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Abstract

We present the �rst stages of the developmen-
tal course of a robot using vision and a 5 degree
of freedom robotic arm. During an exploratory
behavior, the robot learns visuo-motor control of
its mechanical arm. We show how a simple neu-
ral network architecture, combining elementary
vision, a self-organized algorithm, and dynamical
Neural Fields is able to learn and use proper asso-
ciations between vision and arm movements, even
if the problem is ill posed (2-D toward 3-D map-
ping and also mechanical redundancy between
di�erent joints). Highlighting the generic aspect
of such an architecture, we show as a robotic re-
sult that it is used as a basis for simple gestural
imitations of humans. Finally we show how the
imitative mechanism carries on the developmen-
tal course, allowing the acquisition of more and
more complex behavioral capabilities.

1. Introduction

In (Gaussier et al., 1998) we started to present the de-
velopmental course of an autonomous mobile robot,
based on imitative capabilities. Firstly, we showed
how a neural network architecture could learn by im-
itation sequences of actions based on a reex sensory-
motor repertory. We then showed how the new reper-
tory of sequences of action could be used to in-
duce simple gestural interactions with humans or other
robots (Andry et al., 2001) opening new communica-
tional perspectives. To tackle more intuitively these new
issues and to increase the space of the possible associa-
tions, we equipped two of our mobile robots, with a 5
Degrees Of Freedom (DOF) robotic arm. Consequently,
the initial reex repertory (at the basis of the sequence
learning) of our mobile robot becomes unsuitable for the
control of a robotic arm. Thus, as a �rst stage of our
developmental sequence, our robot needs to �ll the gap
between non controlled moves and basic sensory-motor
coordination, in order to imitate simple gestures: the

Figure 1: The robot. A Katana robotic arm and a home-

made pan tilt camera (right) are mounted on a mobile Koala

robot (left).

constitution of a simple but coherent and reliable visuo-
motor space. Indeed, designing a robot control architec-
ture using vision and a robotic arm, to solve the reaching
of a 3-D position in a surrounding space is not a new issue
(Marjanovi�c et al., 1996). It is nevertheless a crucial and
generic problem, underlying many issues, from sensory-
motor coordination (Schaal et al., 2000) to object grasp-
ing and manipulation (Niemeyer and Slotine, 1988),
or dynamic gestural interactions such as imita-
tion (Cheng and Kuniyoshi, 2000, Billard, 2001). Such
an architecture should allow the robot to easily generate
the appropriate movement of its arm to reach a given vi-
sual point of its surrounding space, and conversely the vi-
sion could easily focus/bypass the extremity of the arm.
Far from complex recognition systems, we propose a neu-
ral network architecture able to learn and store associa-
tion between 2-D elementary vision and the 3-D working
space of a robot's arm. We will show how the use of
a new type of associative coding neurons coupled with
dynamical equations successfully solves the reaching of
areas of the working space (with respect to our monocu-
lar limited vision system), independently of the number
of degrees of freedom of the arm (and their potential re-
dundancy). We will also emphasize the importance of
the on-line learning process, where the robot performs
sensory-motor associations thru a random exploration
of its own motor dynamics and physics. As a robotic



validation, we will present how dynamic and perceptive
properties of such a generic architecture allow to exhibit
real time imitations gestures. Finally we will discuss how
the learned associations coupled with an interaction pro-
cess such as imitation constitute the basis of the building
of the next stages of a whole developmental course.

