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Abstract: Tt is proposed that the capacity of attention is a minimal criterion of intentionality in robots. An
attentive system must be able to identify relevant objects in the scene; select one of the identified objects; direct
its sensors towards the selected object; and maintain its focus on the selected object. We describe the robot R1
which exhibits behavior that seems intentional. However, when the robot is confronted with a situation where
more than one object is present on the scene, the fact that the behavior of R1 is determined merely by S-R rules
becomes apparent. We also defend the position that a robot with attention would have a minimal level of
intentionality, since the attentional capacity involves a first level of goal representations. This criterion is also

useful when discussing intentionality in animal behavior.

1. INTRODUCTION

One of the first situated robots, called Herbert and
built by Connell (1989), could stroll around in a MIT
department searching for soda cans. The most
interesting novel feature of Herbert was its capability
to act in an environment that was not specially
prepared for robots. The platform of this robot was
based on the so called subsumption architecture,
which is based on a hierarchical decomposition of
behaviors. Brooks (1986) has argued that this kind of
reactive system is sufficient to model the appropriate
behavior for robots in unstructured environments.

The subsumption architecture of a reactive system is
able to produce complex behaviors. For example,
Herbert was not pre-programmed to perform long
complex schemes, but it was instead activating
appropriate behaviors according to the state of the
environment or the signals that the robot received.

To an outside observer, Herbert looked as if it was a
robot with intentions — as if it had plans and a purpose
with its behavior. But how can we know whether
Herbert is intentional or not? What could be a
criterion for determining this property in relation to
the behavior of a robot? Perhaps it is not meaningful
to talk about intentionality in robots at all, but this
property can only be ascribed to biological systems?

As a background for a discussion of these questions
in this paper, we will start by presenting some
experiments with a grasping robot, called R1, that has
been constructed by the first author. The behavior of
R1 is determined by a set of stimulus-response rules
(S-R rules). This kind of architecture falls under the
subsumption paradigm.’

We will use the performance of R1 as a basis for an
analysis of when a robot can be said to be intentional.
In particular, we will argue that R1 is not intentioal
because it has no capacity to attend to one object at a
time. On a more general level, we will argue that
attention is indeed a first level of intentionality in
robots (as well as in animals).

2. THE ROBOT R1

2.1 Architecture

The robot R1 (see figure 1) consists of an arm that can
move along the x-axis (from left to right and back
again). On the arm there is a gripper that can be
lowered and raised and rotated £90 degrees. A

1 Brooks is a bit unclear on exactly what is allowed in subsumption
architecture. To be on the safe side, we start by discussin systems
based on S-R rules.
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peripheral camera is placed on the arm above the
gripper. Another camera is placed near the gripper
and it rotates with the gripper. In addition to this,
there is a conveyor belt that transports various objects
(for example, Lego bricks of different sizes and
colors) into the visual field of the robot.

The robot is constructed to locate, categorize and
grasp a moving object. The location and
categorization processes are designed to function
independently of the direction the object was placed
in on the conveyor belt.

Figure 1. The reactive grasping robot R1.

The performance of the robot is based on two
independent vision systems: One that handles
peripheral vision (input from camera 1) and one that
takes care of focus vision (input from camera 2). The
electronic hardware architecture of R1 is presented in
the appendix.

2.2 Peripheral vision

The purpose of the peripheral vision system (figure
2a) is to locate a moving object on the conveyor belt
somewhere in the view of the camera. The system is
designed to categorize an object from different angles
(see below). It is organized in such way that different
views are associated with different responses in a
reactive (behavioristic) fashion. When the peripheral
vision system finds an appropriate object, it directly
moves its arm in the direction of the object. By
moving its arm, the robot is also moving the second
camera closer to the object.

Figure 2a. (Top) The peripheral camera which is placed on
the arm of the robot above the conveyor belt and above the
gripper. 2b (Bottom) The focus camera is placed near the

gripper and is rotated along with the hand.

By repeating that loop, the peripheral vision system
soon reaches its goal, which is that the object will be
moved into the center of the image of camera 2. It
should be mentioned already here that this stimulus-
approach behavior was successful when only one
object was present on the scene. The robot was also
tested when several objects were present on the scene.
In these cases, however, a large number of grasping
failures occurred.

