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Abstract

It has been proved to be extremely challeng-
ing for humans to program a robot to such
a sufficient degree that it acts properly in a
typical unknown human environment. This
is especially true for a humanoid robot due
to the very large number of redundant de-
grees of freedom and a large number of sen-
sors that are required for a humanoid to work
safely and effectively in the human environ-
ment. How can we address this fundamental
problem? Motivated by human mental devel-
opment from infancy to adulthood, we present
a theory, an architecture, and some experi-
mental results showing how to enable a robot
to develop its mind automatically, through
online, real time interactions with its envi-
ronment. Humans mentally “raise” the robot
through “robot sitting” and “robot schools”
instead of task-specific robot programming.

1. Introduction

The conventional mode of developmental process for
a robot is not automatic – a human designer is in the
loop. A typical process goes like this: Given a robotic
task, it is the human designer who analyzes and un-
derstands the task. Based on his understanding, he
comes up with a representation, chooses a compu-
tational method, and writes a program that imple-
ments his method for the robot. The representation
reflects very much the human designer’s understand-
ing of the robot task. During this developmental pro-
cess, some machine learning might be used, during
which some parameters are adjusted according to the
collected data. However, these parameters are de-
fined by the human designer’s representation for the
given task. The resulting program is for this task
only, not for any other tasks. If the robotic task is
complex, the capability of handling variation of envi-
ronment is very much limited by the human designed
task-specific representation. This manual develop-
ment paradigm has met tremendous difficulties for
tasks that require complex cognitive and behavioral
capabilities, such as many sensing and behavioral

skills that a humanoid must have in order to execute
human high-level commands, including autonomous
navigation, object manipulation, object delivery, tar-
get finding, human-robot interaction through ges-
ture in unknown environment. The high degree of
freedom, the redundant manipulators, and the large
number of effectors that a humanoid has, plus the
multimodal sensing capabilities that are required to
work with humans further increase the above diffi-
culties. The complex and changing nature of human
environment has made the issue of autonomous men-
tal development of robots — the way human mind
develops — more important than ever.

Many robotics researchers may believe that hu-
man brain has an innate representation for the tasks
that humans generally do. However, recent stud-
ies of brain plasticity have shown that our brain is
not as task-specific as commonly believed. There ex-
ist rich studies of brain plasticity in neuroscience,
from varying extent of sensory input, redirecting
input, transplanting cortex, to lesion studies, and
sensitive periods. Redirecting input seems illumi-
nating in explaining how much task-specific our
brain really is. For example, Mriganka Sur and
his coworkers rewired visual input to primate au-
ditory cortex early in life. The target tissue in
the auditory cortex, which is supposed to take au-
ditory representation, was found to take on visual
representation instead (Sur et al., 1999). Further-
more, they have successfully trained the animals to
form visual tasks using the rewired auditory cor-
tex (von Melchner et al., 2000). Why are the self-
organization schemes that guide development in our
brain so general that they can deal with either speech
or vision, depending on what input it takes through
the development? Why are robots that are pro-
grammed using human designed, task-specific rep-
resentation do not do well in complex, changing, or
partially unknown or totally unknown environment?
What are the self-organization schemes that robots
can use to autonomously develop their mental skills
through interactions with the environment? Is it
more advantageous to enable robots to autonomously
develop their mental skills than to program robots
using human-specified, task-specific representation?



Although robot mental development is very much
a new concept (Weng et al., 2000b), a lot of well-
known self-organization tools can be used in design-
ing a developmental robot. In this paper, we sum-
marize our recent investigations on this new direc-
tion and hopefully provide some answers to the above
questions. In the following sections, we first outline
the previous and current projects related to robot
mental development conducted in our group. Then a
theory of autonomous mental development of robots
is presented followed by the experimental results on
the SAIL robot, a developmental robot constructed
following this theory. A brief comparison to others’
work is given before we draw the conclusion.

2. An outline of previous and current
projects

Our decade-long effort in enabling a machine to grow
its perceptual and behavioral capabilities has gone
through four systems: Cresceptron (1991 - 1995),
SHSOLIF (1993 - 2000), SAIL (1996 - present ) and
Dav (1999 - present).