2. Developmental motivation

At birth on, vision and motor control of the neonate are
relatively coarse. The young infants perceive outlines of
�gures, with a particular sensibility to movements in pe-
ripheral vision (Hainline, 1998). They are able to follow
a moving target with saccadic eyes movements, but the
motor control of the neck and the other muscles will come
progressively later. This stage of development could be
in a way compared to our embodied robots: they have
a pan-tilt camera, a mechanical arm and a gripper, they
can move, they have sensors and a CCD camera to per-
ceive their environment (�g. 1). Nevertheless, designing
a control architecture for such a robot remains complex,
due to the amount of possible sensory-motor associations
related to the multiples degrees of freedom. Learning to
coordinate its arm to reach and grasp a visible object,
to move or to push it to a given place, being able to
imitate very simple gestures or movements, are all com-
plex issues, often referring to separate works in the �eld
of robotics. In another way, the young developing in-
fant is able to solve all these tasks around the age of
six month (Vinter, 1985, Nadel and Butterworth, 1999),
and quickly uses these new skills as a new repertory
for more complex tasks. More importantly, this tuning
is essentially achieved during sensory-motor exploratory
behaviors. These behaviors consist in repeated move-
ments and the matching of the corresponding percep-
tions. These movements are not necessarily goal oriented
and often randomly triggered, consisting in a �rst explo-
ration of the motor space. Slowly, a coarse to �ne catego-
rization of the sensory-motor space is learned, standing
for the new building blocks of a more complex sensory-
motor repertory. This developmental process constitutes
an interesting bottom-up guideline for the design of au-
tonomous robots. It suggests that stable sensory-motor
associations can be learned during a self-triggered ex-
ploration of the environment (here, the working space).
The importance of such a developmental course would be
useful for complex robots. It would allow to learn and
categorize correctly the sensory motor space, according
to their own embodiment, dynamics and physics.

3. A Neural network architecture for

Visuo-Motor development

In 1989, Edelman (Edelman et al., 89) proposed Dar-
winIII, a simulated robot with a mobile eye and a 4DOF
arm able to reinforce the reaching of particular targets.

A sensor placed on the extremity of the simulated arm
helped the computing of the reinforcement of the move-
ments. Bullock et al (Bullock et al., 1993) presented the
DIRECT model, a self-organizing network for eye-hand
coordination learning correlations between visual, spa-
tial and motor information. This robust solution al-
lows successful reachings of spacial targets by a simu-
lated multi-joint arm. Our neural control architecture
is inspired from these works, and try to apply them
in the context of a real robot in interactions with hu-
mans and other robots. Our Koala robots (�g. 1) are
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Figure 2: The simpli�ed architecture. Proprioception of

the arm and vision from the CCD camera are merged in a

sensory-motor map composed of clusters of neurons which

learns the visuo-motor associations according to visual in-

formations (V ). After learning, the arm proprioception (P )

triggers the correct activity of the sensory-motor map and

can be used to compute the right movement to reach a pos-

sible target using the Neural Field (NF) dynamic properties.

equipped with a 180 degrees pan and tilt monocular cam-
era "head" (no stereo vision). The mechanical arm is a 5
DOF Katana robotic arm, but only 3 DOF will be con-
cerned in this paper: one turret joint allowing horizontal
rotations (�1 angle), and two joints allowing verticals ro-
tations (�2 and �3 angles, the two other DOF are related
to the gripper control). The visuo-motor control archi-
tecture (�g. 2) is built as a perception-action loop. Two
main perceptive pathways process information from vi-
sion (V ) and arm proprioception (P ). They are merged
in a sensory-motor map composed of clusters of neurons
which learns the visuo motor associations (see descrip-
tion in section 3.2). Visual information triggers two 1-D
Neural Field (NF) maps whose equations compute a dy-
namical attractor centered on the stimulus (see descrip-
tion in section 4.). The direct output of the NF is then
used to compute the motor command of all the devices
of the robot (the head's motors and the arm's joints) to
achieve, for example, pointing or tracking behaviors.

3.1 A simple perception system

The conjunction of the pan and tilt motors (180x180
degrees) with the CCD �eld of view (35x55 degrees) al-
lows a wide perception of the surrounding working space.



