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Abstract

We present a system that attempts to model
the functional role of mirror neurons, namely
the activation of structures in response to
both the observation of a demonstrated task,
and its generation. Through social situated-
ness and a set of innate skills, perceptual and
motor structures develop for recognition and
reproduction of demonstrated actions. We be-
lieve this is an implementation towards a mir-
ror system, and we test it on two platforms,
one in simulation involving imitation of object
interactions, the second on a physical robot
learning from a human to follow walls.

1. Introduction

Epigenetic robotic systems should contain compo-
nents that are capable of being shaped by the interac-
tions of an agent with its built environment as well
as by the social interactions between agents. Our
work deals with a particular social learning model
that incorporates learning by imitation, and tem-
poral attention. The experience of a learner robot
is governed by the actions of a demonstrator, so
that the learner gets to sample only those particular
parts of the perceptual space pertaining to the skills
the teacher is demonstrating. Thus, the social sit-
uatedness of the learner and teacher crucially influ-
ences the structures that develop within the learner’s
‘brain’.

We are inspired from the tight coupling between
perception and motor control found in mirror neu-
rons. Mirror neurons were found in the macaque
monkey brain and they were shown to have both vi-
sual and motor properties. In fact, single neuron
studies by Gallese et al. (1996) and Rizzolatti et al.
(1996) explored further the properties of mirror neu-
rons and exposed a strong relationship between per-
ception and motor control. Mirror neurons fire both
when the monkey performs an action aend when it
observes another monkey or the experimenter per-
form that same action. Based on these properties

it is believed that such a mirror system may form
the fundamental basis for imitation (Rizzolatti et al.,
2000).

The architecture presented in this paper, shown in
Figure 1, is an attempt to model the mirror system,
i.e. the functional role of mirror neurons. However,
there is no evidence from Neuroscience on how the
mirror system is learnt or built. Thus, rather than
arbitrarily building a mirror system a priori, we use
a machine learning approach for this purpose, itself
inspired from Psychology and Biology.

Initially the mirror system contains no structures,
and we believe that a socially situated agent can de-
velop such structures from observation of a demon-
strated action, and then utilise them to reproduce
that action. Our architecture relies on the existence
of simple innate reactive skills for motor control.
These are merely responsible for the inverse kine-
matics of the physical system, handled by an inverse
model.

2. Mirror System

As shown in Figure 1, the mirror system is formed
by the coupling of perceptual structures (nodes) and
motor structures (schemas). The input to the mir-
ror system is a continuous perceptual stimulus that
involves both the observed demonstrator and the im-
itator’s perceived physical environment (e.g. objects
and walls). The output of the mirror system ex-
presses the desired target state of the agent (e.g. pos-
tural targets) and goes directly to the motor system
for execution.

Each perceptual structure is used to recognise a
temporal chunk of the perception of the agent, and
is hard-wired to a single motor structure that holds
motor targets. The targets can potentially achieve
the recognised part of the action, using the innate
skills stored in the inverse model. The coupling be-
tween a perceptual and motor structure expresses the
ability of the agent to perform a particular part of the
recognised action. Currently, these associations fol-
low a one-to-one relationship, and in on-going work
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Figure 1: The architecture consists of (1) a mirror system, which is a coupling of perceptual and motor structures that
are built up from experience; and (2) a motor system, which consists of innate skills that can convert the output of the

mirror system into motor commands.

we are considering more complex relationships (e.g.
many-to-one).

2.1 Building the Mirror System

The structures that make up the mirror system
shown in Figure 1 are built up from experience, dur-
ing a learning phase. A temporal attention system is
used to categorise the perceptual input of the mirror
system into discrete perceptual structures, and each
perceptual structure is then associated directly to a
motor structure. The development of the mirror sys-
tem is therefore perceptuo-centrically driven, i.e. it
is built bottom-up through perceptual experience.

