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Abstract

We describe robot navigation learning based on self-
selection of privileged vectors through the environment in
accordance with an in built economy metric. This
provides the opportunity both for progressive behavioural
adaptation, and adaptive derivations, leading, through
situated activity, to “representations" of the environment
which are both economically attained and inherently
meaningful to the agent.

1. Introduction

A central objective of our programme at Edinburgh has
been to help specify core conditions of growth in
cognitive competencies and cognitive regulation in
complex intelligent systems over the course of their
evolution and development (McGonigle and Chalmers,
1996, McGonigle and Chalmers, 1997, McGonigle and
Chalmers, 2002, for further information). An adaptive,
epigenetic stance, this has led in turn to the design of
robots with functional architectures which support
different types of learning in an interdependent way.

2. An epigenetic landscape for robots
based on both design and learning
processes.
The design features do not mean that behaviours have
been installed. Learning processes play a significant role.
Rather than utilise a general purpose learning process, we
adopted a "horses for courses" evolutionary approach
which suggests different types of learning mechanisms
within different layers of adaptation. Thus our learning
devices tailored first to basic reactive layers, have been
based on instinct rules" (Nemhzow et al., 1993). Our
second form of learning was based on anticipation of
clutter using route learning which geared a hearing robot's
speed according to the route segments logged by the robot
on various trials as causing the highest levels of
perturbation from objects in its path (Donnett and

McGonigle, 1991). Enabling anticipation of hazard, such
learning affords much more economic journeys to the goal (in
this case, a sound source). Later we applied principles from
operant conditioning in the form of external tuition based on
‘shaping’. This produced dramatically fast learning of a free
ranging but supervised robot (Nehmzow and McGonigle, 1995
see http://bion.psy.ed.ac.uk). And this has been followed by
reinforcement learning applications inspired by Humphrys
(Humphrys, 1996a, Humphrys, 1996b, Humphrys, 1997)
designed to cope with multitasking where we have considered
learning by internal competition between numerically-scored
alternatives (McGonigle, 2002, for further details).
Whilst effective in part, these approaches have all had their

problems. In reinforcement learning, shaping gives a learning
algorithm 'hints' by modifying the reward function but
achieves tractability by frequently changing the problems in
unanticipated ways that cause poor solutions to be learnt.
Furthermore, naïve algorithms often scale exponentially in the
number of state variables, and are thus frequently impractical.

3. Unsupervised learning

In the ‘learning to navigate’example we report here, we have
implemented a type of self-organised learning as revealed in
our primate cognitive research and motivated by a cognitive
economy policy (McGonigle and Chalmers, 2002, McGonigle
and Chalmers, 1997). Based on search tasks which demand
high levels of serial, executive control in the sequencing of
large numbers of icons on touch sensitive screens, we have
explored new types of learning based on the subjects’ self
selection of those procedures (for example classification
principles and chunking) which enable the most effective
forms of executive performance with the least investment in
cognitive resource ( see http://bion.psy.ed.ac.uk for examples).
Strategic, not merely dispositional, the sorts of procedures
selected by the subject vary with the task demands.
Akin to animals seeking to optimise foraging to procure the

greatest return for the least investment in energy expended, we
have engineered a new form of navigation, having the robot
select from magnetic compass information the longest axis in
its work space it can move along with the least perturbation
caused by obstacles.



Figure 1. Design. Three layers of competences have been installed as a
design feature of each agent based on a logical hierarchy as described by
McGonigle (1990). In common with robots designed by Brooks at MIT
(Brooks, 1991, for example), the first layer is purely reactive, involving
tightly coupled ‘first strike’ behaviours designed to enable the robot
avoid collision. Crucially, however, this has only been a first stage; in
the second layer of the hierarchy, competences based on sound sources
(Donnett and McGonigle, 1991), then on a light compass and dead-
reckoning (Nehmzow and McGonigle, 1995), and more recently a
magnetic compass, have been engineered, enabling the robot to identify
locations which are of significance in their workplace (Fischer et al.,
2000). With navigation in place, an active vision- based form of object
identification has been achieved, scaffolded by the precursor
achievements enabled by the lower layers of the hierarchy.

Acting in real-time and using relatively low-level, and
highly error laden sensory-motor information combined
with a primitive set of state variables, we have sought to
develop a system which could learn to self-select optimal
trajectories in our laboratory environment guided only by
a resource minimisation constraint. In the case of the test
niche as illustrated above, only trajectories along the long
corridor will qualify as those which enable the longest
travel with the least perturbation.

4. The hierarchical architecture
underlying self-organised navigational
learning
The Nomad has access to data structures and programs
that are arranged hierarchically from atomic units of
action (for example move, read-sensor, talk) many of
which come pre-installed, through simple sequences of
actions which combine both movement and sensing atoms
(an everyday example from robotics is move-forward-
without-crashing), and fully to combinations of actions

which form more meaningful, or rather non-trivial, sequences
which we designate behaviours (such as navigate-to-position,
align, learn-route, retrace-route). The top-most level of the
hierarchy consists of tasks e.g. groups of behaviours
analogous to those in natural complex systems such as
learning and retracing routes through the niche. This
architecture is broadly object-oriented, with behaviours
comprising complex data structures which retain information
concerning: the number of calls and successful instantiations;
initialisation constraints (both internal and external criteria);
instantiation & execution; runtime constraints (success and
failure conditions); lists of implementable recovery procedures
(which also retain data concerning the number of times they
have been called and their success rate); and finally
procedures for modifying a subset of internal state variables.

