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Abstract 
Theory grounding is suggested as a way to address the 
unresolved cognitive science issues of systematicity and 
productivity. Theory grounding involves grounding the theory 
skills and knowledge of an embodied artificially intelligent 
(AI) system by developing theory skills and knowledge from 
the bottom up. It is proposed that theory grounded AI systems 
should be patterned after the psychological developmental 
stages that infants and young children go through in acquiring 
naïve theories. Systematicity and productivity are properties of 
certain representational systems indicating the range of 
representations the systems can form. Systematicity and 
productivity are likely outcomes of theory grounded AI 
systems because systematicity and productivity are theoretical 
concepts. Theory grounded systems should be well oriented to 
acquire and develop these theoretical concepts. 
 
Introduction 
 

Theories are used by humans, and to some extent, 
perhaps by other animal species, because of their 
practicality. Informal theories enable us to make 
predictions about social interactions and physical 
situations and inform our actions. Formal theories are 
constructed by certain adults – notably various 
academic researchers. These individuals are involved in 
disciplined and culturally organized approaches to the 
development of theory. It seems evident that young 
children also develop informal or naïve theories. For 
example, research into theory of mind holds that 
children cognitively develop skills enabling them to 
understand the behaviors of others in mental process 
terms  (Flavell, 2000; Wimmer & Perner, 1983; 
Wellman, 1990). 
 Enabling computer systems to have skills with 
theories would be useful from a practical standpoint. 
Just as humans find theories practically useful, theories 
can be useful to artificially intelligent (AI) systems. 
Theories constrain the possible set of hypotheses an AI 
system considers in its search space (i.e., they act as 
biases, Mitchell, 1980) and also improve the quality and 
increase the acquisition rate of hypotheses (Mitchell, 
Keller, & Kedar-Cabelli, 1986; Mooney, 1993). In 
short, theories help both AI systems and humans make 
generalizations. Theories used in combination with data 
enable principled generalizations to be formed. 

This paper introduces theory grounding as a new 
conceptual approach to imbuing computers with theory 
skills and knowledge. Theory grounding differs in two 
ways from traditional embedding of theory in AI 
systems. First, this approach to theory incorporation is 
grounded. This is an extension of Harnad’s (1990) 
symbol grounding and Brooks (1999) physical 
grounding. Instead of directly programming theoretical 
biases into an AI system from the top-down, we propose 
that theories should be causally connected to the world 
via sensory-motor systems from the bottom-up. 
Theories do not exist in isolation from the world. 
Rather, they formulate concepts about regularities and 
irregularities that exist in the world. Therefore, theories 
need to be grounded. Second, in a manner similar to the 
emergent behavior concept of behavior-based robotics, 
we further propose that theories should not only be 
grounded, but should also be semi-autonomously 
learned or developed by the embodied AI system. We 
make this second proposal as a direct extension to the 
rationale for grounding theories, in general. Theories are 
not just temporally isolated, static representations and 
behaviors. On the contrary, skills and understandings 
related to theories change over time because of 
additional information, data, examples etc. If the 
theories acquired by an AI system are developed or 
learned, then these theories should, as a natural function 
of that learning and development, change over time, and 
hence naturally incorporate additional information, data, 
examples etc. 
 This paper focuses on two issues in relation to 
theory grounding: (1) a rationale for theory grounding 
as a method of achieving a core goal in cognitive 
science—variously referred to as productivity, 
systematicity, and conceptual representation, and (2) a 
route to achieving theory grounding, in a fully 
developmental manner, by modeling the cognitive 
development of theory in children. After this 
presentation, we provide a few notes about 
computational mechanisms that may help in theory 
grounding. The last section of the paper closes with 
discussion and conclusions. 
 