Perceptions are processed in a 2-D camera-centered ref-
erential. The results of this computation are then simply
projected on a 2-D body-centered map of neurons rep-
resenting the whole visual working space (�g 3). The
body centered map is only a reconstruction of all the
possible views that the pan tilt mechanism o�ers. The
�eld of view of the camera is translated according the
pan and tilt position of the head. Our robot has only
a at and two dimensional visual perception of its envi-
ronment, without assumption or reconstructions of the
outside world. For the experiments described in this
paper, we use mainly movements detection to compute
the position of the extremity of the arm. Indeed, an
elementary process such as movements detection is suÆ-
cient to extract the position of the extremity of the arm
for most human and robot gestures. The end point of
a moving arm is naturally the most moving area, due
to the summation of the angular speed of each joint.
Thus, even if movement is perceived on the whole arm,
in most of the cases the maxima of the movement inten-
sity will be located on the hand. To localize the center
of this area, we use a common Winner Take All (WTA)
mechanism operating on two 1-D projections of the 2-
D movement map, allowing a reliable detection of the
vertical and horizontal position of extremity of the mov-
ing segment(�g 4). Moreover, we also assume that this
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Figure 3: Mapping the CCD image on a body-centered visual

map. Computations are made on a camera-centered map of

neurons. The result of the computation is then projected

on a body-centered map of neurons representing the whole

working space of the robot

simple process is very informative since it can be per-
formed in real time and preserve all the dynamic of the
perceived stimuli 1. The movement detection algorithm
is simply a real time computation of the di�erence of
intensity between summed packet of images, pixels by
pixels (more details on the algorithm can be found in
(Gaussier et al., 1998)).

1We have developed more complex and robust networks learn-
ing the shape of an object, but they are out of the scope of this
paper
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Figure 4: Example of end point tracking (here a hand) using

movement detection. The movement detection (on the cen-

ter) is computed from the image ow (here, the experimenter

was waving its forearm). The activity of the 2-D map is pro-

jected on two 1-D maps of neurons. Then, each projection

map is connected to a WTA computing the position of the

maximum of movement in the scene (Computation performed

at 20 images /s).

3.2 Learning Visuo-motor Associations

Self-Organized Maps (SOM) such as Koho-
nen (Kohonen, 1976) networks are often mentioned
as a possible solution for the learning of visuo-motor
coordinates with simple robotic (or simulated) arms.
Intuitively, the self-organizing and topology features
of the network should allow a reliable learning with
a reduced amount of movements during training. A
drawback of this model is that it will work under the
assumption that there is a bijection between the angle
of the joints and the position of the extremity of the
robot's arm. A given neuron activated by vision (input)
can code for a given vector position of the di�erent
joints and the neighbors will learn neighbors vector
position thanks to the topology of the network. But
with more complex arms (such as the one we use), the
same position of the extremity corresponds to multiples
vector positions of the joints. To allow the association
of multiples proprioceptive vectors with a single visual
perception, we use a new kind of sensory-motor map,
composed of clusters of neurons (�g 5). Each cluster of
this map associates a single connection from one neuron
of the visual map with multiples connections from the
arm's proprioception. Visual information (V ) controls
the learning of particular pattern of proprioceptive
input (P ). Thus, this sensory-motor map has the same
global topology as the visual map. More precisely, a
cluster i is composed of (�g 6):

� one input neuron Xi linked the visual map. This
neuron respond to the V information and triggers
learning.

� One submap, a small population of Y k
i neurons

(k 2 [1; n]) which learn the association between 3-D
proprioceptive vectors and one 2-D vision position.



This population is a small topological map with self-
organizing properties, such as a SOM maps.

� one output Zi neuron, merging information from Xi

and submapi.
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This organization ensures a topological and independent
learning of each cluster stimulated by the presence of
a visual input. This auto-supervised learning process
allow stable and coherent learning of the visuo-motor
associations. A submap of neurons is computed exactly
as a simple Kohonen map. The activity of Yi neurons is
proportional to the distance between P values and the
weights connected to proprioceptive inputs (eq 1).