2.3 Focus vision

The focus system (figure 2b) is concerned with how
an object should be grasped correctly. That system is
responding to the orientation of an object. The camera
can only see a small region and it only responds when
the object is within that region. That also means that it
is necessary to place the object close to the hand if the
camera of the focus system is to be activated.
Basically, this is the task of the peripheral system.



To categorize a certain object from a variety of
views, it is necessary that the focus system has a set of
stored representations of views of the relevant objects
in its internal memory. This knowledge has been
implanted by the programmer into the system and is
thus not learned by the robot itself. In addition to this,
the vision system has stored a set of appropriate
stimulus-response behaviors that control the behavior
(orientation of the hand and grasping and letting go of
an object) of the robot.

2.4 The control of the orientation of the
hand-wrist

The appropriate control of the hand-wrist of the robot
was more complicated to achieve than controlling the
x-position of the arm. The orientation of the moving
object is not easily determined. In computer vision
applications, constructors often use a rotation matrix
to estimate a large numbers of transformations, which
have to be matched against the input representation of
the object in focus.?To be able to perform such a
matching, it is necessary to first estimate the gravity-
center of the object. It is important to notice that such
operations are computationally costly since all such
generated representations must be matched with the
input representation of the object.

Instead, we solve the problem of determining the
orientation of the object by utilising the stored views
of an object that were mentioned above (Poggio and
Edelman 1990). These views are associated with a
certain response, which in this case means a certain
angular rotation of the hand (figure 3). When the
picture of the object matches one of the stored views,
the corresponding response is performed. This kind of
procedure is typical of a reactive response system. It
is computationally quicker than the procedure
presented above — the burden is carried by the vector
of stimulus-response pairs. However, it puts higher
demands on the memory of the system.
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Figure 3. Memorized views of a brick. The focus vision has
been taught to associate a certain view of a brick with a
certain response. In this example five different views have

2 A rotation matrix represents information about the appearance of
an object in different rotational positions.

been memorized and are associated with a response to
rotate the wrist of the gripper an appropriate angle.

2.5 Multiple scales

In many categorization tasks, it is not necessary to
match the whole image in all its details, but basic
shape information is, in general, sufficient for
categorization. However, if two or several of the
objects are quite similar in shape and form, it is useful
to integrate more details in these models. The idea is
to stop the categorization process when a sufficient
matching is achieved between the object categories.

To achieve a fast responding system, all
representations are not stored at the same spatial
resolution (figure 4). Such a resolution pyramid of
multiple scales has many interesting properties. For
example, it is useful when generalizing a class of
objects, it results in faster estimations of a reduced
picture, and fewer stored views are needed (Balkenius
and Kopp 1997a, 1997b).
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Figure 4. An example of expansions of representations
involving multiple scales.

For example, in the experiments with RI, the
representation of a brick was stored at different spatial
resolutions to achieve a fast responding vision system
(this boils down to a reduction of the size of matrix
calculations). A brick that was placed at an angle with
the direction it was moving in (with a difference in
orientation greater than 10 degrees) was stored as a
separate schema. The coarseness of the scale makes it
possible to rapidly estimate the position of the object.
It is not necessary to determine the exact orientation
of an object when it is far from the goal orientation.
Rather more details (concerning resolution, position
and orientation of the object) should be calculated
when the object is close enough to the gripper. This
approach makes the robot much more adaptive. We
also believe that this approach corresponds roughly to
the way the brain identifies objects.



3. THE PERFORMANCE OF R1

3.1 Actions on a single object

As described in the previous section, R1 was
programmed to categorize a number of objects and
taught how to orient its hand independently of the
position and orientation of the object. Furthermore,
pairs of stimuli and responses (small pieces of
reactive behaviors) were stored in the memory of R1.
None of these behaviors were linked or associated
with longer sequences in the stored model of the
grasping behavior of the robot.

The scenario for most of the experiments consisted
of one object, which was moved rather quickly by the
conveyor belt towards the robot arm and the camera
that is mounted on the gripper (see figure 5). The
velocity, orientation and position of the object was not
determined in advance, so the robot had to
compensate or adapt to these parameters to perform a
successful action sequence of recognizing the object,
moving the arm, rotating the gripper, grasping and
removing the object from the conveyor belt.