 

 

I. Grounded Symbols vs. Grounded Theories in 
Embodied AI Systems  
The concept of symbol grounding (Harnad, 1990) or 
physical grounding (Brooks, 1999) has led to 
advancement in AI and robotics. Behavior-based 
robotics has achieved behavioral abstractions, computed 
from the bottom-up, which while not necessarily 
meeting some criteria for what all would call symbol-
type abstractions (e.g., MacDorman, 1999), have at least 
met some mid-way criteria between a level of raw 
sensory-motor configurations and symbol-type 
abstractions. For example, the steered prowling 
behavior abstraction of the six-legged robot Genghis is 
the 8th layer of the control-system architecture for the 
robot and is grounded with eight layers of processing 
modules connected to sensors and motors. Steered 
prowling is causally connected to the sensory-motor 
system of the robot, and is computed from the bottom-
up (Brooks, 1989). 

Notably lacking in this behavior-based approach is 
conceptual representation (Kirsh, 1991) and 
productivity and systematicity (MacDorman, 1999). 
Productivity and systematicity are properties of certain 
representational systems. Productivity refers to a system 
being able to encode indefinitely many propositions 
(Fodor & Pylyshyn, 1988). Systematicity occurs when 
representing a relation aRb implies the system can also 
represent bRa (Fodor & Pylyshyn, 1988). In our view, 
this “lack” of conceptual representation, productivity, 
and systematicity is not surprising if we assume a 
starting theoretical basis of symbol grounding. Not only 
is there a great deal of variation in what is considered to 
be a “symbol” in the cognitive science literature, but 
also there is little in the way of offered method to 
achieve conceptual representation, productivity, and 
systematicity in the ideas of symbol grounding. In this 
author’s view, the key contribution of symbol grounding 
is noticing that AI systems should not just have their 
internal program symbols connected to other internal 
program symbols. Rather, they should have their 
symbols connected to the real world. Such a step in our 
understanding of AI systems is necessary, but not 
sufficient to achieve other psychological features 
oftentimes associated with symbols and symbol-use, 
such as conceptual representation, productivity, and 
systematicity. 

A few examples of contemporary use of the term 
“symbol” should illustrate the variation in use of this 
term. Gallistel (2001; Gallistel & Gibbon, 2000) uses 
the term symbol to mean “an objectively specifiable 
aspect of [an] animal's experience—for example, the 
duration of a conditioned stimulus—[which] enters into 
information processing operations, such as the 
combinatorial operations of arithmetic (addition, 
subtraction, multiplication, division, and ordination)” 
(Gallistel, 2001, abstract). Gallistel argues that a purely 
associationistic view of conditioning phenomena in 

nonhuman animals is untenable, and he makes this 
argument in terms of information processing or 
symbolic models. Of course, the area of animal 
language research is also replete with symbolic 
processing claims (Herman, Richards, & Wolz, 1984; 
Prince, 1993; Savage-Rumbaugh, Murphy, Sevcik, 
Brakke, Williams, & Rumbaugh, 1993). Animals 
including rats (Macuda & Roberts, 1995), parrots 
(Pepperberg, 1992), gorillas and orangutans (Byrne & 
Russon, 1998) have also been found to have limited 
skills often associated with symbolic processing – 
recursive or hierarchical processing (Touretzky & 
Pomerleau, 1994). In the area of computational 
modeling various forms of recursive or hierarchical 
processing and systematicity have been demonstrated 
(e.g., Elman, 1991; Pollack, 1990). 
 This range of the contemporary scientific concept of 
symbolic skills or processing might be thought of as 
scientific discourse that has not yet settled on a precise 
characterization. Alternatively, and the view held here, 
it can be the case that the very concept of symbol and 
symbol processing (like the term “representation”) is 
open to interpretation and thus has a great deal of 
variation associated with it. In terms of AI systems, and 
particularly physically grounded AI systems, one can 
ask the question: What have we achieved with symbol 
grounding? It seems apparent that we have not achieved 
conceptual representation, productivity, and 
systematicity. Why? The concept of symbol and the 
associated framework of terms and concepts (e.g., see 
Fodor & Pylyshyn, 1988) do not guide us towards an 
understanding of these ideas that naturally leads us to 
realizing conceptual representation, productivity, and 
systematicity in our AI systems. 
 A theoretical proposal of the present paper is that 
conceptual representation, productivity, and 
systematicity arise as a consequence of the theoretical 
structure of a system. That is, as a consequence of the 
skills and knowledge that a system has for acquiring,  
processing, and representing theory. Theoretical 
structures enable the processing and representation of 
structures related to infinite competence (Chomsky, 
1968). It is not that a system can process infinite size or 
infinite duration structures. Any finite system will have 
finite performance limits. However, a system can have 
concepts of infinite size objects and concepts of infinite 
duration events. These are fundamentally theoretical 
skills and knowledge. It is for these reasons that 
arguments about limited depth hierarchical or recursive 
processing in nonhuman animals or computational 
systems falter. Limited depth arguments suggest that 
humans have a performance depth capacity of some 
number M and some other animal species has a 
performance depth capacity of some number N, where 
M is greater than N (e.g., Byrne & Russon, 1998). This, 
however, misses a crucial point. It is far more relevant 
that humans have concepts relating to infinity as 