Cresceptron is an interactive software
system for visual recognition and segmenta-
tion (Weng et al., 1997). The major contribution
is a method to automatically generate (grow) a
network for recognition from training images. The
topology of this network is a function of the content
of the training images. Due to its general nature
in representation and learning, it turned out to be
one of the first systems that have been trained to
recognize and segment complex objects of very dif-
ferent natures from natural, complex backgrounds.
Although Cresceptron is a general developmental
system, its efficiency is low.

SHOSLIF (Self-organizing Hierarchical Optimal
Subspace Learning and Inference Framework) was
the next project whose goal was to resolve the ef-
ficiency of self-organization. It automatically finds
a set of Most Discriminating Features (MDF) using
Principle Component Analysis (PCA) followed by
Linear Discriminant Analysis (LDA), for better gen-
eralization. It is a hierarchical structure organized by
a tree to reach a logarithmic time complexity. Using
it in an observation-driven Markov Decision Process
(ODMDP), SHOSLIF has successfully controlled the
ROME robot to navigate in MSU’s large Engineering
Building in real-time using only video cameras, with-
out using any range sensors (Weng and Chen, 1998).
All the real-time computing was performed by a
slow Sun SPARC Ultra-1 Workstation. Therefore,
SHOSLIF is very efficient for real-time operation.
However, it is not an incremental learning method.

SAIL (Self-organizing, Autonomous, Incremental
Learner) is the next generation after SHOSLIF. The
objective of this project is to automate the real-

Figure 1: The SAIL (left) and Dav (right) robot.

time incremental development for robot perceptual
and behavioral capabilities. The internal represen-
tation of the SAIL robot (Fig. 1) is generated au-
tomatically by the robot itself, starting with a de-
sign of a coarse architecture. A self-organization
engine called Incremental Hierarchical Discrimi-
nant Regression (IHDR) was the critical technology
that achieves the stringent real-time, incremental,
small sample size, large memory, and better gen-
eralization requirements (Hwang and Weng, 2000a)
(Hwang and Weng, 2000b). IHDR automatically
and incrementally grows and updates a tree (net-
work) of nodes (remotely resemble cortical areas).
In each node is an incrementally updated feature
subspace, derived from the most discriminating fea-
tures for better generalization. Discriminating fea-
tures disregard factors that are not related to percep-
tion or actions, such as lighting in object recognition
and autonomous navigation.

Dav robot (Fig. 1) is a humanoid robot, currently
being developed as a next-generation test-bed for
experimental investigations into autonomous men-
tal development (Han et al., 2002). This general-
purpose humanoid platform consists of a total of
43 degrees of freedom (DOF), including drive base,
torso, arms, hands, neck and head. The body may
support a wide array of locomotive and manipulative
behaviors. For perception, Dav is equipped with a
variety of sensing systems, including visual, auditory
and haptic sensors. Its computational resource is to-
tally onboard, including quadruple Pentium III plus
PowerPCs, large memory and storage, networks, and
long-sustenance power supply.
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Figure 2: The abstract model of a traditional agent,

which perceives the external environment and acts on it

(adapted from (Russell and Norvig, 1995)). The source

of perception and the target of action do not include the

agent brain representation.

3. A theory for mentally developing
robots

Evolving with the above robot projects is a theoretic
framework for autonomous mental development of
robots. We present the major components of this
theory here. For more details, the reader is referred
to (Weng, 2002).

3.1 SASE Agents

Defined in the standard AI literature (see, e.g., an ex-
cellent textbook (Russell and Norvig, 1995) and an
excellent survey (Franklin, 1997)), an agent is some-
thing that senses and acts, whose abstract model is
shown in Fig. 2. As shown, the environment E of an
agent is the world outside the agent.

To be precise in our further discussion, we need
some mathematical notation. A context of an agent
is a stochastic process (Papoulis, 1976), denoted by
g(t). It consists of two parts g(t) = (x(t), a(t)),
where x(t) denotes the sensory vector at time t which
collects all signals (values) sensed by the sensors of
the agent at time t, a(t) the effector vector consist-
ing of all the signals sent to the effectors of the agent
at time t. The context of the agent from the time t1
(when the agent is turned on) up to a later time t2 is a
realization of the random process {g(t) | t1 ≤ t ≤ t2}.
Similarly, we call {x(t) | t1 ≤ t ≤ t2} a sensory con-
text and {a(t) | t1 ≤ t ≤ t2} an action context.