Figure 5. Robot R1 in action. The goal of R is to grasp
bricks independently of position, orientation and speed of
the object. A conveyor belt transports the object towards the
arm and hand of R1.

In the experimental interaction, the robot was able
to co-ordinate the start and finish states of separate
actions and in this way generate a complete sequence
which ended in a successful grasping and removal of
the object. For example, when the object was close to
the gripper and the camera with the gripper had the
correct orientation, one of the stored stimulus-
response pairs was activated which resulted in a
grasping behavior. The grasping response or behavior
was an end state of a sequence of previous reactive
behaviors — a sequence that, to a large extent, was

unpredictable. In a satisfactory number of situations,
the reactive system of R1 managed to grasp and
remove the moving object. The interaction between
the different parts of the systems takes place by
”communication through the world” as Brooks (1991)
calls it. That is, one part of the system is activated
when another part has changed the environment in a
particular way. For example, the robot Herbert,
menitioned in the introduction, only moved towards
the trash bin when it had succeeded to grasp a soda
can.

However, the success of the reactive system was to
a large extent depending on the fact that there was
only one object present on the scene. When two
objects were present, however, the robot did often not
succeed in grasping any of the objects. The problem
for a system that builds on reactive behavior is to
focus on only one object, if several are present on the
scene. We will return to the crucial role of attention
for solving this kind of problem in section 4.

3.2 The interaction between perception and
action

In traditional AI, robots are pre-programmed to
perform certain behaviors under certain conditions. In
such an approach all situations that can be problematic
for the robot must be foreseen by the programmer.
However, in complex unstructured environments,
such programs will often fail because it is impossible
to predict all problematic situations. As a background
to a solution of this kind problem, the following
points from Gibson’s (1979) theory of cognition are
relevant:

(1) Perception and action form an integrated system.
Perception guides action; and action provides
opportunities for perception. Human activity can be
fruitfully described in terms of perception-action
systems.

(2) We perceive a meaningful world. This meaning-
fulness resides neither in the agent (person) nor in the
environment, but derives from the interaction of the
two. Gibson described meaning in terms of afford-
ances. For example, some surfaces offer support for
walking, whereas others do not. What the environ-
ment affords depends on what kind of animal you are,
which involves not only your physical receptors and
effectors but also your level of cognitive and
behavioral development.

These two principles are supported by the subsum-
ption architecture proposed by Brooks (1986) (also
see Connell (1990)). Gibson’s thesis (1) has also been
an inspiration in the construction of the robot R1. The
robot was not only built to show that affordances can
be useful in robotics, but also to bring forward
problems that frequently occur in connection with



behavior based robots. In (1), Gibson focuses on the
importance of interactions between actions and
perceptions. The point is that such interactions can
facilitate the performance of the robot and govern the
selection of the next S-R pair. In particular, such
interactions are important when a robot tries to grasp
a certain object. The interactions simply facilitate the
opportunities for the next action to happen.

The interaction between action and perception can
be exemplified with the behavior of R1 (see figure 5).
When the robot tries to grasp a brick at a certain
location and orientation, the object is first located
with the aid of the peripheral vision system. That
system then estimates a distance-error signal that is
used to decide how much the arm should be moved in
the x-direction (only) in order to approach the object.
The object is constantly moving towards the arm and
hand (the object is transported in the y-direction with
aid of the conveyor belt). The success of the first
action system creates the opportunity for the focus
vision system to perform a long sequence of
appropriate actions. The implicit purpose of these
actions is to finally reach and grasp the object.

In summary, the two systems that are electronically
completely separated were able to produce the
complex behavior of grasping an object in motion.
This shows that a form of “emergent” behavior can
appear as a consequence of external interactions. For
example it is impossible for the focus vision system to
stick to the approaching object and control the
rotation of the hand, if the control of arm location in
x-direction is not properly managed by the peripheral
vision system.

What has been shown by the construction of R1 is
that a simple set of S-R rules can result in a kind of
”quasi-intentional” behavior. The question to be
addressed now is when a robot really becomes
intentional. In particular, what should be added to R1,
if anything, to make it an intentional system?