 

 

opposed to being able to practically produce or 
understand sentences of some particular limited depth. 
For other animals or machines, it is more interesting to 
ask if they have concepts of infinity rather than 
practically performing to particular limited depths of 
(e.g., sentence) processing. 
 
II. Theory Understanding and Skills  
Theory grounded approaches show theoretical promise 
for resolving issues in embodied AI systems. The 
approach also offers some more specific guidance 
towards these unresolved issues. Young children 
acquire relatively broad capacities with theory 
understanding and attain understandings of various 
specific theoretical topics. The guidance offered by this 
approach is that of methods and results from child 
development and especially that of early infant 
development. Theories and data from cognitive 
development can provide us with constraints on 
designing systems that develop their own theories. We 
suggest that a way to approach theory grounding is by 
modeling the cognitive development of theory 
understanding and skills in young children. 
 Before we turn to an example of one area of naïve 
theory development in children, two issues deserve 
addressing. The first is that of development itself—we 
assume here a generally non-nativist position towards 
psychological development. The second is the 
specificity of theory acquisition. Both general and 
specific theory skills can be acquired. 
 
Why Development?  
While some theorize that theory-building skills in 
children have highly abstract innate or biological 
components (Gopnik & Meltzoff, 1997; Meltzoff, 
1999), the view taken here is that a series of cognitive 
developments must take place in children to allow them 
to think and behave theoretically. This seems reasonable 
because various theory-related skills become available 
to children at various ages. For example, it is not until 
about 5-years-of-age that children can utilize a 
representational view of others’ mental states. It is at 
this age that children start to be able to utilize 
distinctions related to appearance-reality, false-belief, 
and perspective taking (Flavell, 2000). This view, while 
also taken by others (e.g., Elman, Bates, Johnson, 
Karmiloff-Smith, Parisi, & Plunkett, 1996), is 
particularly useful here. A view of an ongoing period of 
development in acquiring theory should enable an AI 
system to more robustly respond to exceptions to the 
formed theory. 
 
General vs. Specific Theories  
There are two overall ways in which embodied AI 
systems can develop theories. First, the system can 
acquire skills and knowledge regarding a particular 
theory. For example, a theory of objects could be 
acquired covering topics such as friction, gravity, and 

agents (including self) interacting with objects. Second, 
the system could acquire the skills and knowledge 
needed to develop skills with particular theories. 
Acquiring general skills and knowledge needed for 
acquiring particular theories has been referred to as 
development of a theory theory (Gopnik & Meltzoff, 
1997). That is, acquisition of a theory about theories. It 
is this latter development that we suggest should be of 
most interest to researchers interested in theory 
grounding. If we can imbue our embodied AI systems in 
such a way that they can develop their own theory or 
theories about theories, then they should be able to 
acquire their own particular theories about the world. 

Of course, it is a question as to how far this 
approach can be taken. It may be most efficient to start 
off early and specific in terms of the type of theory 
being developed. For example, some developmental 
psychologists posit that the perception of relatively 
sophisticated social concepts occurs early in human 
infancy (e.g., Woodward, 1999). 
 
Theory of Mind  
We now turn to a specific example of naïve theory 
development in human children. We advocate theory 
grounding utilizing behavioral data and tasks from the 
experimental study of child development to constrain 
the theory-grounding problem. 