The set of all the possible contexts of an environ-
ment E is called the context domain D. As indicated
by Fig. 2, at each time t, the agent senses vector x(t)
from the environment using its sensors and it sends
a(t) as action to its effectors. Typically, at any time
t the agent uses only a subset of the history repre-
sented in the context, since only a subset is mostly
related to the current action.

The model in Fig. 2 is for an agent that perceives
only the external environment and acts on the exter-
nal environment. Such agents range from a simple
thermostat to a complex space shuttle. This well ac-
cepted model played an important role in agent re-
search and applications. Unfortunately, this model
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Figure 3: A self-aware self-effecting (SASE) agent. It

interacts with not only the external environment but also

its own internal (brain) environment: the representation

of the brain itself.

has a fundamental flaw: It does not sense its internal
“brain” activities. In other words, its internal deci-
sion process is neither a target of its own cognition
nor a subject for the agent to explain.

The human brain allows the thinker to sense
what he is thinking about without performing an
overt action. For example, visual attention is a
self-aware self-effecting internal action (see, e.g.,
(Kandel et al., 1991), pp. 396 - 403). Motivated by
neuroscience, it is proposed here that a highly in-
telligent being must be self-aware and self-effecting
(SASE). Fig. 3 shows an illustration of a SASE agent.
A formal definition of a SASE agent is as follows:

Definition 1 A self-aware and self-effecting
(SASE) agent has internal sensors and internal
effectors. In addition to interacting with the ex-
ternal environment, it senses some of its internal
representation as a part of its perceptual process and
it generates actions for its internal effectors as a
part of its action process.

Using this new agent model, the sensory context x(t)
of a SASE agent must contain information about not
only external environment E, but also internal rep-
resentation R. Further, the action context a(t) of a
SASE agent must include internal effectors that act
on R.

A traditional non-SASE agent does use internal
representation R to make decision. However, this
decision process and the internal representation R is
not included in what is to be sensed, perceived, rec-
ognized, discriminated, understood and explained by
the agent itself. Thus, a non-SASE agent is not able
to understand what it is doing, or in other words,
it is not self-aware. Further, the behaviors that it
generates are for the external world only, not for the
brain itself. Thus, it is not able to autonomously
change its internal decision steps either. For exam-
ple, it is not able to modify its value system based on
its experience about what is good and what is bad.

It is important to note that not all the internal
brain representations are sensed by the brain itself.
For example, we cannot sense why we have interest-
ing visual illusions (Eagleman, 2001).



3.2 Autonomous mental development
(AMD)

An agent can perform one, multiple or an open num-
ber of tasks. The task here is not restricted by type,
scope, or level. Therefore, a task can be a subtask of
another. For example, making a turn at a corner or
navigating around a building can both be a task.

To enable an agent to perform certain tasks,
the traditional paradigm involves developing task-
specific architecture, representation, and skills
through human hands, which we call it a “manual”
development. The manual paradigm has two phases,
the manual development phase and the automatic
execution phase. In the first phase, a human devel-
oper H is given a specific task T to be performed
by the machine and a set of ecological conditions Ec

about operational environment. The human devel-
oper first understands the task. Next, he designs
a task-specific architecture and representation and
then programs the agent A. In mathematical nota-
tion, we consider a human as a (time varying) func-
tion that maps the given task T and the set of eco-
logical conditions Ec to agent A:

A = H(Ec, T ). (1)

In the automatic execution phase, the machine is
placed in the task-specific setting. It operates by
sensing and acting. It may learn, using sensory data
to change some of its internal parameters. However,
it is the human who understands the task and pro-
grams the internal representation. The agent just
runs the program.

Correspondingly, the autonomous development
paradigm has two different phases, the construction
and programming phase and the autonomous devel-
opment phase.

