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Abstract: For geometrical models of cognition, the notion of distance rules - or metrics - is fundamental. Within
psychology, it is well established that pairs of dimensions that are processed holistically - integral dimensions - normally
combine so as they are best described with a Euclidean metric, whereas pairs of dimensions that are processed analytically
- separable dimensions - most often combine with a city-block metric. The experimental tradition studying information
integration has typically been limited to two-dimensional stimuli. A next step is to study information integration when
dealing with more complex stimuli. This step give rise to several interesting questions regarding information integration
behaviour, especially when both integral and separable pairs are included. For example: How do we integrate information
when both integral and separable pairs are involved? This paper extends earlier research regarding information integration
in that it deals with stimuli with more than two dimensions, and with complex stimuli consisting of both dimensional pairs
previously identified as holistic, and dimensional pairs previously identified as analytical. The general pattern identified is
that information integration can be more accurately described with a rule taking aspects of stimuli into consideration
compared to a traditional rule. For example, it appears that combinations of analytical and holistic stimuli, are better
described by treating the different subspaces individually and then combining these with addition, compared to any single
Minkowskian rule, and much better compared to any of the Minkowskian rules traditionally used (i.e. the city-block-, the
Euclidean or the dominance-metrics). For stimuli that are subject to confusion (e.g. when stimuli are too similar) single
Minkowskian rules appears to describe the data best - but with more substantial violations against the assumptions of

correspondence and interdimensional additivity.

INTRODUCTION

When studying and modelling information integration
behaviour and similarity, a spatial metaphor (e.g.
Palmer, 1978) is often adopted as the underlying
framework. In such a case, the representing space
consists of a number of dimensions, each
corresponding to some quality or property
(Gardenfors, 1992, 2000). Objects, or mental objects,
are represented by coordinates, and the psychological
similarity is reflected by distance relationships
between them. In essence, the closer two objects are
(i.e. the shorter the distance), the more similar they
are.

The most commonly investigated combination rules,
or metrics, for describing distances in a multi-
dimensional space have been instances of the
generalised Minkowski metric which is given by Eq.
1.
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where d(i,j) is the distance between object i and j, xj
refers to the position of object i on the kth axis and »
is the number of constituting dimensions.

Since the coefficient  in Eq. 1 is not restricted to be
discrete, the number of possible instances is infinite,
and all of them have different properties. However,
three extreme cases can be identified. These are when:
r = 1; the city-block metric (or Householder-Landahl
metric) - The distance between two objects simply is
the sum of the absolute differences for each of the
underlying dimensions; r = 2: the Euclidean metric -
The distance corresponds to the square root of the
sum of the squared differences for each of the
underlying dimensions. Compared to the city-block,
the Euclidean metric puts less emphasis on increasing
number of dimensions where the objects differ; and r
= ' : the dominance metric - The distance between
two objects is a function of the dimension which have
the largest difference (for the particular object pair
under consideration). Therefore, as for the Euclidean,
but contrary to the city-block metric, the emphasis on
the number of differing dimensions is small compared
to the magnitude(s).

T All calculations with ”the dominance metric” presented in this
paper are really calculations with Minkowski-r = 50.0. For the
purposes of this paper, this sufficiently well contrasts with
calculations using the Euclidean- or city-block-metrics.
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The three metrics mentioned are generally the most
well-known instances of the Minkowski-metric.
When it comes to cognitive modelling, the city-block
and the Euclidean metrics are the most common, and
this is especially true for the Euclidean metric. For
example, in Al, the Euclidean metric is often taken for
granted. Within the field of cognitive psychology,
however, it is well established that some pairs of
dimensions combine, with Garner’s (1974)
terminology, to form integral dimensions and others
to form separable dimensions (see e.g. Garner, 1974,
1977; Gottwald & Garner, 1975). The terms integral
and separable refer to a variety of properties of a pair
of dimensions. A typical description of an integral
pair is that it is processed as holistic, unanalysable,
directly and effortlessly by subjects and that the
constituent dimensions combine so as to conform to a
Euclidean metric; pairs of hue, saturation or
brightness of colour (see e.g. Gottwald & Garner,
1975; Hyman & Well, 1967; Kemler Nelson, 1993;
Ruskin & Kaye, 1990) and the auditory dimensions of
pitch and loudness (Kemler Nelson, 1993) typically
do this. The corresponding description for a separable
pair is that the constituent dimensions are processed
independently by subjects and that they combine so as
to conform to a city-block metric, e.g. size and
reflectance of squares (Attneave, 1950). The
difference regarding the best applying combination
rule is well motivated with reference to the properties
of the two metrics; information integration according
to the city-block rule could be characterised as
differentiated whereas information integration
according to a Euclidean rule could be characterised
as holistic.

Now, the combination rules for integral and
separable dimensions are well investigated for
dimensional pairs. But, what about dimensional
triples? Quadruples? Real world objects? How do we
integrate information when both integral and
separable pairs are involved? The focus here is upon
how to describe and predict information integration
behaviour. Such knowledge is not only important
from a theoretical perspective (e.g. for basic research
within the area of similarity based representations and
concept formation), but also from a more practical
and pragmatic machine learning perspective (e.g. for
tuning machine learning algorithms).

Simple parallelograms varying in saturation,
brightness, height and tilt could serve as an example.
Pairs of the dimensions of colour, i.e. of hue,
brightness and saturation, are often used as
prototypical examples of integral dimensions (see e.g.
Gottwald & Garner, 1975; Hyman & Well, 1967;
Kemler Nelson, 1993; Ruskin & Kaye, 1990).
Perception of variation in saturation and brightness on
a single colour patch have in previous studies (e.g.
Hyman & Well, 1967; 1968) been shown to be better
described using the Euclidean compared to the city-
block metric. The height- (size-) and tilt- dimensions
of parallelograms is an example of separable
dimensions (Tversky & Gati, 1982). Tversky and Gati
found such pairs to be better described using the city-
block metric compared to the Euclidean. In some

cases, their data suggested a Minkowski-r even
somewhat smaller thanr = 1.

How, then, could subjects’ phenomenological
similarity/dissimilarity between parallelograms
varying in height, tilt, saturation and brightness be
described? With reference to the metric properties of
the underlying pairs of dimensions, information
integration behaviour may be expected to be best
described by a single metric somewhere between the
city-block and the Euclidean metrics. With reference
to the relative complexity of the stimuli, it could be
that subjects focus more heavily on the dimension
where the stimuli differ the most - and so the
dominance metric could be expected to be the most
adequate. It also, again with reference to the different
metric properties of the underlying pairs of
dimensions, makes sense to divide the stimuli space
into two separate subspaces - one describing the
aspects of shape of the stimuli (i.e. height and tilt) -
the shape space - and one the colour aspects (i.e.
saturation and brightness) - the colour space. In this
case it could be that two different metrics should be
applied, one for the shape space and one for the
colour space. Further, since it is previously known
that height and tilt are separable, and saturation and
brightness are integral, the city-block metric should
apply to the shape space, whereas the Euclidean
metric should apply to the colour space. Regarding
how the separate subspaces should be combined into a
holistic measure, simple addition could be expected.
The line of thought underlying this is that the
suggested subspaces better fit the description of
separability compared to integrality, i.e. they could be
processed independently, and separable dimensions
are known to be best described using the city-block
metric.