Y k
i =

1

1 + jPj �Wkj j
(1)

Where Y k
i is the kth neuron of the submap associated

to the ith cluster. Among each submap, a winner is
computed (eq 2):

winneri = maxk2n(Y
k
i ) (2)

Like in SOM algorithm, the learning is made according
to the topology of the submap (eq 3):

Wkj = Wkj + � � Y k
i � Æ(d(winneri; k); Pn;Nn) � Zi (3)

The d function computes a simple distance between the
kth neuron and the winner neuron of the submap. The
Æ function computes the values of the lateral excita-
tory/inhibitory connections modulating the learning of
the winner neuron's neighborhood. Æ is a di�erence of
gaussian (DOG) function whose shape is generated by
the positive and negative neighborhood values (Pn and
Nn, see �gure 7 for more details). � is the learning rate.
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The learning of a submap is dependant of the activation
of the corresponding Xi neuron, triggered by a visual
input. (eq 4). Thus, each submap learns the di�erent
proprioceptive con�gurations independently.

Xi =

�
1 if Vj �Wij > �

0 otherwise
(4)

If no V is present, P is enough to trigger the response
of the associated cluster in the map. The activity of
the winner of each submap is then propagated to the
potential of each associated Z neuron (eq 5).

Z 0

i = max(Xi; winneri) (5)



A simple competition process is then performed on the
output Z neurons of the map (eq 6).

Zi =

�
1 if Z 0

i = maxj2n(Z
0

j)
0 otherwise

(6)

The winner neuron Z will represent the \visual' response
associated to the proprioceptive input presented. Thus,
many proprioceptive con�gurations are able to activate
the same \visual feeling", while close visual responses
can be induced by very di�erent proprioceptions (thanks
to the independence between each cluster).

3.3 On-line learning

During the learning phase, the robot is put in a "quiet"
environment, far from possible ambiguous distractors
(learning with distractors would require much more pre-
sentations to detect the stable part of the sensory-motor
associations). A crucial part of the learning process is
linked to the choice of the learning parameters. Learn-
ing is uniquely controlled by the "shape" of the lat-
eral inhibition between Y neurons of a submap (�, Nn,
Pn, involved in eq 3). This will inuence the coarse to
�ne process which is mainly represented by two di�erent
stages: A coarse stage: at the beginning of the learn-
ing process, each cluster learns one visuo-motor associa-
tion, self-supervised by vision (�g 8.b, 8.c). � is maximal,
Pn high, there is no lateral inhibitions (the shape of the
lateral interaction is a positive Gaussian). At this stage,
the system does not cope with multiple arm positions for
one visual position. The robot can perform either ran-
dom or continuous arm movements, since the topology
is forced by the presence of an V signal. The learning
parameters are: � = 0:9, Pn = 7, Nn = 7. Figure 8.c)
required 300 iterations of learning.
A tuning stage: The system will learn the equiva-

lences between multiples di�erent positions of the arm
and a single visual position of the extremity (�g 8.d,
8.e, 8.f). It consists in a dissociation phase of the neu-
rons of the submap, whose lateral inhibition shape and
amplitude are diminishing thru time (progressive stabi-
lization). The system progressively copes with multiples
arm positions. The robots has to perform numerous ran-
dom arm movements, to trigger each cluster with di�er-
ent arm positions. The learning parameters are: � = 0:4
down to 0:05, Pn = 7 down to 1, Nn = 7 down to 3.
Figures 8.g) required 8000 iterations of learning.
Theoreticaly, the �ne learning can work on its own,

but it requires a very long time of convergence. "Fine"
also refers to the learning constant which are in this case
small, to allow a slow, progressive but accurate modi�-
cation of the weights. Starting with the �ne stage would
only takes a long time before all the clusters would be
separated.
Practically, and especialy in the case of learning

robots, a coarse stage induce a large categorization of

a b c

d fe

Figure 8: A sensory-motor vector of 146 clusters learning

vertical movements (only the �2 and �3 joints of the arm

where freed). Each cluster is composed of a self-organizing

submap of 6 Y neurons. a): Representation of the arm, and

the theoretical working space. Each point is an accessible

positions of the extremity of the arm, to be learned. On

b)c)d)e)f) examples, each point represents a position learned

by an Y neuron. These points are plotted according to the

values of the Y neuron's weights learning the �2 and �3 values,

using a simulation of the robotic arm. b) and c): the coarse

stage. d), e), f): Progressive dissociation of Y neurons during

the tuning stage.

the space quickly: each cluster is easily separated rom
others, and the robot is already able to perform coarses
but consistent movements.