Perceptual Nodes

The perceptual categorisation is achieved using a
Self Organising Feature Map (SOFM), which is a
useful tool for modelling robotic sensory input (see
for example Nehmzow, 1999). The SOFM attempts
to cover the sensory input space with a network
of nodes, and edges connecting neighbouring nodes
determined by a Euclidean distance measure; it is
topology-preserving, i.e. a cluster of nodes repre-
sents a region in the sensory space. We are interested
in a variation of the SOFM, where structures (nodes
in the network) grow from experience as required,
rather than being specified a-priori.

We have adopted and suited to our purposes an al-
gorithm developed by Marsland et al. (2001), which
incorporates notions of habituation, novelty detec-
tion, and forgetting. Because of the growing, self-
organised nature of the system, it reflects at any one
time the current perceptual ‘memory’ of the agent,
and can easily adapt and accommodate new experi-
ences.

The attention system is described in detail in
(Marom et al., 2002), including a discussion of the
various parameters. Briefly, the algorithm involves

creating, modifying, and deleting nodes and edges in
response to on-line input, as follows:

e the sensory input is converted into a multi-
dimensional vector in the same space as the nodes
in the SOFM.

o the similarity of the input to all the existing nodes
is measured using a Euclidean distance measure,
and the closest node is referred to as the ‘winning’
node;

o if the input matches the winning node well (sig-
nalled through a novelty threshold), the winning
node and its neighbours habituate, and move to-
wards the input by a small fraction of the distance
to the input;

e otherwise the input is novel, so a new node is
created between the input and the winning node;

e if a node is completely habituated (signalled
through a full-habituation threshold), it is
“frozen’: the node does not move from where it
is, and cannot be deleted; a forgetting mechanism
forces nodes to dishabituate at regular intervals,
and hence re-attend to their respective inputs;

e an edge is created between the winning node
and the second-best node, while other edges con-
nected to the winning node are aged; when an
edge is old enough it is deleted, and any discon-
nected nodes are deleted.

The system can thus handle novelty, avoid attending
to familiar stimuli, but adapt to changing stimuli.
The system is said to be attentive when nodes are
responding to stimuli, that is, when the nodes are
not all fully habituated. There are a number of pa-
rameters needed for the algorithm, but the most im-
portant one for the experiments in this paper is the



novelty threshold, which controls how many nodes
are used (the level of granularity in the representa-
tion).

In previous work (Marom and Hayes, 2001a),
the attention system was used only as a trigger
for learning perception-action mappings through a
feed-forward neural network with back-propagation.
When attentive, the attention system simply pro-
vided the trigger for learning, while a completely
separate system handled the perception-action asso-
ciations.

In the work presented here the attention system
forms a vital part of perception-action coupling, be-
cause the SOFM nodes are associated directly with
motor structures. When a new node is created, a
motor structure is hard-wired to it, and remains as-
sociated with that node thereafter: when the node is
updated in response to a stimulus, the motor struc-
ture is also updated in response to that stimulus, and
when the node is deleted, so is the motor structure.

Motor Schemas

Inspired from Arbib’s Schema Theory (Arbib, 1981),
we use motor schemas to represent the motor struc-
tures of the mirror system. Previous work employs
both perceptual and motor schemas (Maistros and
Hayes, 2001), here however perceptual schemas are
replaced by the SOFM nodes. As mentioned above,
the motor schemas in the current implementation are
created and updated together with SOFM nodes.

The information that is stored in the motor
schemas is the motoric representation of the recog-
nised action. One way to obtain this representa-
tion is to convert the perceptual information of the
demonstrator’s action to information that the imita-
tor’s own motor system can use. This is the diffi-
cult robotics problem of transforming the perceptual
space to the motoric space. However, in our imple-
mentation we can bypass this problem, because our
setup involves the imitator perceiving information
that is already in terms of its own body, as will be-
come evident in the experiments below. Therefore,
perceived information can be incorporated directly
into motor schemas, and we refer to this information
as targets to be achieved by the motor system.