4. ATTENTION AND INTENTIONALITY
IN ARTIFICIAL SYSTEMS?

4.1 The problem with lack of attention in a
reactive system

When we are observing the action of a typical
grasping situation, the robot R1 appears to be
intentional. This impression is particularly strong
when you interact with the object by moving it, since
then the robot arm and the gripping mechanism are
adjusting to the movement. This seems like an
adaptive and intentional behavior. But since we know
that the system is merely reactive and does not have
any representation of objects, plans or goals, there is
nothing intentional built into the robot.

The robot R1 is interacting the world by using
merely a set of S-R pairs. It can thus be viewed as a
behavioristic system, where “mental® notions like
intentionality are not needed to describe its function.
R1 is nevertheless able to perform functional actions
like locating and grasping a moving object. The
architecture of the robot, however, admits no internal
representations of goals that can be used for reasoning
and planning in such a system.

So, why would a grasping robot need represen-
tations that enable, for example, planning of actions?
R1 seems to function well anyway. The limitations of
the S-R architecture of R1 showed up, as was
mentioned above, when there was more than one
object present on the scene. In such a situation, the
robot would seemingly shift it’s “attention” randomly
between the different objects, which would lead to
inconsequent actions that resulted in no object being
grasped. A more accurate description is that R1 had
no capacity at all to attend to an object. We will argue
that such a capacity makes a crucial difference for the
performance of a system.

4.2 When is a system intentional?

Before we turn to what should be required of an
attentional system, we first comment on what
properties a system must have to be intentional. We
do not believe that there is a unique answer to the
question, since a subject can exhibit different levels of

intentionality.” A first condition an intentional subject
must satisfy is that it should be capable of having
certain kinds of representation.

Some kinds of animal behavior, like phototaxis, is
determined directly by psychophysical mechanisms
that transduce information about the environment. In
such cases, representations are not involved at all. The
actions that follow on the transduction are mere
reflexes that connect the signals received by the
animal with its behavior. Such biological mechanisms
corresponds to reactive systems in the robot domain.

In other cases, animals and robots use the incoming
information as cues to “perceptual inferences,” which
add information to what is obtained by the
psychophysical receptors. Whenever information is
added in this way to sensory input representations are
obtained. Representations can be seen as intermediate
variables that connect stimuli and responses and
thereby reduce the number of links required. The
intermediate variables also make the behaviour of the
system more flexible.

For example, von Uexkiill (1985, pp. 233-234)
argues that as soon as an animal can map the spatial

3 For a discussion of some of the different levels, see Brinck and
Gardenfors (1999).



structure of its environment by a corresponding
spatial organization of its nervous system, the animal
constructs

a new world of excitation originating in the central
nervous system that is erected between the environment
and the motor nervous system. [...] The animal no
longer flees from the stimuli that the enemy sends to
him, but rather from the mirrored image of the enemy
that originates in a mirrored world.

We submit that the capacity to represent the world is
a necessary condition for intentionality. Von Uexkiill
(1985, p. 231) expresses the difference between
animals capable of representation from those not
capable of it in the following drastic way: “When a
dog runs, the animal moves its legs. When a sea
urchin runs, the legs move the animal.“ In brief,
intentionality is necessary for agenthood.

Representations are necessary for planning,
reasoning and rational behavior in general In
particular, representations of the goals of the system
are central for achieving intentionality. This is what
gives a system a “directedness” (Brentano 1973). It
should be noted that we do not require that
representations are expressed by some form of
symbolic notation in the system. There are many other
ways of making systems, natural as well as artificial,
representational (see e.g. Kirsh (1991)).

The advantage of intentionality in a system is that it
is able to adopt its actions to the situation at hand
(Tomasello and Call 1997). To be reached, the same
goal may require different actions in different
contexts. And the same actions may afford different
goals in different contexts. Due to its use of represen-
tations as mediating terms, intentional behaviour
becomess flexible. It depends on the ability of the
system to adjust to the distinctive character of each
context it encounters. It also depends on the ability to
learn about new contexts and how to represent them.