In the remainder of this paper, combination rules,
or metrics, such that the same Minkowski-r applies to
the whole stimuli space, will be referred to as
homogenous rules. Rules or metrics such that one
Minkowski-r, say r, applies to one subspace, and one
Minkowski-r, say r,, applies to another, and that the
holistic measure is obtained by combining the sub-
metrics separably, will in the following be referred to
as heterogeneous rules or metrics’.

Now, how could we determine which of the listed
alternatives is the best when we want to describe
similarity/dissimilarity judgements of parallelograms
varying in height, tilt, saturation and brightness?

2 There are quite few examples of true integral dimensions in the
literature (Grau & Kemler Nelson, 1988). This fact does not,
however, undermine the possible practical importance of
heterogenous models, since perception of many dimensional pairs
fall between the endpoints of a continuum of dimensional
separability (Smith & Kilroy, 1979; Smith, 1980).



GENERAL METHOD

Finding out the metric for a similarity space is not an
easy task, or as Dunn puts it:

“Despite over 30 years of research, there is no
single, agreed upon method for determining the
metric of a similarity space.”

(Dunn, 1983, p. 244)

In order to investigate the relationship between
dimensional integrality and the combination rule used
in a similarity/dissimilarity judgement task, Dunn
(1983) adopted an extension of the strategy used by
Attneave (1950). The method used in this paper will
be in line with the one adopted by Dunn, but
generalised in order to deal with stimuli with more
than two underlying dimensions.

The basic idea is to divide the set of dissimilarity
ratings into unidimensional and bidimensional ratings,
reduce them to distances between points in a
predefined dimensional space and then determine the
Minkowski-r - or just r - that best predicts the
bidimensional dissimilarities from the unidimensional
ones.

Assumptions

In order to reduce ratings to distances correspond-
ence, interdimensional additivity, intradimensional
subtractivity and linearity must be assumed.

Correspondence

The term “correspondence” means here that there
should be a correspondence between physical and
psychological dimensions. The assumption may be
violated if, for example, subjects attend only to a true
subset of the physical dimensions used. This can be
detected by analysing the dimensional weights
assigned by subjects. Ideally, the weights should be
non-zero and relatively equal. The assumption will
also be violated if subjects encode the stimuli with the
use of an alternative dimensional structure. Such a
violation is hard to detect, but will in most cases lead
to a violation against interdimensional additivity
(Dunn, 1983).

Interdimensional Additivity

This assumption means that perceived differences on
each of the dimensions must be independent, i.e. a
constant difference in one dimension must not be
perceived differently depending on the levels of other
dimensions.
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Figure 1: 12 stimuli and their component distances (cd;-
cdg) in a two-dimensional space. (Based on Figure 1. p. 245
in Dunn, 1983).

In order for interdimensional additivity to hold,
each individual component distance (marked with cd;_
¢ in Figure 1) should be constant’. Put alternatively,
with reference to Figure 1, the perceived difference
between the object ¢ and g should be the same as that
between e.g. i and e (note that symmetry is assumed,
and so the order is irrelevant). In the same way, the
bidimensional pairs -/ and i-k should be perceived as
equally different.

In order to test that interdimensional additivity is
not violated, pairs of judgements are compared and
classified as either “+” or “-” differences. Dunn
(1983) proposes that unidimensional judgements in
line with an augmentation effect (i.e. when the
difference increases with the magnitude of the
irrelevant dimension) are classified as “+”:es, whereas
judgements in line with a negative augmentation
effect are classified as “-”:es. For bi-dimensional
differences, if the pair positively correlated with the
constituent dimensions is judged to be more dissimilar
than the negatively correlated pair a “+” is given, if it
is judged to be less dissimilar a “-” sign is given, if
equal no sign is given. This principle of classification
could be exemplified with reference to Figure 1: If a
subject rate g and / to be more dissimilar than ¢ and
d, this is classified as a “+” difference. A situation
like this is visualised in Figure 2 (a) below. If the pair
c and d is rated as less dissimilar compared to g and 4,
a “-” difference is noted. The third and last possibility,
that ¢ and d are rated to be as dissimilar as g and 4,
does not lead to a classification that could be included
in a nonparametric statistical test (Dunn, 1983), and
no sign is given. In exactly the same way, if d and &
are experienced as more dissimilar than c and g, a “+”
is given. If less dissimilar, a “-” is given and in the
case of no difference, no sign is given. The
corresponding “-” situation is visualised in Figure 2
(b). When it comes to bidimensional pair comparisons
like comparing the differences between c and /4 versus
d and g, respectively, a “+” sign is given if ¢ and & are
rated as more dissimilar compared to d and g. A

® Different component distances (both within and between
dimensions) may be of different magnitudes.



situation like this is visualised in Figure 2 (¢), and it is
easy to see that the constituting dimensions do not
meet at a right angle in space (i.e. the point should
form a rectangle), which is a requirement for using
any Minkowski metric.
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Figure 2: Visualised examples of violation against
interdimensional additivity: (a) The component distance cd,
is positively correlated with the magnitude of the irrelevant
dimension y, (b) The component distance cds is negatively
correlated with the magnitude of the irrelevant dimension x,
and (c) The combination of the component distances cd, and
cds is positively correlated with the constituent dimensions.

In order for interdimensional additivity to hold, the
number of “+” and “-” differences should be equal for
each set of equality tests, i.e. for each combination of
constituting dimensions. This could be tested using a
two-tailed sign test aimed at finding out whether the
proportion of e.g. “+” differences are significantly
different from an expected value of .5, or not.

Intradimensional Subtractivity

The distance between two stimuli, differing in exactly
one dimension, is a result of a subtraction of the
perceived values on that dimension. As an example,
suppose we have three stimuli, d, e and f (see Figure
1) differing only in level of one dimension such that e
has a level between the levels of d and f. In such a
case, intradimensional subtractivity requires that

2) d(d,f)=d(d,e)+d(e,f); r=1
where d(x,y) is the distance between object x and y.

In other words, any unidimensional distance can be
decomposed into the sum of smaller component
distances.

The unidimensional distances for the stimuli
presented in Figure 1 could be rewritten as

6
(3) d(a,b)= E W, ,cd; ;Wi =0or 1
=1

where d(a,b) is the distance between object @ and b,
wiap refers to the weight of the component distance
Cdi.

Linearity

In Dunn (1983), the function relating dissimilarities to
distances is assumed to be linear. Thus, the

dissimilarities between the stimuli in Figure 1 above
could be expressed as

6
4  O(a,b)= E W, Cd: + A ;wim=0o0r 1
=

where d(a,b) is the perceived dissimilarity between
object a and b, wy, refers to the weight of the
component distance cd;, and A4 is an additive constant.

Eq. 4 specifies a multiple regression equation in
which the weights define a set of dummy variables,
the component distances form the regression
coefficients and A is the additive constant. The
multiple correlation coefficient derived using Eq. 4
can be used for testing the assumptions of both
intradimensional subtractivity and linearity: if the
assumptions are valid, the square of the multiple
regression coefficient will be equal to, or greater than,
an estimate of the specific reliability of the
unidimensional dissimilarities (¢ f. (Dunn, 1983)).