A schema update mechanism is responsible for in-
corporating the perceived information into the mo-
tor schema. This update mechanism is very crucial
to the ability of the mirror system to generalise and
reproduce actions. According to Schema Theory, the
type of information that can go inside motor schemas
is arbitrary; for instance, sequential targets for a
chunk of a movement, parameters for force control,
etc. The update mechanism therefore needs to be
designed carefully to deal with the chosen represen-
tation (for example, processing of temporal informa-

tion). We are addressing this problem in on-going
work, for example the utilisation of a sequence of
motor targets in each schema with heuristics to up-
date them (Marom et al., 2002).

In the work presented here we have found that in-
stead of storing a sequence of motor targets in each
schema, a single representative target is sufficient for
modelling the nature and complexities of our tasks.
Such a representative is already available in the sys-
tem through the SOFM node vector, since it gener-
alises over the perceptual space which includes the
demonstrated movement. The discussion of the ex-
periments will explain why this approach works for
these tasks.

2.2 Using the Mirror System

As described above, the structures of the mirror sys-
tem are built up from experience. Once built, the
mirror system is used in a recall phase as follows:
the system receives continuous perceptual input; the
SOFM is used to recognise that input; the winning
SOFM node activates the hard-wired motor schema;
this schema provides the output of the mirror sys-
tem, i.e. a motor target; this target is then sent to
the motor system for execution.

Notice that the mirror system is only activated
perceptually, whereas real mirror neurons can be ac-
tivated both perceptually and motorically. This issue
will be discussed further in the discussion.

3. Motor System

The main component of the motor system is an in-
verse model, used to translate motor targets into
motor commands, as used in the control literature.
It is a mechanism which, given the robot’s cur-
rent state (perceptual information and propriocep-
tive feedback) and a desired target state (e.g. joint-
angle targets), calculates the motor commands that
best achieve the desired state. This implementation
of the inverse model is a simplified version of the one
used by Demiris (1999), who called his inverse mod-
els ‘behaviours’ because they were able to adapt their
parameters through a proprioceptive error signal.

In our current implementation the inverse model is
innate and remains fixed, and we believe that assum-
ing the existence of such a model is not biologically
unreasonable. Experiments on early infancy illus-
trate that prior to the development of advanced mo-
tor skills (i.e. intentional coordinated goal-directed
movements), there is already some basic knowl-
edge about fundamental motor control (Meltzoff and
Moore, 1989). One can think of the inverse model as
the information about how the robot can use its ac-
tuators, say how to use its hands, and the immediate
consequences of their use.

By coupling the mirror system with an inverse



model, an agent can learn how to use its innate mo-
tor skills to achieve a particular demonstrated task.
Thus, the ability to recognise and reproduce actions
can develop from innate skills through social situ-
atedness. We will demonstrate the implementation
of this system on two sets of experiments, a simu-
lated humanoid robot learning to pick up a glass,
and a physical robot learning from a human to fol-
low walls. We have also implemented the latter in
simulation (Marom et al., 2002) but do not include
it in this paper due to space considerations.

4. Object-Interactions Experiment

The experiment presented in this section involves
two eleven degrees of freedom simulated humanoid
robots (waist upwards), a demonstrator and an im-
itator, interacting with an object. Each robot has
three degrees of freedom at the neck, three at each
shoulder, and one at each elbow. The robots are
allowed to interact with one object each. The ob-
jects are identical and have six degrees of freedom,
i.e. they can move in any position and orientation in
3D space. The dynamics of each robot are simulated
in DynaMechs (McMillan et al., 1995), a collection
of C++ libraries that simulate the physics involved
with objects and joint control. The torque for the
control of each joint, i.e. the input to DynaMechs,
is calculated with the aid of a Proportional-Integral-
Derivative (PID) controller, which converts postu-
ral targets (i.e. via points for each joint) into such
torque values.

