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Abstract

We propose the functional parts combination
(FPC) model, whereby a problem solving strat-
egy is acquired depending on the tasks given. The
model is based on the neuroscientific fact that
each cerebral cortical area has a different role
and is selectively activated depending on the task.
FPC model is a meta learning model that con-
sists of a set of functional parts and a sequence
of control signals that specifies their combination.
The functional parts are combined depending on
the situation, to realize a processing circuit re-
quired for the situation. We use genetic algo-
rithm for searching the control signals. We ex-
amine the model by evaluating the difference in
acquired behavior of (1) two agents with differ-
ent functional parts working on the same naviga-
tional task and (2) two agents with the same func-
tional parts working on different tasks. We show
that the agent using FPC model acquires learning
strategies suitable for the given problems.

1. Introduction

The modeling of an intellectual development process cor-
responding to physical development is a good benchmark
task for an intellectual model, in the sense of requiring
adaptive behavior in a dynamical environment. Physi-
cal development enables the body to perform more tasks,
and hence requires the control system to develop more
and more task-solving strategies. In reality, it 1s im-
possible to prepare all the necessary strategies that will
be required for new situations, tasks and conditions of
physical development. And as physical and intellectual
changes occur simultaneously, the intellectual system
must acquire the strategy on-line. Until this problem
is surmounted, we cannot argue that developing robots
are intelligent.

For this problem, many methods of action
search have been proposed (Sutton and Barto, 1998)
(Goldberg, 1989) (Koza, 1992). Most of them present

a strategy appropriate to a given task, and argue the
generality of the strategy. However, as we can see
from the history of Al, it is very difficult to realize
an universal action learning method. It is therefore
natural to think that each task has its own appropriate
method of solution. To advance robtics research, what
we need is a method that independently decides on a
problem-solving strategy depending on the task. It is a
meta learning model.

What then is the strategy or procedure for problem
solving? This paper assumes the existence of internal
information processing corresponding to each stage of
a problem solving process. They are realized by deter-
mining a combination of processing sub-modules (neu-
ral networks) that produce an action appropriate to a
given input depending on the situation. Here, we as-
sume the processing to include not only the genera-
tion of physical action but also various internal pro-
cessing, such as memorizing, recalling, calculation and
search. Then, the problem solving is reduced to a
search for the combination of sub-functions depending
on the situation. We call this the functional parts com-
bination model (FPC model) (Omori and Ogawa, 2001)
(Ogawa and Omori, 2001).

As an example of FPC model in action, this paper
shoes procedual the meta learning of procedure on a
navigation learning task by a moving robot. The system
acquires the learning procedure of navigation actions to
reach a goal in a grid world by reinforcement learning.
The choice of particular grid world is leargely arbitarary,
because what we discuss 1s an acquisition of procedure
depending on the task and situation. The conditions are
these 1) that the system not know the procedure of re-
inforcement learning, and 2) that the system be given
a set of fuctional parts that can realize the procedure.
We adopted a variable length genetic algorithm as the
search method for a variable length procedure. The en-
vironment and functional parts change with task, but
our model would find procedures appropriate to the task
when those changes occur.



2. FPC model

2.1 The role of selective activation in cortex

The cerebral cortex comprises many areas with differ-
ent functions. Noninvasive research has confirmed the
selective activation of the cerebral cortex depending on
the task. Although the mechanism of activation is not
known, 1t is accurate to say that the selective activation
of brain functions i1s a part of the basic mechanism of
intellectual information processing in the brain.

However, there is known to be a wide variety of
connections between many areas of the cerebral cor-
tex. For instance, areas in the visual system that
process many sort of information from area V1 to
ventral and dorsal pathways are hierarchically or-
ganized.  Anatomical research shows many connec-
tions among these areas (Felleman and VanEssen, 1991)
(VanEssen et al., 1992). An individual connection sug-
gests a functional relation between two areas, but it is
not clear by what principle these connections are used
in each task.