In our discussion of the robot R1, we have been
focusing on S-R systems. In such systems, there is no
way to represent a goal. The perceptions and actions
that form the elements of the S-R pairs does not allow
a “goal“ to creep in on either side of such a pair.

However, other kinds of non-symbolic architectures
have been proposed for robotic systems. One of the
most well-known is the subsumption architecture
proposed by Brooks (1986) (see also Connell 1990)
Systems based on the subsumption architecture are
more advanced than S-R systems since, firstly, there
may be internal links between several links of the S-R
type (in other words, internal “responses” may

4 For a general discussion of representations in animals, see
Roitblat (1982), Gopnik (1982), Lachman and Lachman (1982),
Gulz (1991), and Gérdenfors (1996a, 1996b).

function as ”’stimuli” for other links); and, secondly,
such a system may contain internal control loop,
which improves the goal-directedness of the system.
Nevertheless, such a system does not contain any
internal representations of the goals of the system. As
a matter of fact, Brooks (1991) argued in an early
paper that robotic systems do not need represen-
tations.” Hence systems based on the subsumption
architecture do not satisfy the criterion of intention-
ality as presented above.

4.3 What is required of an attentional system

What is then required of a visual robot if it is to be
able to attend to something? First of all it should be
noted that there are different levels of attention.
Brinck (2001) distinguishes between scanning,
attention attraction and attention focusing. Scanning is
the continuous surveying of the environment which is
directed at discovering possibilities to act. Attention
attraction occurs when something happens that is at
odds with the expectations of the system. This kind of
attention is triggered by events in the environment.
Attention focusing, finally, is the intentional form of
attention where the agent itself choses what to attend
to. In this case the agent may even have its attention
directed to something that does not exist in the current
environment. For example, if you are looking for
chanterelles in the forest, your attention is focused on
yellow mushrooms, even if there is not a single
chanterelle in the environment. In the current paper,
we are only concerned with attention focusing.

We submit that a visual robot that is capable of
attention focusing must be able to

(1) identify relevant objects in the scene;
(2) select one of the identified objects;

(3) direct its sensors towards the selected object;
and

(4) maintain its focus on the selected object.

A special case of (4) is that the robot should be able
to track an object, that is, focus on the object even if it
moves across the scene. Since we see attention
focusing as a minimal form of intention, it should be
noted that the four criteria proposed here fit well with
Cohen and Levesque’s (1990) proposal that intention
is choice with committment.” The capacity to follow
an object over time and over varying perceptual
circumstances is what, following Piaget, is called

5 This position was strongly criticized by Kirsh (1991).

6 At least not “classical” systems based on the subsumption
architecture. Brooks has included further aspects in later systems,
e.g. in the COG robot, that may make them pass the criterion.

7 We agree with the basic idea of the paper, although we believe
that the logical formalism chosen by the Cohen and Levesque is
not appropriate for the problem.



object permanence in psychology. Thus there is a
close connection between a system exhibiting object
permanence and the system’s attentional capacities.

Capacities (1) and (2) demand representations of
objects which is a radical departure from behavioristic
principles. The point is that no set of S-R couplings is
sufficient for identifying and selecting an object in a
changing environment. For this the robot needs a way
of internally marking a set of features as being
characteristic of a particular object. It is such a set that
constitutes the representation of the object.®

This kind of representation is an unevitable control
variable in the attention mechanism of the robot. The
representation “binds together” the S-R pairs of a
reactive system and makes them cooperate in new
ways. In other words, the perception-action
interaction is enhanced by the perception-
representation-action combinations that are made
possible by adding, for example, object representa-
tions. The representation acts as a “hidden variable*
in the control mechanisms of the system.

Another aspect of (2) is how it is decided what the
system should attend to. Here the goals of the system
are of course the fundamental driving forces. But
often a system has several, often conflicting goals.
Thus a mechanism for prioritizing the goals is needed.
Such a system, which we will not discuss here (but
see Balkenius 1995 ch. 6, and Rolls 1999) provides
the systems with its motivation. The motivation of the
system then determines what should be attended to —
in a sense, it determines the current value of different
objects. For example, if hunger is your strongest
motivation when you are in an unknown town, you
will attend to restaurants and other places where food
is provided, but if you are tired you will attend to
hotels and houses providing bed and breakfast. As a
matter of fact, the very act of choosing one object
may increase the motivation of the system to attend to
the object.’