4. An unique behavioral dynamic

To reach a perceived target, the error between the de-
sired position (the visual position of the target) and the
current position of the device has to be minimized. This
error has then to be converted in an appropriate move-
ment vector to move each device's joint toward the tar-
get. This process is done by computing a dynamical
attractor centered on the target stimuli. The attrac-
tor is computed on two 1-D maps of dynamical neurons
preserving the visual map topology, using neural �eld
equations (eq 7, (Amari, 1977)):

� � f(x;t)
dt

= �f (x; t) + I (x; t) + h

+
R
z2Vx

w(z) � g (f(x� z; t)) dz
(7)

Without input, the homogeneous pattern of the neural
�eld, f (x; t) = h, is stable. The inputs of the system,
I (x; t), represent the stimuli which excite the di�er-
ent regions of the neural �eld and � is the relaxation
rate of the system. w(z) is the interaction kernel in
the neural �eld activation. These lateral interactions



(\excitatory" and \inhibitory") are also modeled by a
DOG function. Vx is the lateral interaction interval.
g (f (x; t)) is the activity of the neuron x according to
its potential f (x; t). This robust and dynamic repre-
sentation allows to get for free the following properties
(see (Moga and Gaussier, 1999) for experimental results
on the use of NF as control architecture for autonomous
robot):

� The bifurcation properties of the equations allow a
reliable decision making if multiples stimuli are pre-
sented.

� The time constant induces a remanent activity of the
neural �eld, proportional to the intensity and the ex-
posure time to the stimulus. This memory property
is a robust �lter of non stable or noisy perceptive
stimuli.

Moreover, the spatial derivate of the NF activities is in-
terpreted as the two desired speed vector (horizontal and
vertical), to reach the attractor target (read-out mech-
anism (Sch�oner et al., 1995)). According to their pro-
prioceptive position, each joint will move at the value
read on the derivation of the NF activities. Each joint
will then contribute to the global move of the arm to-
ward the visual objective, the shape of the NF activity
on the target ensuring convergent moves. This coding of
movements induces the following properties:

� The simultaneous contribution of each joint to the
movement, is an emergent property of the architec-
ture and the dynamic representation of the target.

� A smoothed speed pro�le with acceleration and de-
celeration phases of the joints at the beginning and
end of the movement.

� The stabilization of the motors on the target (d� =
0).

The computation of NF equation on the perceptive ac-
tivity allows a generic coding of the internal dynamic,
independent of the motor devices, without taking into
account the number of DOF of the device, the possi-
ble redundancies (this part being managed by the visuo-
motor learning), and therefore the possible mechanical
changes that can be made during a robot's "life". Hence,
the association of an adaptive sensory-motor map with
two 1-D neural �elds can be seen as a simple and global
dynamical representation of the working space control-
ling eÆciently an arbitrary number of degrees of freedom
according to 2-D information coming from the visual sys-
tem.

5. Results

After the learning phase, the architecture was tested
in pointing and low-level imitation tasks. The point-
ing task is aimed to test how the internal dynamic

(the read-out mechanism), and the coherency of the
learned associations successfully drive the extremity of
the arm to a desired visual area in the working space.
The imitative task is aimed to test the robustness of
the dynamical equations and the real time capabilities
of the overall architecture. The imitative experiment
also validate theoretical works assuming that a generic
controller is able to perform imitation of human ges-
tures (Gaussier et al., 1998, Andry et al., 2001).