The demonstrator is controlled by a sequence of
such postural targets to interact with its object,
which is lying on a surface at waist level. The pos-
tural targets control the demonstrator to ‘grasp’ the
object, pick it up, ‘drink’ its hypothetical contents,
and then put it back on the surface (see Figure 2).
The absence of fingers, however, as well as software
limitations lead to a rather crude robot-object inter-
action: namely the object is merely attached to (or
detached from) the wrist, as long as this is desired
and the wrist is close enough, i.e.  the object is
weightless.

The system described in the previous section is
used to model and control the perceptual-motor skill
of the imitator; the skills of the demonstrator are
hand-crafted and do not change; this is the case for
all the experiments reported in this paper. In this
experiment, the input to the system comes from a
crude approximation to visual perception which con-
sists of the joint angles of the observed demonstra-
tor (11 degrees of freedom), plus their corresponding
joint velocities (another 11), plus the position and
orientation information of the observed object (6 de-
grees of freedom), plus their corresponding velocities
(another 6) — 34 dimensions in total, where noise
is also added to each. Similarly, the proprioception

Figure 2: A sequence of snapshots of the demonstrated
behaviour; left to right, top to bottom.

of the imitator is approximated as explicit access to
the noisy version of its own joint-angles and joint-
velocities.

Notice that the imitator perceives the demonstra-
tor in the same way it perceives itself, and thus the
imitator can directly represent what it is trying to
imitate, as described in Section 2. In other words,
the perceived input can be directly stored as targets
to be achieved by the motor system (via the inverse
model).

Here the inverse model consists of 2 parts: (1) the
PID controller is used for posture control: targets
are passed into the PID controller which together
with proprioceptive feedback calculates the required
torque (or motor commands) of each limb; (2) a set
of boundary conditions for object-interactions, which
specify when the wrist is close enough to pick up the
glass, when the wrist/glass is close enough to the
mouth to ‘drink’, and when the wrist/glass is close
enough to the table to put down the glass (these
boundary conditions are set to a radius of approxi-
mately 4 cm from the centre of the glass, mouth, and
table).

To summarise, the stimulus in this experiment is a
34-dimensional vector that represents the imitator’s
perception of the demonstrator and the object, and
the motor commands calculated by the inverse model
are used to control each of the imitator’s limbs, and
the object-interaction mechanism.

4.1 Learning € Recall

In this experiment, during the learning phase the im-
itator merely observes the demonstrator, analysing
the visual perception of what the demonstrator is do-
ing by training its SOFM; it does not try to replicate
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Figure 3: The object-interactions experiment: (a) a SOFM produced by the attention system at the end of a complete

learning episode, projected onto the first 2 principal components; (b) the SOFM node activation at the recall phase.

the demonstrator’s actions. The learning phase con-
sists of 20 demonstration episodes (3000 steps each)
of the object-interaction that was described above.
Figure 3(a) shows one SOFM network that the sys-
tem can produce with particular parameter values.

Since the dimensionality of the input space is quite
high (34 dimensions), we have used a dimensional-
ity reduction technique called Principal Component
Analysis (PCA) to display the SOFM! (the principal
components used in the figure account for approxi-
mately 80% of the variance).

In Figure 3(a) we can distinguish four parts: one
fairly straight curve (nodes 15-14), a disjoint clus-
ter (12-4-10), two half loops starting at node 7 and
ending at node 0, and another fairly straight curve
(1-13). These parts in fact correspond to the four
parts of the ‘drinking from a glass’ behaviour: (i)
approach the glass; (ii) pick up, bring to the mouth;
(iii) put down; (iv) move away from the glass.

In the recall phase, the structures of the mir-
ror system are fixed; the demonstrator performs the
object-interaction again, but now the imitator tries
to match this behaviour; the interaction is repeated
3 times (again 3000 steps each). The SOFM re-
ceives continuous perceptual input which activates
the best-matching node; the corresponding motor
schema provides a motor target, which is simply the
SOFM node vector; the target is passed to the motor
system where motor commands are calculated by the
inverse model, to achieve the perceptual state recog-
nised by the SOFM node. If the winning node does
not match the input well enough (signalled through
the novelty threshold), then no motor commands are
produced and the imitator maintains its current pos-
ture; this illustrates recognition failure either due
to unfamiliar visual perception, insufficient learning,
or inability to learn what was demonstrated in the

IPCA finds the most statistically significant dimensions,
called Principal Components, in a multivariate dataset.

learning phase.