2.2 Functional parts combination

From the facts above, we can interpret the selective ac-
tivation of the cortical areas, or the connection between
them, as a formation of neural circuit. When activated,
the cortical neural circuit automatically produces output
based on the input and its internal state. The circuit 1s
the formation of an information processing function.

However, processes that satisfy the task requirement
cannot be realized by a single circuit in a short time. Ex-
amples of such processes are those that require iteration,
search and temporal inputs for processing. Selective ac-
tivation of the circuits should be sequential depending
on the task.

The following 1s a possible system model that realizes
the system behavior. Fig. 1 shows the overall image of
the model.

1. There are many neural networks that have different

input and output connections. FEach neural net is
expected to learn to assume the role of its functional
part. The network functions and topology are given

pre-designed in our current model.

2. A parts selector system sends activation signals to
each of the functional parts or to the connections.
The signal works as an internal attention. The at-
tention signals become a vector composed of a set of
{0,1}. We call the vector of the moment AV.

3. The attention vector sequence (AVS) is a sequence
of AV’s. AVS forms a sequence of processing circuits
and realizes a procedure that fullfills the task require-
ment. An AV is switched to the next AV when the
behavior of the selected circuit becomes stable.

4. The system holds a set of AVSs. One of them is se-
lected and activated corresponding to the task. A
task may be divided into sub-tasks to which a differ-
ent AVS may correspond.
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Figure 1: The structure of FPC model

2.3 Meta learning: search for functional parts
combination

How 1s the combination of functional parts acquired in
FPC model? Tt is natural to regard the use of reward
driven search method as reinforcement learning. An ex-
perience based search in which learning is done by anal-
ogy 1s a strong candidate. For simplicity, we did not
adopt it this time.

If searching for AVS, the processing circuit is aquired.
For the purpose, we use the genetic algorithm that
searches a combination of the variable number of fixed
length gene groups. In this search task, the length of
a gene representing an AV at any moment is fixed. To
search for the variable length AVS that combines them,
we use following algorithm, a combination of a mutation
and an imbalanced cross-over.

1. Decide a fitness value of each individual gene based
on a given definition of fitness for the task.

2. Select pairs of individuals by a roulette method in
which the individuals are sorted by the fitness value
and in which two neighboring individuals in the order
are chosen. A Predetermined number of pairs are
selected from the top of the fitness value.

3. A length of AVS is the length of AV multiplied by
K. The value K is the length of the AVS. A border
of AV in AVS is chosen as the cutting point of a
crossover. As the length of AVS for the crossover
pair is not same and the cutting points of both AVSs
are arbitrary, the resulting AVS do not have the same
length.

4. The mutation operation is applied to every AVS.

5. Repeat operations 1 to 4 until the fitness value be-
comes stable.



The unique characteristic of this method is the imbal-
anced crossover. The length of AVS corresponds to the
number of operations for current input and states, and
the algorithm searches for procedures of variable lengths.

This search is the meta learning that independently
finds a learning procedure, because the AVS-controlled
targets are neural networks that have learning ability.
In the meta learning, the range of system adaptability
1s determined by the available functional parts and the
meta learning method.

2.4 Multiplex tasks approach

In many conventional studies, a learning model is pro-
posed and evaluated for a given task, and the generality
of the learning model to other tasks is discussed. Such
approach is inappropriate for our meta learning model
study. We do not gear performance of the model to a
given task, rather, we target the ability to acquire the
learning procedure finding ability for various types of
learning tasks. For the evaluation of the meta learning
model, we have to analyze the realized learning model
for each task and compare its processing structure and
computational model with conventionally known learn-
ing models; then we can know the range of the tasks to
which our meta learning model is applicable, and what
are the limiting constraints of the system.

This paper attempts to solve some types of navigation
problem using FPC model with the meta learning mech-
anism. The functional parts for each of the tasks may
be minimal or redundant. When the number of parts for
the task is minimal, we expect the meta learning to find
the minimal learning procedure that can be realized with
the parts. But if the parts are redundant for solving the
task, we expect the meta learning to find an easy strat-
egy at first, and then increasingly effective procedures
through trial and error. In some cases, the acquired pro-
cedure may be trivial, that is, effective only for the given
task situation. But when the task is more difficult, the
trivial task may change to more general one.

