the concept of computation with a
conventional computer, it is natural to assume multiple
stages of the combinations that lead to the conception of
a sequential program. In that case, the cortical
processing circuit that is formed by a sequentially
changing attention vector computes data in many steps,
and the computational procedure that utilizes the result
of the preceding processing is realized. This concept of
computation is very similar to the procedures of a
conventional computer. Thus, we call the computational
circuit that is formed by the sequential selection of
cortical areas a ÒprocedureÓ (Figure 1).

From this conceptual model, it is not difficult to
explain how the natures of symbolic systems emerge in
the brain. In this model, we assumed the presence of
functional parts with the control of activation /
deactivation by internal attention. The selection of those
parts corresponds to the discreteness of the symbolic
process. Each time the system encounters new task, it
seeks the suitable functional parts and their combination
at the moment to find the required procedure. Though
we do not mention the search mechanism here, it is
natural to assume the process corresponds to the search
in a symbolic system. The procedure formation process
becomes automatic when the activation vector for the
functional parts is found and memorized corresponding
to the task situation.

Component of brain procedure system

The proposed model is composed of three major parts.
•  A set of functional parts f xi ( ) that are mutually

connected and can be activated/deactivated by the
sequence of internal attention vector a ti

K ( ) = { , }0 1 .
Here, i is the index of the parts and t is the sequence.
Between the functional parts, the connection 

ijw
interconnects the output of f xj ( )  to the input f xi ( ) .

•  An attention generator holds a table of a learned
attention vector sequence A a a aK

i i i= { }1 2 3, , ,,,,  that

corresponds to task situation K.
•  A situation detector that recognizes external input

EI and internal status SI as an already learned
situation K or a new situation.

Behavior of the procedure generation system

The behavior of the system then becomes as follows.
1. In the initial condition, any internal status SI is not

activated.
Figure 1 Schematic of computational procedure
in brain
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2.  Given an external input EI, the situation detector
recognizes combined input [SI,EI] as an already
known situation K . If no corresponding known
situation exists the situation is classified as new.

3 .  The internal attention vector sequence A K  is
activated and applied to the set of functional parts.
The internal attention a ti

K ( ) = { , }0 1  selects and
activates the adopted parts, and realizes the

complex function S f w a t fIi i ij j
K

j
j

= ( ) ( )








∑ . In the

case of Figure 2 (a), the realized function can be

described as  S f w f w f EIi i ij j jk k I= ( )( )( ).

4.  After the process of the configured processing is
finished, the time step of the attention vector
a ti

K ( ) = { , }0 1  proceeds stepwise. In the case of Figure
2 (b), the realized function is described as
Output f w f w Sn nm m mi Ii= ( )( ) .

5 .  Step 4 is iterated until the end of the attention
vector sequence AK. In some cases, a ti

K ( )  can be
single step to realize simple processing.

6 .  Steps 2 to 5 are repeated. The internal state SI

works as a context to modify the situation
recognition so that the context-dependent procedure
is realized. In a sense, SI plays the role of a variable
in the procedure of conventional computer. It is
self-evident that the acquired procedure is domain
specific.

7. If the input [SI,EI] is classified as new in the step 2,
the attention generator begins to seek a suitable
attention vector and its sequence.

Procedure search method

At this point we ask what is the method used to search
for the combination of suitable functional parts? The
physiological mechanism of module activation in the
brain is not yet known. Functionally, a gating of a
neural module or a connection between neural modules
by an internal selection signal would be sufficient to
realize the intended function. The selection of functional
parts and the connection between them has the same
effect.

The internal attention vector should have a large
dimension as there are many modules to be controlled in
the brain. Computationally, a combination of associative
memory and sequential attention can realize state
automata (Omori etal, 1999). Physiologically, there is a
hypothesis that the phase relationship between two areas
controls the functional relation between them (Bressler
and Kelso, 2001).

Change of procedure in the course of development

The procedure formation ability of a system changes
due to the following constraints.