5. Using memory (both “long” and
“short” term) to guide the developmental
trajectory
The Nomad's control architecture features two sets of global
variables which reference internal and external states of
affairs. Within a single run, in the \short term", these state
arrays store information concerning the Nomad's current
position in space and time, as well as in task-space and
behaviour-space. Not only do these records of previously
encountered conditions allow the system to benefit from past
experience, but they also facilitate the use of the economy
metric used to select promising vectors. Consequently at the
end of a run the Nomad stores all information relating to
behaviours, tasks, and the state arrays. At any point in time
information from earlier in the current run or from any
recorded point in the past can be re-loaded. Thus the capacity
for true development is achieved and the Nomad freed from
the short-termism characteristic of many artificial agents!

6. The trial and error stage
Initially the Nomad is positioned relatively near one end of the
long axis of the environment. The pre-existing alignment
behaviour positions the Nomad at its niche-engineered home"
location with an accuracy of ±5cms. Alignment to features of
the environment, unique within the niche, allows the system to
orient itself at start-up without the need for resource
demanding visual or other sensory-fusion place recognition
algorithms and, crucially, ensures that the Nomad begins each
run from a near identical point in space allowing for learning
across runs. Our learning algorithm begins with varying the
initial compass reading by ± 30 and 60 degrees (we start with
deliberately coarse gradations) to generate 5 potential
headings (vectors). The Nomad then travels forward along
each of these vectors in a random order until either an obstacle
is detected ahead, or the discrepancy between the current
compass reading and the initial bearing reaches 15 degrees 3,
whereupon it recenters, essentially reversing back to the initial
position.



                           

Figure 2. Robot Self Regulation: The Nomad and test niche The robot used for this implementation is a Nomad 200 (see Figure 1), supplied by Nomadic
Technologies Inc., California. Its sensors consist of sixteen infrared detectors, and sixteen sensors, located around the periphery of the chassis, along with
base mounted odometer and a magnetic compass (KVH C100 Compass Engine). Remote control of the nomad is achieved via a radio Ethernet card,
allowing control from any one of a number of machines situated throughout the niche. The Nomad is programmed in a mixture of the C/C++ and Perl
programming languages, running under the Red Hat Linux operating system. Each language provides its own benefits .C++ is used o communicate with the
onboard robot control system, and is particularly useful in the control of time-critical processes. The strength of Perl running under Linux lies in the control
of concurrent processes, and the dynamic construction of both programs and data structures

A log is maintained of odometric information, compass
discrepancy, and time travelled in each direction. Once
the set of potential vectors has been exhausted the most
promising one is determined. If there is a vector where
compass error has exceeded 15 degrees (in such cases the
distance travelled tends to be relatively great due to the
additive error in the magnetic compass with distance) it
becomes the chosen vector for the current sector, if more
than one vector meets this criterion, that which admits the
longest run for the least error is chosen. If no vectors meet
the success criterion, then the one along which there has
been the longest run without interrupt is chosen.
Hereupon the Nomad travels in the chosen direction until
the sector boundary is reached (determined by the
odometry, compass error and time logs). The process is
then iterated indefinitely, while a record is stored of
which sector (or, physical area) the Nomad is currently
positioned within. This procedure results in movement
along free axes of the niche, which is broken down by
selfdetermined internal criteria into discrete physical
spaces. Returning to base invokes a retrace-route
procedure implemented by a process of dead reckoning
where possible. Indeed the structure of the Nomad's niche
(long corridors, with separate rooms, and dog-leg
corners), means that the strategy of steering more or less
directly toward home, in the absence of planning and
prospective control, often fails, thereby furnishing the
system with a rich error space in which to test recovery
procedures. Although, at this time, only preliminary
research has been carried out in this area with the Nomad,
preliminary findings are promising. Our initial
investigations focussing on two simple methods of
recovering from navigational error (wall following, and
reiteratively creating a temporary goal location midway
between current and target spatial positions) indicate that
the concept of a stack of error recovery procedures based
on abductive ‘explanation’ procedures, is workable in
principle.

Figure 3. Learning Algorithm

References

Brooks, R. A. (1991). Intelligence without representation.
Artificial Intelligence, 47:139-159.



Bryson, J. and McGonigle, B. O. (1999). Agent
architecture as object-oriented design. In Singh, M. P.,
Rao, A. S., and Wooldridge, M. J., (Eds.), The fourth
international workshop on agent theories, architechtures
and languages (ATAL 97, Providence. Springer-Verlag.

Donnett, J. and McGonigle, B. O. (1991). Evolving speed
control in mobile robots: from blindnessto kinetic
vision. In Proceedings of the Vision Interface
Conference, Calgary.