Figure 3(b) shows the SOFM activation during the
recall phase, i.e. the sequence of nodes that are acti-
vated in response to the input, for the SOFM shown
in Figure 3(a). A winning node of —1 indicates a
poor match and hence no winning node. We observe
that the SOFM nodes created at the learning phase,
are activated in sequence at the recall phase; node
14 represents grasping the glass; nodes 12-4-10 rep-
resent lifting the glass and moving it to the mouth;
nodes 7-6-5-8-3-2-0 from the mouth back on to the
surface; node 13 away from the glass (towards the
starting posture); nodes 9-1 towards the glass once
again.

4.2  Results

Figure 4 shows the trajectories of the right-hand
wrists of both the demonstrator (in bold font) and
the imitator (normal font) in a single episode in the
recall phase. Figure 4(a) shows a successfully learned
action, i.e. the trajectories are close to each other,
whereas Figure 4(b) shows a less successful one: the
trajectories are further apart. This reflects exactly
what we have visually observed: natural motor con-
trol with reasonable degree of accuracy imitation in
Figure 4(a), and much less accurate in Figure 4(b);
in the latter the imitator misses its mouth and does
not place the glass back on the table.

As well as visual inspections, we are also evaluat-
ing our system numerically on a task-specific basis.
In this experiment we use two evaluation measures:
a ‘distance’ measure, which calculates the position
of the wrist over time relative to the position of the
demonstrator’s wrist (i.e. the distance between the
two curves in the plots of Figure 4), and a ‘score’ for
successful execution of the task (i.e. picking glass
up, drinking, putting down). The measures are de-
scribed in more detail below.

The analysis of the results consists of evaluating
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Figure 4: Visual inspection of the recalled behaviour:
the trajectories of the right hand wrists of the demon-
strator (bold font) and the imitator (normal font) in a
single episode in the recall phase. (a) trajectories of a
successfully learned behaviour; (b) a less successful one.
The black spheres on the plots denote the task subgoals
(i.e. glass and mouth), and their radii the corresponding
boundary conditions.

the performance measures as a function of SOFM
network size (number of nodes, which is governed by
the novelty threshold). We have used 22 different
novelty threshold values, which result in networks of
sizes varying from 5 to 60; for each threshold value
the experiment is repeated 50 times.

We measure the distance between the two trajec-
tories by calculating the Euclidean distance between
them at each time-step (this simple calculation does
not take into account the time-lag between imitator
and demonstrator, however we have also calculated
the distance using a short-term memory window, and
the results were similar). The distances measured are
shown in Figure 5, as a function of SOFM network
size. We see that the path trajectories are consis-
tently close to the demonstrator’s, for all network
sizes greater than 5.

Note that the distance we are calculating is only
a measure of the form of the movement; it does not
measure how successful the imitator is in achieving

distance
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Figure 5: Evaluation of the recalled behaviour as a func-
tion of network size. The Euclidean distance between the
right-hand wrists of the demonstrator and the imitator is
an approximated measure of the form of the movement.
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Figure 6: Score obtained at the recall phase, as a function
of network size. The score is a measure of how well the
imitator achieves the task.

the task. In fact it is possible that the trajectory
of the imitator is close to the demonstrator’s, but
the imitator fails to to pick up the glass, etc. This
can sometimes happen for small networks, where the
trajectory is good, but because there are not many
nodes the imitator is actually ‘cutting corners’ and
missing the glass, or missing the mouth, etc.; that is
there is not enough detail in the representation.