An example of a reactive high-level control system
is the robot Vision Car developed by Newton
Research Labs. The robot is able to capture balls that
move randomly over the floor and deliver the balls at
a goal position. The balls have different colors which
represent different values for the robot. The robot is
programmed to find and approach static and moving
balls and to attend to the best target.

The control system of the Vision Car has four basic
states: (1) Find and approach a ball; (2) lift the ball;
(3) find and approach the goal; and (4) drop the ball.

8The set of features can take various forms: it could, for example,
be just a name of the object; or it could be an equilibrium point in
the activities of an artificial neuron network.

9 See McFarland and Bosser (1993), section 6.4 for a modelling in
terms of utilities of this seemingly paradoxical phenomenon.

The system that visually classifies and evaluates the
static and moving balls consists of a preprogrammed
strategy. The motivation of the robot derives from this
internal routine.

Figure 6. The Vision Car developed by Newton Research
Labs

The robot showed opportunistic behavior in the
sense that it had the competence to direct its attention
to other targets while it was holding a ball (on its way
to the goal position). The robot could drop the ball it
was carrying and approach another ball of a higher
value. This kind of behavior requires a value system
that is used by the motivation system to attend and
lock on a certain object. In this example, attention is
used to lock on a target (a ball) and  then behave
appropriately. However, a meta-system seems to be
involved here, since the robot is able to drop the ball it
already has in its grip. The machine is thus able
evaluate a new target, while it is carrying another
towards the target. This kind of opportunistic behavior
is a sign that the Vision Car approaches the
intentional level in its behavior. The exact judgment
of what level of intentionality it achieves depends on
the flexibility of its attentive system in relation to the
criteria (1) — (4) presented above.

4.4 Attention as a criterion of intentionality
for robots

Our analysis of the functions of attentive mechanism
suggests the that a basic architecture for an attentional
robot consists of the following components: a reactive



system, a value component, a selection system, and an
attentive system.

As argued above, an attentive system satisfying
criteria (1) — (4) presumes that the system has “object
permanence® which in turn presumes that the system
has representations of objects that are, to some extent,
independent of the perceptual input and the actions
performed on the object.

We now propose that these capacities are sufficient
to give the system a minimal form of intentionality.
When a system attends to an object, the motivation of
the system is the force that makes the system keep
track of the object and to gather further information
about what happens to it. The striving for these goals
is what makes the system intentional.

Then, of course, the basic goal of the attentive
process can be embedded in higher level system goals
that would be connected with more advanced forms of
intentionality. But the point we want to make is that
merely attending to an object already results in an
intentional system. Furthermore, the higher level
goals of a more advanced intentional system that, for
example, acts on a certain object depends for its
success on the performance of an attentive system that
can keep track of the relevant object.

The fundamental point is that it is the representation
of the object and its potential motivational value that
determines the goal of the system. This internally
represented goal controls the behavior of the system
rather than just the perceptual input as in a S-R
system. The perceptions of the system may change the
representation of the object, and thereby the behavior
of the system with respect to the object, but this is a
secondary effect. For example, because the represent-
ation “glues together” the various perceptions of an
object, a system with representations will be much
less sensitive to disturbances in the perceptions of an
object than a S-R system is. In consequence, the
erratic behavior of the robot R1 when it was
confronted with more than one object on the scene
will not be present in a goal-directed attentive robot.

Another way of describing the fundamental
difference between an attentive system based on
representations and a reactive S-R system is that an
attentive system can have expectations about the
world, but this cannot be achieved by a pure S-R
system. For example, the representations of an
attentive robot makes it “expect” that an object will
have a comparatively stable shape, that it will move in
a continuous manner in space, and that the object will
continue to exist even if it is temporarily occluded
from the visual field of the robot. A system that only
contains S-R pairs, consisting of perception-action
couplings, will not be able to handle the “it* that
comes with the representation of an object, let alone

make any predictions that depends on the spatio-
temporal continuity of an object.