The essence of the strategy is that the system is ex-
pected to become increasingly effective and robust to
the change of task. We call this method for the meta
learning evaluation the multiplex task approach. Fig. 2
shows structure of our approach. Multiple combinations
of the task requirement and the functional parts find the
problem solving procedures each of which can resolve its
corresponding task based on a common meta learning
algorithm. Through a evaluation and comparison of the
implemented procedure, we can know characteristics of
the architecture.

3. Computer simulation

The task is a navigation learning problem in a grid world.
Reward is given to an agent when it reaches a goal. The
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Figure 2: Functional parts (F'P) are combined suitably by a
Module combination control system (MCCS) in each Task
(T'). Learning strategy (LS) is acquired automatically, be-
cause a M CCS decides the combination of F'P depending on
afT.

agent must discover a valuable path, a shortest path or
its equivalent, to the goal to maximize total reward.

We performed computer simulations of the following
two cases in order to evaluate our model:

Case 1: The task i1s the same and the functional parts
are different.

Case 2: Functional parts are the same and the tasks are
different.

3.1 Case 1: different functional parts on the
same task

The grid world of the task is shown in Fig. 3. An agent
receives the distance to the wall in four directions as a
sensory input, and has internal states corresponding to
each grid. When the agent reaches the goal, it receives
reward and is returned to the starting point. When the
agent collides with the wall, it receives no reward and
returns to the starting point.
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Figure 3: The environment for procedure acquisition in the

case 1

We prepare two agents, one basic and one evolved,
that have different functional parts. The basic agent
shown in Fig. 4 consists of three functional parts (a
state recognition part, an action selection part and a
reinforcement learning part) and the attention system
that determines the connection of those parts. The rein-
forcement learning part has a sufficient number of input
recognition neurons corresponding to the place and ac-
tion combination. They are used for the Q-table in this
task. The evolved agent shown in Fig. 5 consists of
the internal model of the environment and the working
memory, in addition to the parts for the basic agent.
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Figure 4: The structure of the basic agent in case 1
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Figure 5: The structure of the evolved agent in case 1
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3.1.1 The basic agent

The part for state recognition Distance sensor in-
put RS is normalized and given to the SP-layer that
works as an input buffer.

RS;
Vi RSY

Each cell of the SS-layer represents the internal state
corresponding to the place in the environment. Compe-
tition between the cells limits the number of firing cell
at any moment to one.

SP =

ssjp = ay SWi;SP (1)
S 0 :j # argmaxy sy
S5 = { 1 :j =argmaxy, ssyu

The variable a; 1s the attention value over the connection
SW;; from the SP-layer to the 55-layer. It takes a value
of zero or one to control use of the connection SW;;.

The part for action selection Input to the MP-layer
is a vector (cos f,sin @) that represents a possible action
of the agent. It is generated by a random action gen-
erator, where ¢ is a random value between 0 and 27.
This generator generates a random action when proper
attention is set to the neural circuit.

Each cell of the MS-layer represents the discrete motor
direction. Only one cell is allowed to fire at any moment.

7 is a small positive number.

MS, = { 0 :u# argmaxy Mmsy

1w =argmaxy msy
After the firing of an MS-layer cell, its corresponding
input pattern MW, is recollected at MP°“*_layer, and
is outputted by a proper attention value.

MP = agy MW, MS,

The variable a5 1s the attention value over the connection
from the Q-layer to the MS-layer. The as works as an
action trigger. Both variables take the value of zero or
one, and control the use of the corresponding term in
each equation.

The part for reinforcement learning After the
place representing cell SS; fires, the Q-layer receives the
action-value (Q-value) of the place and works as a buffer
for this value. Because there 1s a one-to-one correspon-
dence between cells in the Q-layer and the MS-layer,
each Q-layer cell activity represents the Q-value of each
action k at the place j.