To test the success of the recalled action with re-
spect to the task, we have devised another measure
which scores the behaviour. The imitator can get
scores by achieving any combination of the following
3 goals: (A) picking up the glass, (B) ‘drinking’ from
the glass, and (C) putting the glass back on the ta-
ble; a bonus is given if all 3 goals are achieved, which
corresponds to a perfect execution of the task. We
calculate a score similarly for the demonstrator, and
then scale the imitator’s score by the demonstrator’s,
because the imitator can only perform as well as the
demonstrator, who occasionally fails in parts of the
task (due to noise).

The scores obtained are shown in Figure 6, as a
function of network size. We see that indeed the
small-sized networks (< 10 nodes) that achieve good
trajectories (Figure 5), are in fact not very success-
fully in achieving the task. The best networks are
those of 30 or more nodes, as they can match the
demonstrated movement and achieve perfect object-
interactions.

5. Wall-Following Experiment

The experiments presented in this section were per-
formed using our Real World Interface (RWI) B21
robot, Gillespie, and a human demonstrator, as
shown in Figure 7; the robot is programmed to de-
tect and follow the human using its on-board video
camera; this is done using a simple colour-tracking
algorithm — the demonstrator is wearing a green
shirt which is easily detectable. The arena is approxi-
mately a 5m x 5m square. The task is wall-following.



Figure 7: The robot environment in the wall-following ex-
periment. The robot is programmed to track and follow
a human demonstrator using its on-board camera; the
input to the mirror system comes from the sonar sensors
around its body.

The input to the system comes from 20 sonar sen-
sors around the top of the robot, which in practice
are not affected by the presence of the demonstrator.

The learner can sometimes lose the demonstra-
tor, so it only inspects its perceptual input when the
demonstrator is in sight, that is, when it is in a social
context. Otherwise, the attention system would en-
counter situations not relevant to the task (Marom
and Hayes, 2001b). We regard this setup as social
situatedness in the sense that information is implic-
itly shared between the demonstrator and imitator
about the specific task to be learned. This is an ap-
pealing idea that has been experimented with before
(for example Hayes and Demiris, 1994; Billard and
Dautenhahn, 1997). Further, this setup allows for
the perceived input to be represented directly as tar-
gets to be achieved by the motor system (through the
inverse model), as described in Section 2. The object-
interactions in this case correspond to how the robot
responds to being near a wall or away from it.

In this experiment the inverse model is not as
straightforward as in the first experiment where the
PID provides an intuitive inverse model. In similar
experiments in simulation we have used an inverse
model which consisted of a discretised database of
states and transition matrices obtained by letting the
agent explore its environment (Marom et al., 2002).
We have found that in the physical system it is diffi-
cult to obtain such an inverse model which is reliable;
we believe that a more sophisticated approach is re-
quired, such as reinforcement learning, and leave that
to further work. We overcame this problem by hand-
crafting a set of rules that operate on a small set
of states which reliably generalise the robot’s state
space, and with which the robot can decide how to
get from one perceptual state to another.

To summarise, the stimulus in this experiment is

a 20-dimensional vector that represents the robot’s
perception of the wall, and the motor commands cal-
culated by the inverse model are used to control the
robot’s motors to move forward, turn left, or turn
right.

5.1 Learning & Recall

In the learning phase the robot follows behind the
human demonstrator for 10000 steps, which is ap-
proximately 40 minutes of real time; due to hard-
ware and practical limitations, all the information is
stored for off-board learning. The various recall runs
reported below are all based on this one dataset.

Figure 8(a) shows one SOFM network that the at-
tention system can produce and highlights the emer-
gent clusters in the SOFM. As in the previous exper-
iment, since the dimensionality of the sensor space is
too high to visualise, we have used PCA to reduce
the number of dimensions to two (the principal com-
ponents used in the figure account for approximately
70% of the variance). We can see a cluster for no-wall
(at the top), and as we move away from it we move
towards clusters corresponding to the walls (left and
right).