Determining the Spatial Metric

Performing a multiple regression analysis, in line with
Eq. 4, on unidimensional dissimilarities, provides an
estimate of the component distances and the additive
constant. From these, it is straightforward to calculate
any Minkowski distance or - in this context - estimate
any “Minkowski dissimilarity”. In order to determine
the “best” describing metric for a particular subject,
Dunn (1983) compared the mean observed and the
mean predicted bidimensional dissimilarity using a
certain value of r: overestimation of r lead to
underestimation of the observed mean, whereas
underestimation of r lead to overestimation of the
observed mean. The “best” Minkowski-r will generate
a set of estimated/predicted dissimilarities which is
not significantly different from the corresponding
observed set.

Methodology Adopted

The basic methodology outlined by Dunn will be
adopted here with some exceptions and additions as
outlined below. The present paper aims to investigate
whether the machine learning community could gain
from using different Minkowski metrics for different
subspaces rather than a single metric applied to the
whole space. Seen from this perspective, the various
tests suggested by Dunn, and their results, are not
central here. The main reason for carrying out (some
of) them at all, is to give the reader an opportunity to
get at least some opinion of how well/bad the
requirements are met.

Interdimensional Additivity

Especially when dealing with more than two
dimensions, the test for detecting violations against
interdimensional additivity, as suggested by Dunn
(1983), possess some weaknesses in addition to the
fact that sign-tests are not sensitive. One is that it is
not straightforward to generalise the classification
procedure described above to handle stimuli with
more than two underlying dimensions. When only



two underlying dimensions are used and the
unidimensional differences are to be classified, it is
completely clear what is meant by “correlation with
the irrelevant dimension”. In a three dimensional case,
however, there are two irrelevant dimensions, and so
there are two possible situations for unidimensional
cases; a rating could be: 1) positively (negatively)
correlated with both irrelevant dimensions, or 2)
positively (negatively) correlated with one of the
irrelevant dimensions and negatively (positively) with
the other. The first of these two situations is clearly in
line with an augmentation effect, and the
classification could be done as done by Dunn (1983).
The second situation, however, is ambiguous, and will
not be analysed here. This problem becomes even
harder when three or more underlying dimensions are
used. Under such circumstances situations as skew
proportions of positive versus negative correlations
with irrelevant dimensions arise, and classification of
such could certainly be discussed. Within the frame of
the present paper, however, such situations will not be
analysed. The same principle of merely analysing
non-ambiguous pairs applies for treatment of pairs
differing in from 2 up to N dimensions. However,
even though selected pairs are all non-ambiguous, it
could be argued that different pairs possess different
qualities. For example, pairs with single dimensional
differences (e.g. pairs differing only in saturation), are
qualitatively different from, for instance, comparisons
“between” known dimensional pairs (e.g.
height/saturation). It could be argued that eventual
violations against interdimensional additivity should
be regarded differently depending on to which
“category” the difference belong.

Another anomaly that occurs when the number of
dimensions increases is that the number of sets to be
analysed increases exponentially, something that in
turn increases the risk for experiment wise type I
error. For example, when four underlying dimensions
are used, 15 different tests are needed. One way to
deal with this problem could be to apply a Bonferroni
correction (see e.g. Keppel, 1991) in which the new
per comparison significance level equals the desired
family wise error divided by the number of
comparisons.

In the test as suggested by Dunn (1983), pairs with
no assigned sign (i.e. pairs with no difference) are
excluded from the analysis. An intuitive and simple
way of decreasing the problems caused by neglecting
the comparisons without an assigned sign is rather
than setting N to the total number of violations, to
distribute the number of pairs without a sign evenly
between the “+” - and the “-” - categories and to set N
to the total number of comparisons.

In summary: neither the presence nor the “non-
presence” of violations against interdimensional
additivity found with the test described above, give a
true picture of to what extent interdimensional
additivity holds.

EXPERIMENT I (PILOT EXPERIMENT)

Subjects

A total of 9 undergraduates at the University of
Skovde participated for a payment of 250 SKr (this
corresponds to roughly £20 or $30). Also, 3 persons
from the authors' circle of acquaintances participated
without payment. These three people were originally
thought of as pilots in order to find out if something
(e.g. instructions) in the experiment needed to be
changed. Since this was not the case, they were
included in the forthcoming analysis, which means
that a number of 12 subjects completed the
experiment.

Stimuli

The stimuli varied in four dimensions, height (h), tilt
(t), saturation (s) and brightness (b) of a parallelogram
(Figure 3).
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Figure 3: The dimensions “height”, “tilt”, “width”,
“saturation”, “brightness” and “hue” of a parallelogram.

Each dimension varied in three levels, h: (4, 5 or 6
units of length), t: (40, 50 or 60 degrees), s: (60, 70 or
80% of maximum saturation) and b: (60, 70 or 80% of
maximum brightness). The width and the hue of the
parallelograms were held constant (4 units of length
and 240° of the colour circle, respectively). The
complete domain formed according to these
specifications consist of the 81 different
parallelograms presented in Appendix IA.

Of 81 stimuli, 3240 non-ordered pairs can be
formed, a number far too high for a single rating
session and it had to be reduced in order to not
exhaust the subjects. For the purposes of this paper, it
was judged to be more important that subjects made
as many different ratings as possible rather than
making a smaller number of ratings twice. The
advantage of this choice is that it produces a richer
material upon which the calculated component
distances are based, and against which the
polydimensional estimations are evaluated. The loss is
that specific reliability coefficients (see section
Linearity above) cannot be calculated, and therefore a



test of intradimensional subtractivity and linearity
cannot be performed.

In order to decrease the number of pairs that where
to be rated, 20% (i.e. 648) of the total number of pairs
where chosen randomly. Also the order of the pairs
were randomised. With this selection the material
involves 62 unidimensional, 185 bidimensional, 275
three-dimensional and 125 four-dimensional
differences. Two pairs unfortunately became exactly
the same due to a typing error, and in the forthcoming
analysis one of the ratings of the pair that were rated
twice was selected randomly for each subject.

Procedure

The experimental sessions were performed
individually in a quiet room with drawn curtains.
Except for the subject only the experiment leader was
present.

Each subject started with a computerised® test,
meant to find out if she/he could discriminate between
the colours that were to be used in the real
experiment. During the test, a two-digit number in
one colour appeared at a random place on a
background in another colour. In order to pass the
test, a subject needed to identify the numbers, for all
ordered combinations of colours, correctly.

Having passed the colour test, the experiment
leader started the experiment program and asked the
subject to read and follow the instructions given on
the screen.

The experiment consisted of several phases:

* Instruction and information-phase: Subjects
were informed that the goal of the experiment
was to investigate how people judge
similarity/dissimilarity between objects, and
that it in this case was about coloured
parallelograms. They were instructed to use a
20-graded scale for judging how
similar/different they thought the
parallelograms in each pair were, and they
were informed that larger numbers should
correspond to larger difference. Further, they
were told that they would be shown all the
parallelograms, and that they would go through
a short training session, before they started
with the judgements.

e Stimulus presentation: Diminished versions of
all stimuli were presented simultaneously in a
randomised layout. The basic reason for
presenting this material was that subjects
should be able to calibrate their scale faster.

* The tests as well as the real experiments was performed on a
standard personal computer with a 15-inch colour screen in 32-bit
colour mode.

*  Training phase: Subjects were asked to make
similarity/dissimilarity judgements for ten pairs
of coloured parallelograms varying in the same
four dimensions as the real stimulus material.
However, the levels of the dimensions of the
training stimuli did not coincide with the levels
of the real material. The training phase was
there for different reasons, one being that the
subjects would get a clearer understanding of
what they were supposed to do. During this
phase they were allowed to ask questions.