In the first phase, tasks that the agent will end up
learning are unknown to the robot programmer. The
programmer might speculate some possible tasks,
but writing a task-specific representation is not pos-
sible without actually given a task. The ecologi-
cal conditions under which the robot will operate,
e.g., land-based or underseas, are provided to the
human developer so that he can design the agent
body appropriately. He writes a task-nonspecific
program called developmental program, which con-
trols the process of mental development. Thus the
newborn agent A(t) is a function of a set of ecological
conditions only, but not the task:

A(0) = H(Ec), (2)

where we added the time variable t to the time vary-
ing agent A(t), assuming that the birth time is at
t = 0.

After the robot is turned on at time t = 0, the
robot is “born” and it starts to interact with the
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Figure 4: Manual development paradigm (a) and au-

tonomous development (b) paradigm .

physical environment in real time by continuously
sensing and acting. This phase is called autonomous
development phase. Human teachers can affect the
developing robot only as a part of the environment,
through the robot’s sensors and effectors. After the
birth, the internal representation is not accessible to
the human teacher.

Various learning modes are available to the teacher
during autonomous development. He can use su-
pervised learning by directly manipulating (compli-
ant) robot effectors (see, e.g., (Weng et al., 1999)),
like how a teacher holds the hand of a child while
teaching him to write. He can use reinforcement
learning by letting the robot try on its own while
the teacher encourages or discourages certain ac-
tions by pressing the “good” or “bad” buttons in
the right context (see, e.g., (Weng et al., 2000a)
(Zhang and Weng, 2001b)). The environment it-
self can also produce reward directly. For ex-
ample, a “sweet” object and a “bitter” one (see,
e.g., (Almassy et al., 1998)). With multiple tasks in
mind, the human teacher figures out which learn-
ing mode is more suitable and efficient and he typi-
cally teaches one task at a time. Skills acquired early
are used later by the robot to facilitate learning new
tasks.

Fig. 4 illustrates the traditional manual develop-
ment paradigm and the autonomous development
paradigm.



3.3 Internal Representation

Autonomous generation of internal representation is
central to mental development. Traditional AI sys-
tems use symbolic representation for internal rep-
resentation and decision making. Is symbolic rep-
resentation suited for a developmental robot? In
the AI research, the issue of representation has not
been sufficiently investigated, mainly due to the tra-
ditional manual development paradigm. There has
been a confusion of concepts in representation, espe-
cially between reality and the observation made by
the agents. To be precise, we first define some terms.

A world concept is a concept about objects in the
external environment of the agent, which includes
both the environment external to the robot and the
physical body of the robot. The mind concept1 is in-
ternal with respect to the nervous system (including
the brain).

Definition 2 A world centered representation is
such that every item in the representation corre-
sponds to a world concept. A body centered rep-
resentation is such that every item in the represen-
tation corresponds to a mind concept.

A mind concept is related to phenomena observable
from the real world, but it does not necessarily reflect
the reality correctly. It can be an illusion or totally
false.

Definition 3 A symbolic representation is about a
concept in the world and, thus, it is world centered.
It is in the form A = (v1, v2, ..., vn) where A (op-
tional) is the name token of the object and v1, v2,
..., vn are the unique set of attributes of the object
with predefined symbolic meanings.

For example, Apple = (weight, color) is a sym-
bolic representation of a class of objects called ap-
ple. Apple-1 = (0.25g, red) is a symbolic represen-
tation of a concrete object called Apple-1. The set
of attributes is unique in the sense that the object’s
weight is given by the unique entry v1. Of course,
other attributes such as confidence of the weight can
be used. A typical symbolic representation has the
following characteristics:

1. Each component in the representation has a pre-
defined meaning about the object in the external
world.

2. Each attribute is represented by a unique variable
in the representation.

3. The representation is unique for a single corre-
sponding physical object in the external environ-
ment.

1The term “mind” is used for ease of understanding. We
do not claim that it is similar to the human mind.

World centered symbolic representation has been
widely used in symbolic knowledge representation,
databases, expert systems, and traditional AI sys-
tems.