As we grow and develop from infancy through 
childhood to adulthood, humans develop skills with 
theories and come to acquire specific theories. As 
scientists, we are used to requiring that theories 
generally are testable. The specific theories developed 
and acquired by children and adults (outside academic 
contexts) appear to have some properties related to 
testable, scientific theories. One area in which we as 
humans develop such theories is the area of social 
understanding, known as theory-of-mind. Wellman 
(1990) suggests “that our naive understanding of mind, 
our mentalistic psychology, is a theory. It is a naive 
theory but not unlike a scientific theory” (p. 2). The area 
of theory-of-mind seems particularly relevant to us in 
the context of theory and symbol grounding. One aspect 
of symbol use often taken for granted is the referential 
nature of symbols. Symbols refer or are about 
something. As humans, we use symbols referentially in 
communication and this referential use typically 
involves utilizing an understanding of the intended 
receiver of the communication. That is, your theory of 
mind is involved in generating language utterances that 
you believe the other person will understand. Hence the 
referential nature of symbols has a great deal to do with 
social understanding and relates to theory-of-mind. 

Some features of theory development in children are 
fairly well established, while other aspects are still 
being filled in by empirical research. In a child’s theory-
of-mind one well established feature is that there is a 
striking change between three and five years of age on 



 

 

children’s skills on tasks such as false-belief and 
appearance-reality (Flavell, 2000). In the false-belief 
task the question of interest is: Can a child represent 
someone else as having a false belief about the world? 
A false belief can arise if a situation changes 
unbeknownst to the person. For example, if I think my 
truck has a full tank of gas, but actually the tank has 
developed a leak, and the tank is empty, then I have a 
false belief about the fullness state of my gas tank. 
Three-year-olds typically perform poorly on tests of 
false belief, whereas five-year-olds can understand that 
someone can have a false belief about the world. In 
appearance-reality tasks the issue is: Can the child 
realize that something may look like one thing and 
actually be another? For example, a fake rock can look 
like a rock but actually be a sponge. Again, the younger 
children typically perform poorly on these tasks, but the 
older children understand this distinction. Wellman 
(1990) has characterized this change from three years to 
five years as a change from desire (or simple desire) 
psychology to belief-desire psychology. Three-year-olds 
are conceived of as being able to mentally represent the 
goals and desires of others, but not being able to 
represent the beliefs of others. These children think in 
terms of object-specific desires, which while not 
propositional, do involve reasoning about others as 
having internal longings for or attitudes about objects. 
Three-year-olds do not yet reason about others as 
having attitudes about propositions. The belief-desire 
reasoning of five-year-old children does, however, 
involve attitudes about propositions. That is, the desires 
reasoned about by five-year-olds are desires about 
propositions or represented states of affairs (Wellman, 
1990). 

What is particularly important to a theory grounded 
approach to embodied AI is the development of theory 
skills from early infancy. In order to properly ground 
the theory, the theory skills of our artificial systems 
must be grounded from the bottom-up. An area of early 
infant behavior that holds promise is early causal 
learning. Watson (1972) and Rovee-Collier (1990) 
provide examples of this type of infant behavior. For 
example, Watson (1972) demonstrated that 2-3 month 
old infants rapidly learn that a mobile above their head 
is activated (by a concealed switch) when they turn their 
head. Quickly, they learn to utilize this contingency and 
cause the mobile to move and smile and coo while 
doing so. At this young age, the infants appear to have a 
learning focus on temporally contingent and structurally 
parallel features, and by 8-10 months of age, they start 
to appreciate the role of spatial contact in causality (see 
Gopnik & Meltzoff, 1997, chapter 5). These 
developmental phases may provide a fruitful modeling 
source for theory grounded approaches. Algorithms 
need to be developed that model such developments and 
do so in a parsimonious way. Of course, some innate 
primitives need to be assumed, and some environmental 

constraints need to be provided. Important aspects 
provided by the infant data include the kinds of 
perceptual features (e.g., temporally contingent and 
structural parallelism) that the infants principally attend 
to. A vital question in modeling is just how do we 
construct our developmental computations so that we do 
not have to pre-design much if any of the developmental 
sequence? How much of the developmental sequence 
can emerge as a result of the consequences of the very 
learning done by the child, and how much is a result of 
a relatively pre-programmed developmental sequence? 
 