•  Number and variation of available functional parts.
If the system has sufficient types of functional parts
that are necessary for the task of the moment, it can
compose the required procedure and solve the

problem. But if one of the necessary functional parts,
such as the working memory as described in the next
section, is lacking, the system cannot acquire the
required procedure and cannot solve the task even if
it has many unnecessary functional parts.

•  Efficiency of the method to combine the functional
parts into a single procedure. Intuitively, humans
increase the skill by experience. However the details
of the mechanism are not yet known.

•  Available length of attention vector sequence. If the
system can use a sufficiently long attention vector
sequence, it may generate a complex procedure by
iterative use of the simple parts.
Our model predicts that the relaxation of these

constraints is the mechanism underlying infant
intelligence development. The infant brain increases the
number and varieties of available functional modules by
experience and its intrinsic learning ability. The
capacity of a working memory and related memory
increases with age, although we do not know detail of
the mechanism.

The next question is, how do these constraints work
in the procedure acquisition process in the case of real
problem solving? To evaluate this issue, we try
acquisition of the reinforcement learning procedure
using our model.

(b) At the second step, parts fi,fm,fn and output are activated.

Figure 2 Example of procedure formation using the set of
     functional parts and the attention vector generator.

(a) At the first step of the functional vector, input and
   parts fi(),fj(),fk() are activated.
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4. Navigation Problem Solving Procedure

Navigation and symbolic processing

In the engineering field, path finding is a typical
example of symbolic processing that requires a tree
search for possible action combinations to acquire a
sequence of actions to reach the goal. The search
process is composed of the choice of a discrete action,
prediction of the result of the action, evaluation of the
result, memorization of the action and the evaluation,
and reorganization of the best path.

From the viewpoint of our model, the symbolic path
search procedure is just same as our combination search
behavior of functional parts except that each part is
described and implemented as a sequence of computer
program. If we can realize the same function by
searching for a suitable attention vector sequence, it
would be proof that symbolic processing in the brain
could be realized by our model. The experiment will be
more interesting if we simulate the developmental
process by changing the available functional parts.

Functional parts for Navigation

The navigation task has been studied extensively
through behavioral and physiological study. Although
there have been many enlightening findings such as the
place cell in the hippocampus, there remain many
unclarified behavior of the brain system.

An internal map is necessary for the prediction of a

traveling action result. The function of a map is realized
by a combination of (1) a recognition of current position
from sensory input, (2) a representation of current
position independent of sensory input, (3) a prediction
of next position by virtual action, (4) a temporal
memory of former position, and (5) a memory of the
action required to travel from one position to the next
position. If we properly combine these functions, we
can realize the planning function using the
environmental map. Here, the function (1) is realized by
a recognition mechanism, (2) and (4) are realized by a
working memory, and (3) and (5) by a memory of the
sequence. The function of navigation that appears
symbolic from the macroscopic view point is realized
by the proper combination of functional parts that are
not related to the symbolic processing. Actually, the
combination process of functional parts would be a
computational procedure that is easily implemented in
the brain.

Procedure Learning Method

Here, we show that the reinforcement learning
procedure for the navigation task emerges by the
combination of functional parts. The system that can
acquire this type of problem solving procedure is
expected to have the ability to acquire other procedures
even for different tasks and in different environments.

Figure 3 shows the simulated world in which the
agent learns goal-reaching behavior. The 4 by 4 grid is
enclosed by a wall. The agent moves step by step in four
directions and a reward is given when the agent reaches
the goal.

In the experiment, we prepare two types of agents.
One is the basic agent that has functional parts that are
minimum to realize Q-learning. Another is the
developed agent that has functional parts that are
necessary to realize an environmental map in addition to
those of the basic agent (Figure 4). The parts of the
developed agent are designed so that the agent can
realize prediction-based learning if those parts are used
in proper combination with proper timing.

For the attention generator, we used a two-step
sequence attention vector. Each bit of the vector
controls the on-off state, in use or not in use, of
connections between functional modules. By the use of
a two-step sequence, we can expect the outcome of a

Figure 3. Simulated world for the learning
    procedure acquisition.