Another type of representation is motivated by the
distributed representation in the biological brain:

Definition 4 A distributed representation is not
necessarily about any particular object in the envi-
ronment. It is body centered, grown from the body’s
sensors and effectors. It is in a vector form A =
(v1, v2, ..., vn), where A (optional) denotes the vector
and vi, i = 1, 2, ..., n corresponds to either a sensory
element (e.g., pixel or receptor) in the sensory input,
a motor control terminal in the action output, or a
function of them.

For example, suppose that an image produced by
a digital camera is denoted by a column vector I,
whose dimension is equal to the number of pixels in
the digital image. Then I is a distributed represen-
tation, and so is f(I) where f is any function. A
distributed representation of dimension n can repre-
sent the response of n neurons.

The world centered and body centered representa-
tions are the same only in the trivial case where the
entire external world is the only single object for cog-
nition. There is no need to recognize different objects
in the world. A thermostat is an example. The com-
plex world around it is nothing more than a tem-
prature to it. Since cognition must include discrim-
ination, cognition itself is not needed in such a triv-
ial case. Otherwise, body centered representation is
very different from a world centered representation.
Some later (later in processing steps) body centered
representations can have a more focused correspon-
dence to a world concept in a mature developmental
robot, but they will never be identical. For example,
the representation generated by a view of a red ap-
ple is distributed over many cortical areas and, thus,
is not the same as a human designed atomic, world
centered symbolic representation.

A developmental program is designed after the
robot body has been designed. Thus, the sensors
and effectors of the robot are known, and so are their
signal formats. Therefore, the sensors and effectors
are two major sources of information for generating
distributed representation.

Another source of information is the internal sen-
sors and effectors which may grow or die according
to the autonomously generated or deleted representa-
tion. Examples of internal effectors include attention
effectors in a sensory cortex and rehearsal effectors
in a premotor cortex. An internal attention effectors
are used for turning on or turning off certain signal
lines for, e.g., internal visual attention. Rehearsal
effectors are useful for planning before an action is
actually released to the motors. The internal sen-
sors include those that sense internal effectors. In



fact, all the conscious internal effectors should have
corresponding internal sensors.

It seems that a developmental program should use
a distributed representation, because the tasks are
unknown at the robot programming time. It is nat-
ural that the representation in earlier processing is
very much sensor centered and the representation
in later processing is very much effector centered.
Learned associations map perceptually very different
sensory inputs to the same equivalent class of actions.
This is because a developmental being is shaped by
the environment to produce such a desired behavior.

On the other hand, an effector centered represen-
tation can correspond to a world object well. For
example, when the eyes of a child sense (see) his fa-
ther’s portrait and his ears sense (hear) a question
“who is he?” The internally primed action can be
any of the following actions: saying “he is my fa-
ther,” “my dad,” “my daddy,” etc. In this example,
the later action representation can correspond to a
world object, “father,” but it is still a (body cen-
tered) distributed representation. Further, since the
generated actions are not unique given different sen-
sory inputs of the same object, there is no place for
the brain (human or robot) to arrive at a unique rep-
resentation from a wide variety of sensory contexts
that reflects the world that contains the same single
object as well as others. For example, there is no way
for the brain to arrive at a unique representation in
the above “father” example. Therefore, a symbolic
representation is not suited for a developmental pro-
gram while a distributed representation is.

4. SAIL - An example of developmen-
tal robots

The SAIL robot is our current autonomous devel-
opmental process test-bed. It is a human-size mo-
bile robot house-made at Michigan State University
with a drive-base, a six-joint robot arm, a rotary
neck, and two pan-tilt units, on which two CCD cam-
eras (as eyes) are mounted. A wireless microphone
functions as an ear. The SAIL robot has four pres-
sure sensors on its torso and 28 touch sensors on its
eyes, arm, neck, and bumper. Its main computer is
a dual-processor dual-bus PC workstation with 512
MB RAM and a 27 GB three-drive disk array. All
the sensory information processing, memory recall
and update as well as real-time effector controls are
done in real-time.