The connection W.SQ; is equivalent to the Q-value
table in Q-learning. Learning for W.SQ; is performed
by the following equation:

AWSQuw, 1w = a(r+ 'y(mgmx WSQuw, »
_WSth—lyw'))

Here « is the learning rate, and v is the discount rate.
This is a typical Q-learning equation. Although acquisi-
tion of the learning rule itself is one of our final targets,
we provide an a priori rule in this study.

The attention system The Attention System can
control the topology of a neural network dynamically
by changing the attention vector (AV). The use of AVS
enables the neural network to be programmed through
dynamic control of the network structure. Each AVS
element AV is given to the network sequentially.

AVS = (AVy, AVy, AV, ... AV,)

3.1.2 The evolved agent

In addition to the functional parts of the basic agent,
the evolved agent has additional memories that work as
the internal model for the environmental map and the
working memory. In relation to that agent, the parts, the
state recognition and the action selection of the evolved
agent 1s changed as follows.



The part for state recognition In addition to the
input from the sensor, the SS-layer of the evolved agent
receives input from the T-layer and the Q-layer. Equa-
tion (1) is changed as follows.

SSj =

ay Z SWi; SP; +
+ay Z WSQ;kQx Z WTS;Ti
k 1
The value of a4 represents the attention over the input.

The part for action selection The MS-layer of the
evolved agent also receives input from the A-layer. Equa-
tion (2) is modified to include the input from the A-layer
that represents the place-place to action relation.

msy = UZMWruMPjn‘i'aZQu
tas Y WAM,, A,

The MS’-layer 1s the working memory that represents
the activity of the MS-layer at time ¢ — 1. The evolved
agent outputs the action according to the activity of MS-
layer at times ¢ or t —1, or none. Equation (3) is changed
as follows.

MP™ = a3y MW, MS, + asMS,,

The part for environment learning The T-layer is
a memory that represents the next state from the com-
bination of the current internal state and the internal
action. As the internal state corresponds to a place in
the map, the T-layer represents the state transition re-
lation of the environment. The number of T-layer cells
is the product of the number of SS-layer cells and the
number of MS-layer cells. W.ST; and WMT,; are set
by the following equations, where N is the number of
SS-layer cells.

o 1 :l=uN+j
WSTy = { 0 :others

. 0 d=um+0.. N—-1
WMTy = { —1 :others

The value of a T-layer cell is calculated by the following
equation.

T = o> WSTuSS; + > WMTuMS,)
j -
0 2<0
o(x) = z i 0<z<l
1 tz>1

The connection WT'S;; between the T-layer and the SS-
layer represents state transition, (state, action) — state.

The T-layer is used to predict the next state based on
the next action. Learning of WT'Sy; is performed by the
following equation,

WTSU = WTSU + Oz(Tl — WTSU)SS]'

where all the initial value of WT'S;; are 0.

The A-layer represents the action that bridges inter-
nal state at time ¢ and ¢t — 1. The number of A-layer
cells is equal to the square of the number of SS-layer
cells. We assume the SS’-layer represents the activity
of the SS-layer on time ¢t — 1. Connections WSA;, and
WS’ Aji, are set by the following equations, where N is
the number of SS-layer cells.

1 w=j(N-1+1,.  N-1
W54, = { 0 :others

' _ L oj 4+ (N =1) (J#J)
W5 Ajn = { 0 :others

The value of an A-layer cell is calculated by the following
equation,

Ay = (Y _WSA;SS) () WS T, SS))
7 U
The connection WAM,, lies between the A-layer and
the MS-layer, and represents the directional relation be-
tween the places. Learning for W AM,,, is performed by
the following equation,

W AMyy = WAMyy + a(Ay — WAM,, ) MS,

where all the 1nitial values are set to zero.

3.1.3  Summary of the GA

The population size is set to 50, and the length of AVS
is restricted to less than or equal to 10. All genes are
initialized randomly.