4.5 Object representation and attention in
animals

In this context, it is interesting to compare with the
representational capacities of different species of
animals. Mammals (and birds) exhibit object
permanence, but reptiles don’t. In order to illustrate
the behavioral differences this leads to, we present an
example borrowed from Sjolander (1993, pp. 3-4)
comparing how snakes and cats hunt. It seems that a
snake does not have a central representation of a
mouse but relies solely on perception-action (S-R)
couplings. The snake exploits three different sensory
systems in relation to prey, like a mouse. To strike the
mouse, the snake uses its visual system (or thermal
sensors). When struck, the mouse normally does not
die immediately, but runs away for some distance. To
locate the mouse, once the prey has been struck, the
snake uses its sense of smell. The search behaviour is
exclusively wired to this modality. Even if the mouse
happens to die right in front of the eyes of the snake,
it will still follow the smell trace of the mouse in
order to find it. Finally, after the mouse has been
located, the snake must find its head in order to
swallow it. This could obviously be done with the aid
of smell or sight, but in snakes this process uses only
tactile information. Thus the snake uses three separate
modalities to catch and eat a mouse. Since there is no
communication between the three sensory systems
(except that one takes over when the other finishes), it
has no central representation of a mouse.

In comparison, the cat is able to represent objects,
which among other things leads to object permanence.
When the cat hunts, it relies on a combination of
information from several sensors: eyes, ears, nose,
paws, and whiskers. It can predict that the mouse will
appear at the other side of a curtain when it disappears
on one side. It can “infer” information about the
mouse even if there is no immediate sensory
information, like when it is waiting outside a mouse-
hole. In this sense it has a central representation of a
mouse that is, at least to some extent, independent of
the perceptual information.

Of course, the ability to represent will also affect the
attentional capacities of animals. As every cat owner
knows, the cat has no problem in intensively attending
to a mouse during the hunt, even when there are
several disturbing factors. In contrast, we conjecture
that the snake would have severe problems if there,
for example, were more than one mouse present on
the scene (although we have no empirical evidence for
this). If the snake, for instance, had struck one mouse,
but happened to follow the smell track of another
unhurt mouse, it would fail miserably in its hunting.



5. CONCLUSION

In this paper we have suggested that the capacity of
attention is a minimal criterion of intentionality in
robots. We submit that an attentive system must be
able to identify relevant objects in the scene; select
one of the identified objects; direct its sensors towards
the selected object; and maintain its focus on the
selected object.

We have described the robot R1 which exhibits
behavior that at a first glance may seem intentional.
However, when the robot is confronted with a
situation where more then object is present on the
scene, the fact that the behavior of R1 is determined
merely by S-R rules becomes apparent. In brief, the
robot has problems attending to a specific object.

We have also defended that position that a robot
with attention would have a minimal level of
intentionality, since the attentional capacity involves a
first level of goal representations. This criterion also
seems to be useful when discussing intentionality in
animal behavior.
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APPENDIX

Hardware description of R1

R1 was constructed using industrial mechanical
components. The computers are standard PCs. The
frame grabber is an inexpensive construction by the
first author. The cameras are cheap black-and-white
and the motion control consists of standard radio
controlled servos. A one stepper motor is used to
move the arm in the x-direction. Figure 7 shows how
the different computers and electronics are connected.

Figure 7. The hardware of R1.

Design of the robot hand

The robot-hand has the following sensors: an IR-light
switch and two tactile sensors (made of resistive
plastic and with variable resistance proportional to the
force on the sensor area). Figure 8 illustrates the hand
sensors.
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Figure 8. Gripper with tactile sensor and an IR-switch.

When the robot prepares to grasp an object it
focuses on the light bar in order to know when its
time to stop the lowering of the arm. When the light
beam is broken the hand is assumed to be at the
correct height to grasp the object. The “fingers™ of the
gripper can never touch the conveyor band because of
physical constraints in the construction. The grasping
behavior depends on several kinds of information: the
orientation of the hand, the distance (height) to the
object and the appropriate force for grasping. The
tactile sensors measure the force of the grasping. A
servo-loop is continually measuring and controlling
the grasping force applied to the object.

A color picture of the robot can be seen at
http://www.lucs.lu.se/Projects/Robot.Projects/Snatte.h
tml.