5.1 Pointing experiment

Figures 9 and 10 show the results of one pointing test,
performed on one of our robots. To simplify the plotting
of the results, the pointing was made using two DOF of
the arm (�2, and �3). Nevertheless, the pointing test pre-
serves the complexity of the issue since these two DOF
are redundant in their contribution to the vertical move-
ments of the end of the arm. The pointing test was
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Figure 9: Internal activities of the neural �eld map and read-

out mechanism during a pointing task. From t = 0 to t = 47

the neuron 55 is stimulated. From t = 48 to t = 65, the

neuron 105 is stimulated. Up: snapshots of the neural �eld's

activity. A single stable attractor can be seen at t = 47 and

t = 65. Between t = 47 and t = 65 the attractor travels

from the �rst stimulated point (neuron 55) to the second

one (neuron 105). Bottom: corresponding activity of the

NF spatial derivative. From t = 47 to t = 65, the resulting

read-out mechanism moves the arm toward the new attractor

(dashed lines represent the visual position of the extremity of

arm, and dact=d� = 0 represent a null speed of the associated

joint).

performed as follow:
Vision from the CCD camera is disabled (no visual in-
formation), and the activity of the neural �eld is directly
controlled by the experimenter, simulating a perfect per-
ception. At the beginning of the experiment (from t = 0



to t = 47), there is no error between the activated area
(centered on neuron 55) of the neural �eld and the posi-
tion of the arm, inducing no movements. At t = 48, the
experimenter stops the activation of the neuron 55, and
starts to stimulate the neuron 105. The resulting trav-
eling wave (from t = 48 ) on the NF's activity (�g 9,up)
induces modi�cations of the shape of the associated spa-
cial derivative (�g 9, bottom), and starts to move (from
t = 49 ) the arm's joints toward the new equilibrium,
progressively centered on the neuron 105. Figure 10
shows a plot of the recorded positions of the arm cor-
responding to the modi�cations of the NF's activity be-
tween t = 48 and t = 65 according to two modalities. In
the �rst modality, the �2 joint was blocked, and only the
�3 joint was able to point in the direction of the target
(�g. 10.1). In the second modality both joints �2 and
�3 where freed and able to reach the target (�g. 10.2).
These records show that in both modalities, success-
ful pointing is achieved by the system. We can notice
that: �rst, the pointing is achieved with minimal pre-
cision error inferior to 3 degrees, (with a resolution of
1.5 degrees of the neural network coding), second the
sensory-motor map has learned a reliable visuo-motor
space (no incoherent or discontinuous movements), and
third both commands correspond to a single internal dy-
namic. These examples of pointing show that the archi-
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Figure 10: Pointing results, resulting of the NF activity plot-

ted in �gure 9. Left: one DOF modality. Right two DOF

modality. In both examples, the same internal dynamic suc-

ceeds to drive the arm to the area of the visual space stimu-

lated.

tecture exploits eÆciently 2-D visual informations for po-
sitioning the robotic arm in the 3-D surrounding space.
The 2-D to 3-D position equivalence of the extremity
of the arm is performed thanks to the previous learning
of the sensory-motor map, which topology favor mini-
mal cost movements by minimizing the distance of each
joint between the current proprioceptive con�guration
and the desired visual target position of the extremity.
To sum-up, the visually forced topology of the sensory
motor map ensures the shortest path of the extremity
of the arm to reach the target, while dynamical neural
�elds ensure the proper speed pro�le of the extremity of

the arm, and the contribution of all the aviable joints to
the whole movement whatever the number of joints used
is.

5.2 A Contribution to imitation behaviors

In (Gaussier et al., 1998) we showed that a mobile robot
is able to imitate successions of displacements performed
by a human demonstrator with a control architecture
based on the two following principles:

1. The perception is fundamentally ambiguous

2. The robot is nothing more than an homeostat. The
robot tends to reduce the error between its visual
perception and its proprioception (it can be seen as
visuo-motor reex allowing to follow the teacher di-
rection).