* Instruction phase: An instruction phase as
above was repeated. This time subjects were
also informed that the judgement sessions
would be divided into six parts in the following
way: 108 judgements - 10 minute break - 108

judgements - 20 minute break - 108
judgements - 60 minute break - 108
judgements - 10 minute break - 108
judgements - 20 minute break - 108

judgements.

e Stimulus presentation: Subjects were again
presented with the complete stimulus material.
The reason for presenting this a second time
was that it was believed that subjects would be
able to calibrate their scales better after having
completed the training phase.

*  Judgement phase: The 648 stimulus pairs were
presented in a random order that was the same
for all subjects. With breaks included, the
experiment took about 3 hours.

All subjects passed the colour test.

Results and analysis

The stimulus pairs selected, and the response from
subjects are jointly presented in Appendix IA.

Correspondence

Table 1 below presents the average component
distances (see Figure 1 above) per dimension, and the
coefficient of determination for the collapsed data
(see Appendix IB for corresponding information over
individuals). The average component distances, which
could be interpreted as the relative saliency of each
dimension (Dunn, 1983), should be non-zero and
approximately equal for the assumption of
correspondence to be valid.

Table 1: Component distances averaged for each
dimension, and coefficient of determination —
Experiment I.

Avg h | Avg t | Avg s | Avg b R’
5.338 4.011 1.106 2.245 0.652

By inspecting Table 1 it becomes clear that the
collapsed data not is ideal with respect to
correspondence. Regarding the approximate equalness



required, it is hard to set an exact limit of what could
be accepted; it is rather the question of a continuous
scale. What is clear, however, is that the saturation
and brightness dimensions have shorter component
distances (are less weighted) compared to height and
tilt. A probable explanation for this unequal weighting
is that subjects perceived the variation in height and
tilt as larger compared to the variation in saturation
and brightness.

The coefficient of determination is not very large,
indicating that a general linear model misses to
account for a considerable proportion of the variance
of the data.

Interdimensional additivity

All equality tests regarding interdimensional
additivity for each subject are presented in Appendix
IB, in which rows representing significant deviations
from an expected value of .5 by a uncorrected two-
tailed sign test with _ = .05 are marked in italics and
bold.

For the collapsed data, 2 out of 15 separate tests
significantly deviated from the expected value, and
thus represented violations against interdimensional
additivty.

Even though the number of significant violations
against interdimensional additivity would decrease if
for example Bonferroni correction should be used, it
is clear that the data collected are not perfectly
described with any Minkowski metric. It could,
however, also be noted that the data does not
represent the “worst case” either, since the number of
tests showing significant violations (2) are few
compared to the number of tests performed (15). With
reference to what was mentioned above, it is in the
present case not obvious how the results of the
equality tests should be interpreted.

In summary, with respect to the validity of the
assumptions of correspondence and interdimensional
additivity, the data collected are not ideally described
with any Minkowski metric. However, there are
differences in how well these requirements are
fulfilled between subjects (Appendix IB).

Determining the Spatial Metric

When there are just two underlying dimensions, as for
the data analysed by Dunn (1983), it is obvious that
distances/dissimilarities should be estimated and
evaluated for stimuli differing in two dimensions.
However, as the number of underlying dimensions
increases, so does the number of possibilities. In the
present case, when four underlying dimensions were
used, stimuli pairs differing in two or more
dimensions were analysed.

Justifying the Measure of Error

In order to possibly improve the process of deter-
mining the spatial metric, two alternative measures of

error for a particular r were contrasted. One was in
line with Dunn's method: deviation of the absolute
difference between the mean observed dissimilarity
and the mean predicted/estimated dissimilarity from
the mean observed dissimilarity - in the following
referred to as DEV. The other was in line with the
measure used by Ronacher (1998) for the same
purpose’. The latter is here referred to as the mean
squared error (MSE), and is defined as

( \
5)  MSE = 2(6(a,b)—5(a,b))2 /N

a

a=b

where 6(a,b) is the perceived, §(a,b) is the
predicted/estimated - dissimilarity between object a
and b, and N is the number of stimuli pairs.

For each of the homogenous rules: city-block,
Euclidean and dominance, and all non-ordered
combinations of heterogeneous rules, where the
subspaces where formed by the city-block, Euclidean
or dominance metricG, the distances between all non-
ordered combinations of stimuli were calculated from
physical descriptions of the stimuli. By regarding the
distances as fictive dissimilarities, and by estimating
the dissimilarities as described above for different
rules, the errors according to DEV and MSE were
calculated. The same subset and physical descriptions
as used in the present experiment were analysed.
Further, in Iline with this, the estimated
distances/dissimilarities were scaled into a discrete
scale ranging from 1 to 20. Since the underlying rule
was known in each case, the two alternative measures
of error could be evaluated against each other.

For the homogeneous models, both DEV and MSE
suggested the same - and correct - underlying model.
For the heterogeneous models MSE suggested the
correct model in all cases. The use of DEV, however,
was clearly systematically ambiguous. In all cases
when the underlying model could be described as
metric A applies to subspace | and metric B applies
to subspace 2, both the correct model and the model
such that metric B applies to subspace 1 and metric A
applies to subspace 2, were suggested. The
explanation is that that the sum of absolute deviations
for the two models necessarily is the same for a
balanced set of stimuli.

In summary, based on this analysis, MSE appear to
be the better measure for the purposes of this paper.

® Ronacher (1998) did not use the number of stimuli pairs in the
denominator, but the measure is basically the same as the one used
here.

® Note that the heterogenous rule where both subspaces are
formed by the city-block metric exactly corresponds to the city-
block homogenous rule.



Spatial Metric

Candidates for describing the individual subjects’ data
were evaluated using MSE as the measure of error. In
addition to the rules used when evaluating the two
error measures (DEV and MSE) above, i.e.

* the homogenous rules: city-block, Euclidean
and dominance — in the following referred to as
Hom cit, Hom euc and Hom dom, respectively,

¢ all non-ordered combinations of heterogeneous
rules, where each of the subspaces were
formed by the city-block, Euclidean or
dominance metric — in the following referred to
as Het citeuc, Het citdom, Het euccit, Het
euceuc, Het eucdom, Het domcit, Het domeuc
and Het domdom, respectively,

errors were calculated for values of Minkowski-r
ranging in small discrete steps from r = 1.0 to r = 50.0
applied to the whole stimuli space (the homogenous
model with the r giving the lowest error will in the
following be referred to as Hom opt), the shape
subspace and the colour subspace respectively. The
heterogenous model where the separately optimized r
for the shape space is applied to “shape” and where
the separately optimized r for the colour space is
applied to “colour”, will here be referred to as Het
sepHTsepSB. Finally, the combination of r:s, one for
the shape subspace and one for the colour subspace,
when optimised simultaneously with a heterogeneous
rule — here referred to as Het simHTsimSB.

Even though the variation between individual
subjects was relatively extensive (see Appendix IC)
Table 2, showing the errors for the models tested for,
for the average ratings, captures some general
characteristics.