One trial ends when an agent finds a valuable path.
Fitness O is the number of necessary moves in each trial.
When an agent reaches the goal three times consecu-
tively in very few steps, we conclude that the agent has
found the valuable path. It is unreliable to decide fit-
ness from a single trial, because the action of the agent
contains a random factor. Then, the following scaling is
used:

10
£(0)=1000) 07!
i=1

To reduce the influence of random factor, the sum of
O~! for ten trials per individual is calculated.
Probability of selection 1s decided in proportion to the
scaled fitness. One-point cross-over is used, and a cross-
over point is randomly chosen from the set of borders
between the AV’s in AVS. We used a higher cross-over
rate 1.0 to accelerate the search. The mutation rate is

0.05.



3.1.4 Result

The following is a typical AVS that the basic agent ac-
quired in the first generation:

AVS =(1,1,1)

By using this AVS| the basic agent recognizes the current
state and acts according to the Q-value. It is a well-
known greedy strategy.

The evolved agent acquired the following AVS in the
9th generation:

AVS =((0,0,0,1,0,0),(1,0,1,0,1,0))

An competition process embedded in the 1st attention
vector finds the next place with the maximum total sum
of Q-value within the range of single-step action. The
agent actually moves to the place by the 2nd attention
vector step. This is a prediction-based behavior that
makes use of the environmental map. Fig. 6 shows
change of the fitness value of the best adapted agent
along generations. The fitness of the basic agent does
not vary with the constraint of available parts. Fig. 7
shows the change of the best adapted AVS vector length
along generations.
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Figure 6: The fitness of the best adapted agent for each gen-
eration. The basic agent acquires the greedy strategy in the
first generation. The evolved agent acquires the prediction-
based behavior in the 9th generation.
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Figure 7: The length of the best adapted agent’s AVS. Be-
cause each AVS (of the basic agent and the evolved agent) has
redundant AV’s, their AVS is long in the early generations.

3.2 Case 2: different tasks for a single set of
functional parts

The environments for each of the tasks are shown in
Fig. 8 and Fig. 10. The agent shown in Fig. 9 receives
input indicating whether there is an obstacle at each

grid neighboring the agent’s position. The agent selects
an action that prevents collision with an obstacle. The
agent is a modified version of the evolved agent in case
1. We adopt not Q-learning but actor-critic model for
reinforcement learning and the connection between the
reinforcement learning part and the working memory of
the state is added. The working memory of the action is
removed.

The perceptual aliasing problem, in which the agent
recognizes different places to be same because of the lack
of sensor ability, arises in the environment II, but not in
the environment I. Therefore, if we use a model free re-
inforcement learning, the agent cannot detect a valuable
path in the environment IT (Lin and Mitchell, 1992).
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Figure 8: The environment [ for a task in the case 2. The

I ?goal

perceptual aliasing problem does not arise, because the sen-
sory signal is enough to allow discrimination of each grid.
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Figure 9: The range of the agent’s sensor and action.
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Figure 10: The environment Il in the case 2. There are a few

grids that the agent cannot discriminate because of its poor
sensor ability.

3.2.1 The agent

All functional parts except the environment learning are
modified as follows.



The state recognition part The input represents
whether each of its 8 neighboring grid contains an ob-

stacle.
1
n={ ]

In the SS-layer, the determination of the firing cell
is based on the Euclidean distance inputs from the re-
inforcement learning part and the environment learning
part.

: obstacle
: non — obstacle

ss; = alz(Smj —SPZ')2
—a;WSV; V'Y WIS,
]
S 0 :j # argming ss,
S5 = { 1 :j = argminy s5,

The working memory part The timing of copying
from the SS-layer to the SS’-layer is controlled by the
attention signal as.

§S'=8S ifaz=1.

The action selection part Equation (3) is modified.
The random factor is removed, and the MS-layer always
receives input from the Q-layer.

msy, = Qu + ag Z WAM, A,y

Instead of removing the random factor, We decided the
firing cell in the MS-layer with a probability in propor-
tion to ms,,.