From these generic principles, the imitative behavior can
be seen as a side e�ect due to the perception limitation of
the system: walking in front of the robot induces changes
in the perceptions that the robot interprets as an un-
foreseen self movement. It tries to correct by opposite
movements, inducing the following of the demonstrator.
In the present system, the generic principles of the ar-
chitecture are the same:

� same perception system

� the homeostatic behavior is the core of the control of
arm movements (a di�erence between visual stimula-
tion and motor positions induces the movement of the
arm toward the visual stimulation, as demonstrated
by the pointing task).

Moreover the learning process constitutes a primary be-
havioral repertory. Thus, an elementary imitative be-
havior can be triggered by exploiting the ambiguity of
the perception. Using only movement detection, the sys-
tem can't di�erentiate it's extremity from another mov-
ing target, such as a moving hand. By shifting the head
horizontal motor with the robot's body proprioception,
we ensure that the robot's arm can't be in the �eld of
view of the camera. Thus, a perceived moving hand will
be associated to the robot own arm (perception ambigu-
ity). The generated error will induce movements of the
robotic arm reproducing the moving path of the human
hand: an imitative behavior emerges. Using this setup,
we show that our robot can imitate several kind of move-
ments (square or circle trajectories, up and down move-
ments, see �g 11). During the experiment, the 3 main
DOF of the arm where freed, allowing movements in all
the working space. The experimenter was naturally mov-
ing its arm in front of the robot's camera making sim-
ple vertical or horizontal movements, squares, or circles.
The camera rapidly tracked the hand (the most moving
part of the scene) and the arm, reproduced in real time



the hand's perceived trajectory. The use of neural �elds
ensures a reliable �ltering of movements and a stable,
continuous tracking of the target by the head and the
arm of the robot.

Figure 11: Real time imitation of simple vertical gesture.

To obtain a low-level imitative behavior, we simply shift the

head's position with the body and the arm (shift = 90 de-

grees). Thus, a perceived movement is interpreted as an er-

ror, inducing corrective movements of the arm: an imitating

behavior emerge

6. Conclusion

Far from building a control architecture dedicated to
imitation tasks, we showed how a generic system with
learning capabilities and dynamical properties, can eas-
ily exhibit low-level imitations. These imitations of arm
movements are performed without any internal model of
the human arm, and can easily be transposed to imita-
tion of robotic arm movement, whatever the morphology
of the arm is. We are here close of an e�ect level imita-
tion (Nehaniv and Dautenhahn, 1998), where real-time
executions, and dynamics of the movement are suÆsant
to provide low-level but eÆcient imitation (eÆcient for
interaction, because imitation of movements can be rec-
ognized, and eÆcient for learning, because information
about the most useful and informative part of the move-
ment, the end point, is used).
We have also shown how a very simple vision system,

only built on movement recognition, is suÆcient to ob-
tain a robust end point tracking behavior. We have also
shown that the on-line learning of the coordination of
complex robotic devices can be solved by an appropri-
ate design of the starting architecture (The choice of a
same topological coding for vision and motor control).
Indeed, the low-level imitative behavior constitutes the
trigger of the next developmental stage. It allows ges-
tural interaction with humans, objects, and the \out-

side world". These interactions constitute a new way for
the system to learn more complex sensory-motor asso-
ciations, about the physical, dynamical and also social
properties of the environment. For example, we plan
to make our robot learn sequences of arm movements
(already tacked in (Gaussier et al., 1998) with a mobile
robot) via interaction with humans or robots. We are
investigating learning issues allowing our architecture to
learn, store and reproduce sequences of gestures, but
also to detect implicit but important information dur-
ing a gestural interaction. From a developmental point
of view, we assume that higher capacity of interactions
will be built up from experiencing more and more com-
plex situations, carried out by the acquisition of new
sensory-motor capabilities.
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