Table 2: Models, associated r:s and errors for
average data, sorted after errors — Experiment I.

r Err
Hom opt 1.6 3.240
Hom euc 2 4.065
Het simHTsimSB 2.85;50 4.066
Het sepHTsepSB 2.2;50 4.207
Het eucdom 2;50 4.376
Het domdom 50;50 4.572
Het domeuc 50;2 4.909
Het euceuc 2;2 5.017
Het domcit 50;1 6.812
Het euccit 2;1 7.616
Hom dom 50 9.996
Het citdom 1;50 13.545
Het citeuc 1;2 14.892
Hom cit 1 19.096

One is that the optimal homogenous rule (Hom opt)
gave the lowest overall error, something that was true

also for most of the individual cases. In the present
case the Minkowski-r for the rule was between the
city-block and the Euclidean metrics. Note however,
that the r-value (1.6) was closer to the Euclidean
compared to the city-block: the Minkowski-r of a rule
giving distances halfway between the city-block and
the Euclidean metric is not the intuitive 1.5, but rather
approximately 1.2. This is the explanation for the
large difference wrt the errors for Hom euc and Hom
cit.

For the individual data (see Appendix IC), the
corresponding r were between 1 and 2 for seven of the
twelve cases, and somewhat larger than 2 for the
remaining five. Another general characteristic is that
the shape subspace tend to have lower Minkowski-r:s
compared to the r:s for the colour subspace, and this is
the case both when the r:s are optimised for the
subspaces one by one (Het sepHTsepSB) and when
they are optimised for both spaces simultaneously
(Het simHTsimSB). This fact, that the r for the
separable shape space, is lower compared to the r for
the integral colour space is in line with previous
research. However, in this case both r:s are larger than
what has been found in previous research, i.e. when
the subspaces are not combined. A probable
explanation, especially for the large r for the colour
space, is the unequal weighting of dimensions (see
Correspondence above).

Focusing merely upon rules based on r = 1.0, r =
2.0 and r = 50.0 the results for the average subject
data in Table 2, again, captures a general
characteristic: in this case, as well as generally for the
individual data, the homogenous Euclidean model
(Hom euc) has a lower error compared to other
models.

Errors and r:s were calculated also for the
heterogenous rules combining the “odd”, or
counterintuitive, subspaces height/saturation and
tilt/brightness on one hand and height/brightness and
tilt/saturation on the other. Table 3, presenting the
heterogenous models with the lowest errors from the
three subspace divisions for the average data, are
representative for the complete results (presented in
Appendices ID and IE).

Table 3: The best heterogenous models and
associated errors for average data for the three
possible subspace divisions - Experiment 1.

Subspace division Model Err
height/tilt; sat./bri. | Het simHTsimSB 4.066
height/sat.; tilt/bri. | Het simHSsimTB 6.923
height/bri.; tilt/sat. | Het simHBsimTS 6.683

For the average data, the errors for the
heterogenous models for the “odd” subspace divisions
are considerably larger compared to the error for the
original division. For the individual data, the
corresponding difference was true for 11 out of 12



cases (c.f. Appendices ID and IV). This difference in
errors for the original and odd subspace divisions
indicate that the intuitive division into subspaces of
shape and colour makes sense.

EXPERIMENT II

A second experiment, with the same underlying
space, was conducted in order to investigate if, as
hinted above, a larger variation in the colour space
would suggest a heterogenous model with lower
Minkowski-r:s.

Subjects

A total of 14 students (the majority were
undergraduates) at the University of Skovde
participated for a reward of two cinema tickets (the
value corresponded to 140 SKr, roughly £11 or $17).

Stimuli

As in Experiment I (see above), the stimuli varied in
four dimensions, height (h), tilt (t), saturation (s) and
brightness (b) of a parallelogram. Each dimension
varied in three levels, h: (4, 5 or 6 units of length), t:
(40, 50 or 60 degrees), s: (40, 60 or 80% of maximum
saturation) and b: (40, 60 or 80% of maximum
brightness). The width and the hue of the
parallelograms were held constant (4 units of length
and 240°, respectively).

The complete domain formed according to these
speci-fications consist of the 81 different parallel-
ograms presented in Appendix ITA.

The same pairs (w.r.t. the numbers of the stimuli),
and order between pairs as in Experiment I were used
— with the difference that one pair of the redundant
pairs where changed into a new pair (c.f. Appendix
IIA).

Procedure

The experiment was conducted in the same way as
Experiment I above, except for some details:

* All subjects attending to Experiment I reported
the colour test to be simple, and since the
colours in Experiment II were more different,
the test was replaced by a simple question
whether subjects had normal colour vision or
not.

* Several subjects attending to Experiment I
reported that the “forced” breaks felt too long,
wherefore the minimum length of breaks in
Experiment II were shortened to half the time
compared to Experiment I.

All subjects reported they had normal colour vision.

Results and analysis

The stimulus pairs selected, and the response from
subjects, are jointly presented in Appendix ITA.

Correspondence

Although not perfectly equal, the average component
distances for the collapsed data in Experiment II
(Table 4 below), are more equal compared to the
corresponding distances for Experiment I (Table 1
above). However, for the collapsed data as well as for
the individual data (Appendix IIB), it is still the case
that the saturation and brightness are less weighted
compared to height and tilt.

Table 4: Component distances averaged for each
dimension, and coefficient of determination -
Experiment II.

Avg h [ Avg t [ Avg s | Avg b R’
4.160 2.907 1.214 2.360 0.762

For the collapsed data, the coefficient of
determination was larger for this experiment
compared to Experiment I. However, there is still a
considerable proportion of the variance of the data
that remains unexplained by a general linear model.

Interdimensional additivity

As for Experiment I, the collapsed data in Experiment
IT to some extent contends violations against
interdimensional additivity. In the present case, 3 out
of 15 separate tests significantly deviated from the
expected value of .5. The corresponding equality tests
regarding interdimensional additivity for individuals
are presented in Appendix IIB.

In summary, as for Experiment I, there exist
violations against the assumptions of correspondence
and interdimensional additivity for the data from
Experiment II.

Spatial Metric

The same candidate models as evaluated in
Experiment I were evaluated, and the errors for the
collapsed data are presented in Table 5 below. The
results for individual subjects are presented in
Appendix IIC.

Contrary to Experiment I, in this case a hetero-
genous model combining a rule between the city-
block and the Euclidean metrics (though closer to the
Euclidean) for the shape space, and a rule roughly
corresponding to the Euclidean metric for the colour
space (Het simHTsimSB and Het sepHTsepSB), gave a
lower error than the best of the homogenous models
(Hom opt), which had a Minkowski-r = 1.2, i.e.
halfway between the city-block and the Euclidean
metrics. This was true irrespectively of whether the r:s
were optimised separately or simultaneously (see
section Spatial metric under Experiment I above). The



optimal heterogenous Minkowski-r:s found in the
present case were, as for Experiment I, lower for the
shape space compared to the colour space. However,
an important difference is that the Minkowski-r:s
found in Experiment II were more in line with the
levels identified by previous research when two-
dimensional stimuli have been used compared to
Experiment I. Even though the Minkowski-r:s for
Experiment II were closer to the city-block metric for
the shape space and the Euclidean metric for the
colour space compared to Experiment I, the values
were somewhat higher compared to what has been
identified for these spaces before. It may be the case
that the r-value goes up when the dimensionality
increases. This speculation makes some sense
considering the fact that we have limitations in terms
of how many dimensions we can process simul-
taneously, and that larger values of r corresponds to
focusing more on the dimension where the stimuli-
pair at hand differ the most.