III. A Note About Computational Mechanisms 
For Grounded Theories  
Embodied computational models of theory 
understanding have no small feat to achieve. One 
necessary issue that must be addressed in these models 
is that of modeling changes over the course of 
development. Some approaches have been offered, and 
elaboration of these techniques is needed. For example, 
in a connectionist model of the classical Piagetian A-
not-B task, Munakata (1998) represented different aged 
children using varied strength of recurrent model 
weights. The A-not-B phenomena occurs when an infant 
is first allowed to search for an object at location A, and 
then on subsequent trials with placement of the object at 
location B, the infant persists in searching at location A 
(see review in Newcombe & Huttenlocher, 2000). A 
more general connectionist approach to modeling 
development is provided by the cascade-correlation 
algorithm (Fahlman & Lebiere, 1990), which is a 
supervised method that recruits new hidden units, and in 
doing so fixes the input weights to the unit. Starting 
from a reduced network, the architecture is developed to 
fit the task. Some other research has constructed 
embodied models of infant performance in areas such as 
mother-infant interaction (Breazeal &  Scassellati, 
2000). A challenge posed by theory grounding is to 
combine techniques such as used by Breazeal and  
Scassellati (2000) with a developmental learning 
approach (e.g., Fahlman & Lebiere, 1990) in the context 
of behaviors and developments underlying theory 
development in infants. Some further approaches are 
reviewed in Schlesinger and Barto (1999) and contained 
in Weng and Stockman (2000). 
 
IV. Conclusions and Discussion  
Theory grounding proposes that the theories our 
computers build should be intimately connected with 
the world. If we imbue computers or robotic systems 
with theory understanding directly (i.e., through 
programming of that understanding), then the 
computers’ theoretical understanding likely will not be 
well connected with the world. Consider what happens 
when exceptions to a programmed theory arise. As in all 
theories, there will be exceptions. Adaptation of this 
theory in the face of exceptions will likely be difficult 



 

 

because of the lack of world connection. However, if we 
design algorithms that enable the AI systems to acquire 
their theories through processes of simulated cognitive 
development, then the theories they construct will be 
connected with the world because the process of 
cognitive development itself involves an extended 
process of world interaction. Exceptions to the theory 
will be blurred with the very process of theory 
acquisition and development itself. When an AI system 
is semi-autonomously acquiring its theory, what 
distinguishes an exception to accommodate into the 
theory from a new datum to be assimilated into the 
theory? 

Theory grounded systems should be more efficient 
in terms of both training and performance. Training 
should be improved both because the system will semi-
autonomously acquire its own initial theory about 
theories, and also because it will semi-autonomously 
acquire specific theories. It will be an explorer and an 
investigator. Searching for knowledge, not just food 
goals. The systems should also be more efficient from a 
performance stance. To the extent that the systems 
acquire their own theories, they will generate 
hypotheses more effectively. Part of the notion of a 
hypothesis being acquired more effectively is the 
hypothesis being more closely related to reality and 
hence providing the AI system a better gain in the task it 
is trying to perform. Perhaps fewer, better quality, 
hypotheses will need to be tested to arrive at a goal. 

Another outcome, we suggest, is that theory 
grounded systems will take us further towards the goals 
of conceptual representation, systematicity, and 
productivity in our artificially intelligent systems. We 
propose here that the infinite concepts associated with 
systematicity are exactly that: theoretical concepts. It 
makes little sense to imbue our connectionist models, 
for example, with limited depth recursive capacities 
when the infinity in natural language or sets or 
programming languages (to pick a few domains), is 
theoretical in nature and thus best captured by a system 
that acquires theories of these concepts. 

In closing it may be apparent that we have not 
addressed the issue of language and modeling language 
abilities. Ideas of systematicity and productivity are 
strongly associated with language (Fodor & Pylyshyn, 
1988). It seems likely that both cognition and language 
will be necessary in a system that fully models the 
development of theoretical skills in a manner similar to 
that of humans. It is likely no mistake that theories are 
codified frequently in language. The approach of theory 
grounding is conceptually open to modeling skills from 
both cognition and language. 
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