Figure 4  Functional parts of the basic agent and the developed agent.
        The parts in the dashed circle are not used by the basic agent.
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procedure that uses internal states one time between
input and output. We use a genetic algorithm (GA) as
the method of searching for the attention vector. The
vector data am

K = { }0 1,  that designates the on-off state
of the connections is used as the gene. Given a gene, the
internal procedure is defined and the fitness of each
individual can be measured by the inverse of the
learning time of the agent. In this study, we defined the
learning time as the number of action steps from the
initial state until the agent has taken the shortest goal-
reaching path three times consecutively (Ogawa and
Omori, 2001).

Functional parts for the basic agent

The basic agent has functional parts of sensory input
recognition, current place representation, Q-value
memory, virtual action generator, and action decision
system (Figure 4). Figure 5 shows neural network
implementation of those parts and their interconnection.
In this implementation, we used the gating of the
interconnection instead of activation of the functional
module.

The sensory input recognition part recognizes input
signal EI, and the recognition result CPj corresponds
one-to-one with the location in the simulated world. The
current place representation is simply a set of memory
cells CPj without any relation between the locations. In
our simulation, we prepared 16 cells and their
connection for input recognition corresponding to their
simulated world location. The recognition of the place
from the sensory input is easy to be learned by
competitive learning. We did not assume a sensory
aliasing situation.

The connection Vij between the CPj and an action
representing cell Ai memorizes the expected reward
when the agent takes an transfer action i at place j.
When it is used for the action choice in the goal
reaching task, an association from CPj to Ai and
competition between the action cells select the

maximum Q-valued action at the place.

τ α
d A

dt
A V CPj

k
k i

ij j
j

= − +
≠

∑ ∑
The Q-learning mechanism is embedded by hand in

the expected reward memory. Conventional Q-learning
equation is always applied to Vij when the agent takes
action, and the Q-value evaluation is given. In the initial
state of learning, all Vij values are zero.

In the action decision layer, the actual action coding
cell ADi receives input from the Ai and a random value
generator cell Ri through the attention-gated one-to-one
connection. The lateral competition within the AD cells
selects the most activated action based on the effect of
the Q-value-based action Ai and the randomness.

τ d AD

dt
AD a A a Ri

k
k i

m
K

i n
K

i= − + +
≠

∑
In the attention vector search by GA, half the agents

with higher fitness are used for the next generation
production. Crossover pairs are decided in the order of
1st and 2nd, 2nd and 3rd ... and so on based on their
fitness value. One-point crossover is used, and
crossover point is chosen at random. The mutation rate
is 0.05. Each individual is set to the initial state, and its
learning time is evaluated. After some generations of
attention vector search, the agent acquired a typical Q-
learning procedure as was expected. As the basic agent
does not have an environmental map nor working
memory parts, its action was determined depending on
immediate sensory input, that is, selecting an action
based on the looking up table of the Q-value.

Functional parts for the developed agent

In addition to the functional parts of a basic agent, the
developed agent has functional parts of a working
memory of one step past self location PP, a place-action
to place memory PAP  and a place-place to action
memory PPA that can learn and represent the map of the
environment (Figure 4, Figure 5). The map-learning
behavior of these memory parts are embedded by the
researcher. They are updated after each action by the
following equations.

PP t CP ti i( ) = −( )1

∆PAP PP A PAP CPijk i j ijk k= × −( )
∆PPA PP CP PPA Aijk i j ijk k= × −( )

Figure 5 Neural network representation of
    developed agent
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Figure 6 shows the learning procedure acquired by
the developed agent via the GA search. As the agent has
the working memory and environmental map, it
acquired the learning procedure that makes use of a
single-step-forward Q-value without knowing the Q-
value of the current position. This accelerates Q-
learning at the border of an already learned area and an
unlearned area.