Duckett, T. and Nehmzow, U. (1999a). Knowing your
place in real world environments. In Proceedings
EUROBOT'99, 3rd European workshop on advanced
mobile robots. Zurich, Switzerland, September 6-8,
1999.

Duckett, T. and Nehmzow, U. (1999b). Self-localisation
and autonomous navigation by a mobile robot.
Technical report UMCS-99-3-1,Department of
Computer Science, University of Manchester, England.
also in Proceedings TIMR 99 "Towards intelligent
mobile robots" Bristol, England.

Fischer, K., Zheng, Y., McGonigle, B. O., and Warnett,
L. (2000). Learning and developing together: dynamic
construction of human and robot knowledge. In
McClelland, J. L. and Pentland, A. P., (Eds.), NSF
DARPA Workshop on Development and Learning,
pages 50-59.

Humphrys, M. (1996a). Action selection in a hypothetical
house robot: using those RL numbers. In Anderson, P.
G. and Warwick, K., (Eds.),Proceedings of the First
international ICSC symposia on intelligent industrial
automation (IIA-96) and soft computing, pages 216-
222, Reading, England. ICSC Academic Press. March
26-28.

Humphrys, M. (1996b). Action selection methods using
reinforcement learning. In Maes, P., Mataric, M.,
Meyer, J.-A., Pollack, J., and Wilson, S. W., (Eds.),
From animals to animats 4: Proceedings of the fourth
international conference on the simulation of adaptive
behaviour, pages 135-144, Cambridge, MA, USA. MIT
Press.

Humphrys, M. (1997). Action selection methods using
reinforcement learning. PhD thesis, University of
Cambridge, Cambridge, England.

Lu, F. and Milios, E. (1997). Globally consistent range
scan alignment for environment mapping. Autonomous
Robots, 4:333-349.

McGonigle, B. O. (1991a). Incrementing intelligent
systems by design. In Meyer, J. and Wilson, S., (Eds.),
From Animals to Animats, Proceedings of the First
International Conference on the simulation of adaptive
behaviour. MIT Press.,London, England.

McGonigle, B. O. (1991b). Incrementing intelligent
systems by design. In Meyer, J. A. and Wilson, S. W.,
(Eds.), From animals to animats: Proceedings of the
First international conference on the simulation of
adaptive behaviour. MIT Press, London, England.

McGonigle, B. O. (2002). Getting autonomous robots to
control themselves. In Holland, O. and McFarland, D.,
(Eds.), Articial ethology. Oxford University Press, Oxford,
England.  Invi ted contr ibut ion.  Internat ional
symposium,Lanzarote, 1998, sponsored by OUP.

McGonigle, B. O. and Chalmers, M. (1996). The ontology of
order. In Smith, L., (Ed.), Critical readings on Piaget, pages
279-311. Routledge, London, England.

McGonigle, B. O. and Chalmers, M. (1997). Rationality as
optimised cognitive self-regulation. In Oaksford, M. and
Chater, N., (Eds.), Rational Models of Cognition. OUP,
London.

McGonigle, B. O. and Chalmers, M. (2002). Animal cognition
and sequential behaviour: behavioural, biological and
computational perspectives, chapter 12. The growth of
cognitive structure in monkeys and men. Kluwer Academic
Publishers.

Nehmzow, U. (1995). Animal and robot navigation.Robotics
and Autonomous Systems, 15(1-2):71-81.

Nehmzow, U. and McGonigle, B. O. (1993). Navigation
mobiler roboter mittels differential lichtkompass. Hybride
und intergrierte Ansatzezur Raumrepraentation und uhre
Andewung.Berlin.  German journal for Artificial
Intelligence, "KI". ISBN 0933-1875.

Nehmzow, U. and McGonigle, B. O. (1995). Achieving rapid
adaptations in robots by means of external tuition. In Cliff,
D., Husbands, P., Arcady-Meyer, J., and Wilson, S. W.,
(Eds.), From Animals to Animats 3. Proceedings of the
Third International Conference on Simulation of Adaptive
Behaviour. MIT Press, Cambridge, MA, USA.

Nemhzow, U., Smithers, T., and McGonigle, B. O.(1993).
Increasing behavioural repertoire in a mobile robot. In
Meyer, J., Roitblat, H.,and Wilson, S. W., (Eds.), From
Animals to Animats 2. Proceedings of the Second
International Conference on Simulation of Adaptive
Behaviour. MIT Press, Cambridge, Massachusetts;London,
England.

Terrace, H. S. and McGonigle, B. O. (1994). Memory and
representation of serial order by children, monkeys and
pigeons. Current Direction in Psychological Science,
3(6):180-185.

Warnett, L. (2000). Intelligent systems - towards a new
synthetic agenda. PhD thesis, Department of Psychology,
University of Edinburgh, Edinburgh, Scotland.

Weiss, G. and von Puttkamer, E. (1995). A map based on
laserscans without geometric interpretation. In Intelligent
autonomous systems-4(IAS-4), pages 403-407, Karlsruhe,
Germany.

Yamauchi, B. and Langley, P. (1997). Place recognition in
dynamic environments. Journal of Robotics Systems,
14(2):107-120. Special issue on mobile robots.