Following training at the learning phase, the mir-
ror system is fixed and is used to control and test
the robot, as in the previous experiment: the robot
is placed in the environment on its own; at each step
the robot’s perception activates one of the nodes in
its SOFM; the corresponding motor schema provides
a motor target which, again, is simply the SOFM
node vector; and this target is passed to the inverse
model which selects the best action likely to achieve
it. When no node is active (the match is very poor) a
‘wandering’ behaviour is triggered (the robot moves
around randomly). The recall phase consists of 6000
steps, which corresponds to around 23 minutes of
real time; to avoid the robot following the wall on
one side for the duration of the run, and thus not
testing the learned behaviour fully, we use an ‘inter-
rupt’, which forces the robot to turn away from the
wall, every 1000 steps during the run.

We have also equipped the robot with a built-in
obstacle avoidance behaviour to protect it from un-
successful learning and also from situations not en-
countered at the learning phase. For example, when
the robot follows behind the demonstrator, it never
sees the wall directly in front of it, so we do not ex-
pect it to know how to handle such a situation in
the recall phase, but we also don’t want it to drive
into the wall! To account for unsuccessful learning
we penalise the evaluation whenever the obstacle-
avoidance is triggered.

Figure 8(b) shows the node-activation at the recall
phase, of the SOFM shown in Figure 8(a). Firstly,
we see that the nodes that form clusters are also acti-
vated together and intermittently at the recall phase.
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Figure 8: The wall-following experiment: (a) a SOFM produced by the attention system at the end of a learning

episode, projected onto the first 2 principal components; the emergent clusters are highlighted; (b) the SOFM node

activation at the recall phase.

For example nodes 3,7, and 9 form a cluster for a wall
on one side and are also intermittently active in the
recall phase. Secondly, we see an emergent sequence
of activations as the robot moves around trying to
recall the information from the motor schemas: the
activations of nodes for wall perception on either side
(i.e. nodes 3-7-9, or nodes 2-6-8) are separated by ac-
tivations of nodes for no-wall perception (i.e. nodes
0-1). This reflects our visual observations of the ac-
tual behaviour of the robot; for example, Figure 8(b)
corresponds to following a right wall, then no wall,
then following a right wall again, then no wall, then
following a left wall, etc.

Note that the activation dynamics here are differ-
ent than in the first experiment (Figure 3(b)), be-
cause of what is being modelled. In the first exper-
iment the behaviour modelled by the SOFM has a
true sense of sequence in it (moving the hand towards
a glass, picking it up, etc.); each node stores a part
of that sequence. In the wall-following experiment,
each node, or rather cluster of nodes, corresponds to
being in a particular perceptual ‘state’, and the mo-
tor skills are responsible for maintaining that state
(for example, fine-tuning to stay next to a wall on
the left). For this reason we do not have a situation
where one node wins consistently for a long period;
rather, the robot will keep (re)adjusting itself by ac-
tivating alternate nodes within the same cluster.

5.2 Results

As in the first experiment, we are also evaluating the
performance of the system on this task numerically;
we do this by calculating the ‘energy’ that the robot
acquires from the wall at particular orientations from
it. At the end of the recall episode we can look at
the accumulated energy as a measure of how well the
robot performs the wall-following task. Due to prac-
tical time limitations the amount of data available is
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Figure 9: Evaluation of the recalled behaviour as a func-

tion of network size. Energy is measured from the sensors

at particular configurations from the wall, and compared

to energies acquired by a hand-crafted behaviour and a

random wandering behaviour. Raw data are also shown.

much smaller than in the first experiment, however
we believe it is sufficient for a reliable evaluation.
The dataset obtained in the learning phase was used
with different values of the novelty threshold to ob-
tain various SOFM networks for testing: around 15
different network sizes were produced, each repeated
between 2 and 5 times.

The energies acquired by the various networks are
shown in Figure 9, together with energies acquired
by a hand-crafted wall-following behaviour, and a
random wandering behaviour. We see that small
networks are preferred and that increasing them by
more than 30 nodes does not have a significant effect.