Table 5: Models, associated r:s and errors for
average data, sorted after errors — Experiment II.

r Err
Het simHTsimSB 1.55;2.25 2.146
Het sepHTsepSB 1.55;2.2 2.146
Het euceuc 2;2 2.339
Hom opt 1.2 2.481
Het eucdom 2;50 2.601
Het euccit 2;1 2.894
Het domeuc 50;2 3.838
Het domcit 5051 3.905
Het citdom 1;50 3.948
Het citeuc 1;2 4.194
Het domdom 50;50 4313
Hom cit 1 5.907
Hom euc 2 7.805
Hom dom 50 16.644

Another important difference is that the error levels
for Experiment II generally are substantially lower
compared to Experiment I, making the results from
Experiment II more reliable. Worth to mention is also
that the common homogenous Euclidean rule (Hom
euc) gave a substantially worse error than both the
best heterogenous rule and the best homogenous rule.
However, the still somewhat unequal weightings of
the dimensions defining the two subspaces (see Corre-
spondence above) probably causes the pecularity that
Het euccit produces an error lower than that for Het
citeuc. The fact that there still are differences in
weighting indicate that there are differences in
salience between dimensions.

In summary, the increase (compared to Experiment
I) in variety for the saturation and brightness
dimensions seem to have caused a significant
difference in the outcome of the experiment: the
unequality of the weightings between dimensions has

10

decreased and the error levels have decreased
considerably, thus, the outcome is more reliable.
Finally, there are clear indications that a heterogenous
rule or model better describes the data compared to a
homogenous one.

As for Experiment I, errors and r:s were calculated
also for the heterogenous rules combining the “odd”
subspaces height/saturation and tilt/brightness on one
hand, and height/brightness and tilt/saturation on the
other. The heterogenous models with the lowest errors
for the average data for each of the three subspace
divisions are presented in Table 6. The individual
results are presented in Appendices IID and IIE.

Table 6: The best heterogenous models and
associated errors for average data for the three
possible subspace divisions - Experiment II.

Subspace division Model Err
height/tilt; sat./bri. | Het simHTsimSB | 2.146
height/sat.; tilt/bri. | Het simHSsimTB | 3.030
height/bri.; tilt/sat. | Het simHBsimTS | 2.861

As for Experiment I, for the average data in
Experiment II, the errors for the “odd” subspaces are
larger compared to the error for the original division.
For the individual data, the corresponding difference
was true for 8 out of 12 cases with a least one r <>
1.0.

EXPERIMENT 111

In Experiments I and II, the heterogenous r:s found
were larger than what have been found in earlier
research. A reasonable question to ask oneself is if the
element of non-separability together with the
increased dimensionality causes such effects. A third
experiment was conducted in order to investigate if
the possible factor of integrality (non-separability)
could be eliminated as an explanation or not. Contrary
to Experiments I and II, for which the underlying
dimensions were a mix of of separable and integral
dimensions, the underlying dimensions in the present
experiment are purely separable.

Subjects

A total of 12 students (the majority were under-
graduates) at the University of Skovde participated for
a reward of two cinema tickets (the value corre-
sponded to 140 SKr, roughly £11 or $17).

Stimuli

The stimuli varied in four dimensions (see Figure 4
below), height (h), tilt (t), width of a stripe parallell to
the horisontal axes (st) and brightness (b) of a
parallelogram. These dimensions differ from the ones
used in Experiments I and II above in some crucial
aspects. One is that they do not form intuitive
subspaces. Another is that all possible pairs of



dimensions match the description of separable
dimensions.

Each dimension varied in three levels, h: (4, 5 or 6
units of length), t: (40, 50 or 60 degrees), st: (1, 2 or 3
units of width) and b: (40, 60 or 80% of maximum
brightness). The width, hue and saturation of the
parallelograms were held constant (4 units of length,
240° and 60% of maximum saturation, respectively).

The complete domain formed according to these
specifications consists of the 81 different parallelo-
grams presented in Appendix IIIA.

(saturation)

brightness

height

(hue)

“width of stripe

(width)
Figure 4: The dimensions “height”, “tilt”, “width”,

»

“width of stripe”,
a parallelogram.

The same pairs (w.r.t. the numbers of the stimuli),
and order between pairs as in Experiment II were
used.

Procedure

The experiment was conducted in the same way as
Experiment II above.

Results

The stimulus pairs selected, and the response from
subjects are jointly presented in Appendix IITA.

Correspondence

The average component distances for the collapsed
data in Experiment III (Table 7 below, see Appendix
IIIB for the corresponding data for individuals), are
not perfectly equal, especially the brightness
dimension is weighted less compared to the others.

Table 7: Component distances averaged for each
dimension, and coefficient of determination -
Experiment III.

R?
0.541

Avg h
2.089

Avg t
2.381

Avg st
1.530

Avg b
0.625

The coefficient of determination is very low for the
collapsed data, hence a linear model does not apply
well.

saturation”, “brightness” and “hue” of
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Interdimensional additivity

The equality tests regarding Experiment III are
presented in Appendix IIIB. The collapsed data to
some extent contends violations against
interdimensional additivity since 1 of the 15 tests
significantly deviated from the expected value of .5.

In summary, because there exist violations against
correspondence and interdimensional additivity, the
data from Experiment III are not either (compare
Experiments I and II above) ideally described by any
Minkowski metric.

Spatial Metric

The same candidate models as evaluated in the
previous experiments were evaluated. The resulting
errors are presented in Table 8 (for collapsed data)
and Appendix IIIC (for individual subjects).

Table 8: Models, associated r:s and errors for
average data, sorted after errors — Experiment III.

r Err
Het simHTsimSTB 1.1;1 3.483
Hom opt 1 3.523
Hom cit 1 3.523
Het sepHTsepSTB 1.6;1 4.010
Het citeuc 1;2 4213
Het euccit 2;1 4.434
Het citdom 1;50 4.638
Het euceuc 2;2 5.573
Het domcit 5051 5.885
Het eucdom 2;50 6.185
Het domeuc 50;2 7.234
Het domdom 50;50 7.935
Hom euc 2 11.333
Hom dom 50 17.219

It is clear that the best rule, of the ones tested for,
for describing the collapsed data in Experiment III is
close to a city-block rule (Het simHTsimSTB
(r=1.1;1), Hom opt (r=1) and Hom cit). It is not, in
this special case, possible to view this as supporting
either of homogenous or heterogenous models. This is
since the city-block metric simply is the sum of the
differences for the constituting dimensions, and there
is therefore no difference between a homogenous city-
block rule and a heterogenous rule where city-block
rules are used within all subspaces.

As opposed to experiments I and II, the
Minkowski-r values (for the best models) did not
increase in magnitude with increased dimensionality.

The heterogenous models with the lowest errors for
the average data for each of the three subspace
divisions are presented in Table 9, and the
corresponding results for the individual data can be
found in Appendices IIID and IIIE. As, for the
collapsed data, the optimal “heterogenous” rule for
the “original” subspace division was close to the city-



block metric for both subspaces, this was necessarily
the case also for the “odd” subspace divisions.

Table 9: The best heterogenous models and
associated errors for average data for the three
possible subspace divisions - Experiment III.