Figure 7 shows the change of maximum fitness
value within individuals over generations. As the
attention vector is short, eight bits for the basic agent,
the optimal procedure for the basic agent is found at the
first generation and the fitness value does not change
with the generation. Conversely, the vector length of the
developed agent is 16, it required five generations to
find the optimal procedure of the developed agent,
which makes use of a single-step prediction and does
not use the random action generator. As the GA
algorithm is exactly the same in both agents, the reason
for the performance difference should due to the
difference of functional parts.

5. Discussion
In the experiment, the two types of agents have different
functional parts, which induced imbalance of
controllable parameters. However, if we add
unnecessary parts for this task to the basic agent, and
counterbalance the number of parameters, we will get
the same result as long as the added parts are not useful
in any of possible parts combination. Of course the
added parts may increase the possible range of
realizable procedures in different tasks and different
environments. Thus, the number and variation of
functional parts are important for the adaptability of the
agent, but not in this task.

In this study, we assumed that the developed agent
acquired the additional functional parts somewhere
along its developmental course. Then, how are the
functional parts acquired along the developmental
course? In the real brain, the functional parts are
assumed to be self-organized through interaction
between the external input and the intrinsic neural
learning mechanism. What we have shown in this report

is the possibility of behavioral change by changing the
functional parts without any change in the attention
control system. This is a possible aspect of development
in humans and artificial agents. Although there remains
a possibility that the change of the control system
occurs simultaneously with development, it is natural to
think that most of the infant developmental change is
caused by the increase of available functional parts.

If so, what causes the change of functional parts
simultaneously with development and evolution? The
theoretical study of unsupervised learning says that the
characteristic of self-organization changes with various
parameters of the learning system, such as the number
of cells, range of lateral inhibition, latency of excitation
and so forth. The learning dynamics of self-organization
that govern the temporal scale of change is also
important to explain the gradual change in infants. It is
likely that the emergence of a processing module in the
infant brain is dependent on these innate neural system
parameter settings and on postnatal sensory experiences
that also control learning. We have to consider the
interaction between the self-organizing innate system
and postnatal environment to understand the change of
infant behavior.

Our model does not include the formation process of
each functional part. As the parts are assumed to
correspond to cortical areas in brain, the parts formation
model will have some relation to the theory of cortical
functional area formation. But little is known about a
model of the function (Omori, 1996).

In engineering viewpoint, we are proposing a partial
model of grounded symbol emergence (Hanad, 1990).
The claim that an interaction with the physical world by
a body causes resolution of the symbol grounding
problem is correct. But from our model, we consider
that both the body and processing system are necessary
for the resolution. The symbolic process in our model
cannot emerge from a conventional AI model and
physical body combination.

6. Conclusion
In this report, we explained the model of symbolic
procedure formation in the brain by functional parts
combination, and showed its effectiveness for the
navigation learning procedure acquisition. The
computer simulation result has shown that the agent can
acquire a classical reinforcement learning procedure and
its variation if it is given sufficient functional parts.

With the model, the following phenomena in symbol
processing can be explained. (1) The search process of a
new task diminishes after a suitable procedure for the
situation is found. After the parts combination is
memorized, the procedure begins to be activated
automatically in the situation. (2) A rather complex
computation procedure that uses intermediate results
and iteration can be realized with a neural circuit, if the
condition of the iteration is correctly encoded in the
situation detector. On the other hand, we have not found
a model that explains the formation of each functional
part.

Figure 6  Procedure of prediction-based learning
         by the developed agent.
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From the viewpoint of our model, intelligence
evolution is the change of innate parameters in the
brain, and it decides the range of achievable functions of
the brain. Conversely, intelligence development is the
process of functional parts acquisition and their
combinations for each recognizable situation (Figure 8).
There should be many unknown constraints that decide
the order of functional parts acquisition. When the
number of functional parts exceeds some threshold,
adaptability of the individual to its environment
explodes, and we feel the individual is intelligent. This
is our current image of intelligence. The next problem
involves model construction for the acquisition of each
functional parts.
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            Figure 7 Change of maximum fitness over generations.

Figure 8  Relationship of evolution and development
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