6. Discussion

We have presented an architecture that can represent
the sensory-motor experiences of a robot, in such
a way to enable recognition and reproduction of a



demonstrated task. A mirror system is built up from
experience using an on-line machine learning ap-
proach (variation of the SOFM) that self-organises,
and in effect temporally segments the experiences of
the robot. We have seen that different SOFM net-
work sizes are needed to represent each of the two
tasks presented, and this is because they have differ-
ing complexities; the object-interactions experiment
requires more nodes than the wall-following one.

Our mirror system represents how to use basic in-
nate skills such as moving a hand to particular posi-
tions, attaching a weightless glass to the wrist, etc.
in order to perform the task of the first experiment;
or turning to face the wall, turning to be parallel to
the wall, keeping parallel to the wall, etc., in order
to perform the task of the second experiment.

The nature of both tasks involves only observable
information, i.e. there are no physical constraints.
Recall that motor schemas hold the SOFM node vec-
tor information, which is of a purely perceptual na-
ture. Therefore perceptual information in the struc-
tures of the mirror system is alone sufficient to recog-
nise and reproduce both tasks. In future work we
intend to devise new tasks that will require the ar-
chitecture to be extended, so that motor schemas in-
clude factors of a more motoric nature; for example,
weight, force control, somatosensory feedback, etc.

As briefly discussed in Section 2, our system is
only an attempt towards an implementation of the
biological mirror system, since it is only perceptually
activated. A more complete implementation would
involve the system being activated both perceptually
and motorically. This would involve extending our
current architecture to include external factors to ac-
tivate the mirror system motorically; this is currently
beyond the scope of our work.

Our architecture relies on the existence of an in-
verse model (a set of innate skills). This is not bi-
ologically unreasonable, because there are low-level
motor skills already present at birth, prior to ad-
vanced motor control. Further, these skills need not
necessarily be hand-coded prior to implementation
of the mirror system; they can in fact be acquired
and/or modified through self-exploration, as we have
done in other experiments (Marom et al., 2002).

We present a system that attempts to model the
functional role of mirror neurons, namely the activa-
tion of structures in response to both the observation
of a demonstrated task, and its generation. Through
social situatedness and a set of innate skills, percep-
tual and motor structures develop for the recogni-
tion and reproduction of demonstrated actions. We
believe this is an implementation towards a mirror
system, and we have tested it on two different plat-
forms.

7. Related Work

Pomplun and Matarié¢ (2000) and Fod et al. (2000)
have developed other methods to segment and clus-
ter data from demonstrated movements, using tech-
niques such as Principal Component Analysis and K-
Means clustering; these approaches differ from our
work in that they operate on a batch of data and
hence need to be re-trained to handle novel move-
ments.

Andry et al. (2002) use a similar approach to ours,
however they also self-organise the robot’s proprio-
ception; a simple winner-take-all mechanism is used
to segment the visual input into ‘perceptual struc-
tures’, and then each perceptual structure is associ-
ated with a separate SOFM that maps the robot’s
proprioception. This means that a one-to-many re-
lationship between perception and action is built, as
we mention in this paper; i.e. there are different
ways of achieving each perceptual situation.

There are several examples of implementations
that rely on the pre-existence of perceptual-motor
structures, ¢.e. where the movement segmentation is
performed either off-line, such as the examples men-
tioned above, or hand-coded arbitrarily by the de-
signer, such as our earlier work (Maistros and Hayes,
2000). Such perceptual-motor structures are often
referred to as primitives (Demiris and Matarié, 1998;
Schaal, 1999; Matarié, 2000).

Although our architecture would need to be ex-
tended to include motoric activation of the mirror
system, it is generally the case also with other imple-
mentations that they lack both types of activation.
In contrast, Fagg and Arbib (1998) and Arbib et al.
(2000) model the mirror system together with other
brain areas including the ones responsible for action
selection, constraints, motor plans, etc., which they
use to trigger their mirror system motorically.
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