Subspace division Model Err
height/tilt; str./bri. |Het simHTsimSTB| 3.483
height/str; tilt/bri. |Het simHSTsimTB| 3.523
height/bri.; tilt/str. |Het simHBsimTST| 3.523

EXPERIMENT IV

The stimulus material and the collection of the data
used in Experiment IV have previously been
described in detail elsewhere (Johannesson, 1996).

Subjects

Ten subjects (most of them undergraduates at the
University of Skdvde) participated without credit.

Stimuli

The stimuli were designed in order to look like
beetles. They were created by Niklas Mellegard,
Chalmers University, who did the artistic work, and
the author, who stood for the entomological details.
The stimuli beared, on purpose, no resemblance to
any particular type of existing beetle (a sample is
presented in Figure 5).

The stimuli varied in three physical dimensions: the
absolute size of the head (H), the length of the
abdomen (L) and the width of the abdomen (W) (see
Figure 6). The head varied between two parameter
values, 0.75 and 1.25. The length and width of the
abdomen varied between three parameter values, 0.5,
1.0 and 1.5. The parameter values of the head could
be interpreted as (parameter value * 100) % of area
compared to the prototype beetle (i.e. the “original”
beetle used for rendering the rest). The values for
length and width have the same interpretation, except
that they are relative to the prototype’s length and
width, respectively, rather than to the area.

Figure 5: Sample of a beetle-stimuli.
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//
Figure 6: The dimensions H - absolute size of the head, L

- the length of the abdomen and W - the width of the
abdomen.

The complete domain formed according to these
specifications consist of the 18 different beetles
presented in Appendix IVA.

All 153 possible (non-ordered) pairs of stimuli were
presented randomly (different for different subjects).

Procedure

The experimental sessions were performed individ-
ually. The scene differed somewhat between subjects,
but the environment was in all cases quiet.

The data were collected during a session with
PsyScope (Cohen, MacWhinney, Flatt & Provost,
1993). The session mainly consisted of three different
phases: an instruction phase, a presentation phase and
a similarity rating phase.

During the instruction phase, subjects first received
general information about the purpose with the test
and were then informed about the nine-grade scale
they should use: “1” corresponded to “large
similarity” whereas “9” corresponded to “large
dissimilarity”. Subjects were also instructed not to
spend too much time on particular pairs - and
phenomenological dissimilarities were at interest.”

During the presentation phase all beetles were
presented pairwise in a randomised order that was the
same for all subjects.

During the rating phase subjects rated each of the
153 pairs of beetles with respect to their
similarity/dissimilarity by pressing the corresponding
figure-button (a nine-grade scale with marked
endpoints was shown below each pair).

For further details regarding the procedure, see
(Johannesson, 1996).

7 Note, however, that this instruction may have affected the
result.



Results

The stimulus pairs selected, and the response from
subjects, are jointly presented in Appendix IVA.

Correspondence

The average component distances for the collapsed
data in Experiment IV (Table 10 below, see Appendix
IVB for the corresponding data for individuals), are
relatively equal, meaning that no single dimension
seems to be significantly more salient compared to the
others. The coefficient of determination is quite large
meaning that a general linear model describes the data
quite well.

Table 10: Component distances averaged for each
dimension, and coefficient of determination -
Experiment I'V.

R?
0.890

Avg L
2.794

Avg W
2.489

Avg H
3.347

Interdimensional additivity

The equality tests regarding Experiment IV are
presented in Appendix IVB.

The collapsed data in Experiment IV contain quite
severe violations against interdimensional additivity.
In the present case, 4 out of 7 separate tests
significantly deviated from the expected value of .5.

The corresponding equality tests regarding inter-
dimensional additivity for individuals are presented in
Appendix IVB.

Spatial Metric

The same candidate models as evaluated in the
previous experiments were evaluated. Note, however,
that for this three-dimensional stimulus, in the hetero-
genous cases, it is not meaningful to talk about a
Minkowski-r for the solitary dimension. The resulting
errors are presented in Table 11 (for collapsed data)
and Appendix IVC (for individual subjects).

Table 11: Models, associated r:s and errors for
average data, sorted after errors — Experiment IV.

R Err
Het simLW_H 17.2; | 1.005
Het dom_H 50;_ | 1.008
Hom opt 1.7 1.039
Het sepLW_H 3.6; | 1.111
Hom euc 2 1.141
Het euc H 2; 1.606
Hom dom 50 2.954
Het cit H 1; 5.645
Hom cit 1 5.645
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In this case a heterogenous model combining a rule
close to the dominance metric for the length/width-
space with the solitary headsize-dimension gave a
slightly lower error than the best of the homogenous
models (Hom opt), which had a Minkowski-r = 1.7,
i.e. close to the Euclidean metric. This was only the
case when the r for the length/width-space was
optimised simultaneously.

As opposed to the previous experiments, the
common homogenous Euclidean rule (Hom euc)
seems to describe the proximity data about as well as
the best heterogenous rule.

In summary, a heterogenous model provide the best
fit according to the error measure used, but the
differences between this and the best homogenous
model are small.

The heterogenous models with the lowest errors for
the average data for each of the three subspace
divisions are presented in Table 12, and the
corresponding results for the individual data can be
found in Appendices IVD and IVE. Of the possible
divisions of subspaces it is apparent that the
“original” intuitive division, where length/width are
clustered together and headsize is solitary, was clearly
the best.

Table 12: The best heterogenous models and
associated errors for average data for the three
possible subspace divisions - Experiment V.

Subspace division Model Err
length/width; headsize | Het simLW_H 1.005
headsize/length; width | HetsimHL W | 3.004
headsize/width; length | Het simHW_L | 3.127

EXPERIMENT V

As for Experiment IV, the stimulus material and the
collectction of the data used in Experiment V have
previously been described in detail elsewhere
(Johannesson, 1996).

Subjects

Eleven subjects with different backgrounds partici-
pated in the study without any credit.

Stimuli

Computer generated pictures of mollusc shells (see
Figure 7 for a sample) developed by and used by
Gérdenfors and Holmqvist (1994), were used.

The shells (Figure 8) varied in three physical
dimensions: the rate E of whorl expansion, which
determines the curvature of the shell, the rate V of
vertical translation along the coiling axis and the
expansion rate R of the generative curve of the shell.



Figure 7: Sample of a shell-stimuli.

Coiling axis
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Figure 8: The dimensions V, E and R of a shell.

For parameters V and E, three levels (1.1, 1.25 and
1.4) were used. Parameter R had two levels (1.1 and
1.2).

The complete domain formed according to these
specifications consists of the 18 different beetles
presented in Appendix VA.

All 153 possible (non-ordered) pairs of stimuli were
presented randomly (different for different subjects).

Procedure
The experimental sessions were conducted as for

Experiment IV presented above. For further details
regarding the procedure, see (Johannesson, 1996).

Results

The stimulus pairs selected, and the response from
subjects are jointly presented in Appendix VA.

Correspondence

Table 13, presenting the average component distances
found for the shells in Experiment V, indicates clear
violations against correspondence: parameter V is
obviously more weighted than parameter E, which in
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turn is more weigthed than parameter R. The
coefficient of determination indicates, however, that a
general linear model can describe the collapsed data
(see Appendix VB for the corresponding data for
individuals) relatively well.

Table 13: Component distances averaged for each
dimension, and coefficient of determination -
Experiment V.