As the working memory for action is removed, the
agent’s output changes.

MP =as > MW, MS,

The reinforcement learning part The activity of
the Q-layer that sends output to the MS-layer is calcu-
lated as follows.

Qu=asexp | B[ Y WSQ;uSS; +asy WS'Qjr.
j i’

[ 1s a parameter that decides the affect of randomness.
When the agent move from one place to another, learn-
ing parameter § is calculated.

§ = r+y(WSVy, +a:WS'Vy,)

— (WSth_l + a7WS/th—1)

All the connections for reinforcement learning increase
according to the following equation.

AW SV, _,
AWS' Vi,
AWSQu,_,
AWS' Qu_,
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Figure 11: The structure of the agent in case 2.

3.2.2  Summary of the GA

The search algorithm for the AVS is largely the same as
in case 1, except for following points. The population
size is 10. Fitness O is the number of necessary trials.
The following scaling function is used:

F(O) = exp (—&ZO;l)

¢ decides the importance of fitness in the pair selection
phase, and is set to 0.05. The cross-over rate is 0.9.

3.2.3 Result

The following is a typical AVS in the environment I at
the 10th generation.

AV S; =((0,1,1,0,1,0,1,1),(1,1,0,1,0,1,1,1))

The behavior that is generated by AV S is exactly the
same the prediction-based behavior in case 1.

The following is a typical AVS in the environment I1
at the third generation.

AVS; =(1,0,0,1,1,1,1,1)

By using AV S5, the agent recognizes the current state
and the state one step before, and both states are used
for action learning. Meta learning finds a memory-
based behavior like that in Lin and Mitchell reported
(Lin and Mitchell, 1992).

4. Discussion

Case 1 It is natural that the basic agent acquired the
greedy strategy, because it is the only strategy to find
a valuable path by using given functional parts. The
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Figure 12: The maximum fitness in the map 1. In 10th gen-
eration the agent acquired the prediction based behavior.
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Figure 13: The maximum fitness in the map II. In 2nd gen-
eration the agent acquired the memory based behavior.

evolved agent has parts for environment learning and
working memory that the basic agent does not have.
Though two step prediction based learning was possi-
ble using these parts, the evolved agent acquired the one
step prediction based behavior. Our pilot study con-
firmed that the fitness of the two step prediction based
behavior is hardly better than the one step, It is dif-
ficult for the evolved agent to acquire the AVS of the
two step prediction based behavior, because the search
space is large and the fitness shape of the AVS in the
search space is narrow. Consequently, the evolved agent
acquires the 1 step prediction based behavior.

Case 2 Because the perceptual aliasing problem does
not arise in the environment I, the state after the agent’s
action is unique by using the environment model. Conse-
quently, the agent acquired the one step prediction based
behavior. On the other hand, in the environment II, the
agent acquired the memory based behavior using the cur-
rent state and the state one step before. Though it is
known that a model based reinforcement learning is more
powerful (Atkeson and C.Santamaria, 1997), the agent
could not find a valuable path in this case, because the
state after the agent’s action is not unique in environ-
ment II.

The important point in two cases is that each agent
acquires behavior appropriate for each task, though each
agent has no information about which strategy is supe-
rior for each task. By using our model, the agent ac-
quires an appropriate strategy according to each task
within the limits of its functional parts.

5. Conclusion

This paer proposed the FPC model that independently
acquires a problem solving strategy depending on a task.

Multiple navigation problems showed the following re-
sults.

1. Each agent acquired appropriate path search proce-
dures, when tasks were the same and functional parts
were different.

[\]

. The agent acquired appropriate path search proce-
dures, when tasks were different and functional part
were the same.

The results show that, by adopting the FPC model, the
agent can acquire effective procedures depending on the
tasks and functional parts.

The next step is to apply the FPC model to non-
navigation problems, to verify the effectiveness of the
model, and to apply it to real navigation problems in ral
robots.
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