R?
0.865

Avg V
2.117

Avg E
1.479

Avg R
0.861

Interdimensional additivity

The equality tests regarding Experiment V are
presented in Appendix VB. The collapsed data in
Experiment V to a large extent contends violations
against interdimensional additivity in that 5 out of 7
separate tests significantly deviated from the expected
value of .5.

In summary, for the Experiment V-data, there exist
severe violations against the assumptions of
correspondence and interdimensional additivity.

Spatial Metric

As opposed to the previous experiments, there were in
the present case no division into subspaces that
appeared to be more intuitive than others. Rather, the
subspace to be discussed (V/E and R) was chosen to
be the division with the lowest error for the
simultaneously optimised heterogenous model (cf.
Table 15 below).

The same candidate models as evaluated in
Experiment IV were evaluated. The resulting errors
are presented in Table 14 (for collapsed data) and
Appendix VC (for individual subjects).

Table 14: Models, associated r:s and errors for
average data, sorted after errors — Experiment V.

R Err
Hom opt 2.5 0.343
Hom euc 2 0.372
Hom dom 50 0.424
HetsimVE_R 6.2; | 0.561
Het dom R 50; | 0.564
Het sepVE_R 3; 0.591
Het euc_R 2; 0.720
Het cit R 1; 2.305
Hom cit 1 2.305

In the present case it is evident that a homogenous
rule is more applicable compared to a heterogenous
one. The optimal homogenous rule is between the
Euclidean and the dominance metrics (somewhat
closer to the Euclidean).



The heterogenous models with the lowest errors for
the average data for each of the three subspace
divisions are presented in Table 14, and the
corresponding results for the individual data can be
found in Appendices VD and VE. It is obvious that
there are differences with respect to levels of error for
the different divisions. However, since a heterogenous
model obviously wasn’t the best model, it is hard to
tell whether this result is a coincidence or not.

Table 15: The best heterogenous models and
associated errors for average data for the three
possible subspace divisions - Experiment V.

Subspace division Model Err

V/E; R Het simVE_R 0. 561

R/V; E Het simRV_E 1.586

R/E; V Het simRE_V 1.465
GENERAL DISCUSSION

The aim of this paper is to argue that one could gain
from not just taking the common Euclidean metric for
granted or to use it by tradition, but instead taking
aspects like the nature of the objects of interest into
consideration. The idea that division of features, or
dimensions, of objects into separate subspaces — when
applicable - possibly could increase descriptive power
was investigated.

Experiments I and II both involved pairs of
dimensions previously found to be combined best by
two different metrics (the city-block and the
Euclidean metric, respectively). In Experiment I, the
best fitting metric found was a homogenous rule with
r = 1.6, which could be described as a trade-off
between integrality and separability. However, this
result should be interpreted with care: the error levels
in Experiment II were considerably lower, thus
making the outome more reliable. In Experiment II,
the Euclidean rule turned out to badly describe the
data. Instead, a heterogenous rule combining the two
subspaces formed by the intuitive division, was found
to provide the best description. The Minkowski-r:s for
the two subspaces found in this experiment rhymes
with previous research in that they really possess
different metric properties and that the r for
saturation/brightness was higher than for height/tilt.
However, both r:s found were somewhat larger
compared to what has been found previously for the
separate two-dimensional subspaces (see e.g. Hyman
& Well, 1967; 1968 and Tversky & Gati, 1982,
respectively). As opposed to Experiments I and II, the
dimensions involved in Experiment III were all
expected to be pairwise separable. Also in the four-
dimensional case, the best describing metric turned
out to be the city-block rule. Because of the nature of
the city-block metric, it does not make any difference
whether the space is divided into subspaces or not
w.r.t. the resulting distances. Experiments IV and V
differ from Experiments I - III in that there are no
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previous research indicating how pairs of the
constituent dimensions are combined. In the case of
Experiment IV it was more intuitive that the length
and width of the abdomen “go together” compared to
other possible divisions. The best describing rule was,
again, not the Euclidean metric, but rather a
heterogenous one where length and width of the
abdomen combined with a dominance metric
separately from the size of the head. It is possible that
another representation of the dimensions involved
(e.g. shape), and another rule, would have managed to
describe the data even better. That is, however,
beyound the scope of this paper. For Experiment V,
there were no division into subspaces that was judged
to be more intuitive than others because all
dimensions - at least according to the author -
interacted in a complicated manner. The best
heterogenous rule for the subspace division giving the
lowest error was, however, almost double compared
to the best homogenous rule, which in fact was
relatively close to the Euclidean rule.

The general pattern that could be identified from
the experiments is that when stimuli are not subject to
confusion (i.e. when they are sufficiently different and
when the subject can see the contribution of the
constituent dimensions without much effort), their
phenomenological similarity/dissimilarity can be
more accurately described by a heterogenous (i.e.
combinatorial) rule taking aspects of the stimuli into
consideration, compared to a homogenous Minkowski
-metric. Thus, the idea presented received some
support. Of interest is also that the experiments where
a homogenous rule was found to be the best (i.e.
Experiments I and V) tended to violate the
assumptions of correspondence and interdimensional
additivity more than others.

There are a number of open questions. For
example, given that it is adequate to divide different
aspects of objects into separate subspaces, a relevant
issue is, besides how the dimensions within subspaces
are combined, how the subspaces themselves are
combined. In this paper, only one of many possible
ways of doing this was investigated

Another open question concerns the relatively large
Minkowski-r:s found in Experiment II. Since the r:s
estimated in Experiment III were not larger compared
to what could be expected for pairwise combinations
of the constituent dimensions, it is apparent that the
increase in magnitude of r:s as found in Experiment
I, is not generalisable to all complex stimuli.
However, in the developmental literature it is well
documented that the separability of dimensions is not
fixed but rather changes with experience (see e.g.
Smith, 1980), with the direction from integrality to
separability. This pattern also apply to short term
learning (Johannesson, 2001). A possible reason for
the relatively large r:s in Experiments I, II, IV and V
and the stable r:s in Experiment III could thus be that
stimuli with contents of integrality are harder to
“learn” than stimuli composed just by separable
dimensions. If so, the r:s could possibly stabilise at a



lower magnitude for sufficiently experienced subjects.
If not, it could simply be that the specific metric
properties associated with integral/separable
dimensions only are true in the context of single pairs
of dimensions, i.e. depending on if they are combined
or not. An example of stimuli, to start with, that
could be used in order to explore this issue (and
others) further is the multimodal stimuli composed of
the pairwise integral dimensions of pitch/loudness and
hue/saturation.

Further, the outcome that each of the experiments
presented to some extent violated the assumptions of
correspondence and interdimensional additivity, is not
very surprising in light of the fact that some
individuals’ data in Dunn’s (1983) experiments also
contained such violations, even though the stimuli
were simpler. Relevant questions are when, to what
extent and why such violations occur.

The results presented clearly motivates further
research on the idea that information integration could
be described as a combination of distances within
different subspaces. More research on if, how and
when information integration behaviour can be
described in terms of combinations of subspaces may
shed light on how we interact with the inherently
high-dimensional real world. For example, Edelman
and Intrator (1997) discuss the necessity of low
dimensionality for learning in perceptual tasks —
known as ‘the curse of dimensionality’. However,
even if we always use low-dimensional represent-
ations internally, even for cognition, if these
representations involve more than two dimensions,
cognitive science have interesting problems to solve.
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