According to the theory presented in Section 3.,
our SAIL developmental algorithm has some “in-
nate” reflexive behaviors built-in. At the “birth”
time of the SAIL robot, its developmental algorithm
starts to run. This developmental algorithm runs in
real time, through the entire “life span” of the robot.
In other words, the design of the developmental pro-
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gram cannot be changed once the robot is “born,”
no matter what tasks that it ends up learning. The
robot learns while performing simultaneously. The
innate reflexive behaviors enable it to explore the
environment while improving its skills. The human
trainers train the robot by interacting with it, very
much like the way human parents interact with their
infant, letting it seeing around, demonstrating how
to reaching objects, teaching commands with the re-
quired responses, delivering reward or punishment
(pressing “good” or “bad” buttons on the robot),
etc. The SAIL developmental algorithm updates the
robot memory in real-time according to what was
sensed by the sensors, what it did, and what it re-
ceived as feedback from the human trainers.

4.1 Architecture

The schematic architecture of a single level of SAIL is
shown in Fig. 5. Sensory inputs first enter a module
called sensory mapping, whose detailed structure is
discussed in Section 4.2.

Internal attention for vision, audition and touch, is
a very important mechanism for the success of mul-
timodal sensing. A major challenge of perception for
high dimensional data inputs such as vision, audition
and touch is that often not all the lines in the input
are related to the task at hand. Attention selection
enables singles of only a bundle of relevant lines are
selected for passing through while others are blocked.
Attention selection is an internal effector since it acts
on the internal structure of the “brain” instead of the
external environment.

First, each sensing modality, vision, audition and
touch, needs intra-modal attention to select a sub-
set of internal output lines for further processing but
disregard to leaving unrelated other lines. Second,
the inter-modal attention, which selects a single or
multiple modalities for attention. Attention is neces-
sary because not only do our processors have only a
limited computational power, but more importantly,
focusing on only related inputs enables powerful gen-
eralization.



The cognitive mapping module is the central part
of the system. It is responsible for learning the asso-
ciation between the sensory information, the context,
and the behavior. The behaviors can be both exter-
nal and internal. The external behaviors correspond
to control signals for external effectors such as the
joint motors of a robot arm, or whatever peripher-
als that the robot has to act on the environment.
The internal behaviors include the above-mentioned
attention selection signals for the sensory mapping
module, the effector that manipulates the internal
states and the threshold control signals to the gating
system. The cognitive mapping is implemented by
the IHDR tree, which mathematically computes the
mapping,

g : S ×X → S ×A,

where S is the state (context) space, X is the sen-
sory space, and A is the action space. IHDR derives
the best features that are most relevant to output
by doing a double clustering in both input and out-
put space. It constructs a tree structure and repeats
the double clustering in a coarse-to-fine manner in
each of the tree nodes. The resulted tree structure is
used to find the best matching input cluster in a fast
logarithmic time. Compared to other methods, such
as artificial neural network, linear discriminant anal-
ysis, and principal component analysis, IHDR has
advantages in handling high-dimensional input, do-
ing discriminant feature selection, and learning from
one instance.

The gating system evaluates whether the intended
action accumulates sufficient thrust to be issued as
an actual action. In this way, actions are actually
made only when a sufficient number of action prim-
itives are given through the time by the cognitive
mapping module. This mechanism significantly re-
duces the requirement on the accuracy of timing of
issued action primitives.

Three types of learning modes have been imple-
mented on SAIL: learning by imitation (supervised
learning), reinforcement learning, and communica-
tive learning. In the following sections, we explain
how learning is conducted by the SAIL robot while
providing the experimental results.

4.2 Staggered Hierarchical Mapping

We have designed and implemented a sensory map-
ping method, called “Staggered Hierarchical Map-
ping (SHM),” shown in Fig. 6, and its developmen-
tal algorithm (Zhang and Weng, 2002a). Its goal in-
cludes: (1) to generate feature representation for re-
ceptive fields at different positions in the sensory
space and with different sizes and (2) to allow at-
tention selection for local processing. SHM is a
model motivated by human early visual pathways
including processing performed by the retina, Lat-

eral Geniculate Nucleus (LGN) and the primary vi-
sual cortex. A new Incremental Principal Compo-
nent Analysis (IPCA) method is used to automati-
cally develop orientation sensitive and other needed
filters (Zhang and Weng, 2001a). From sequentially
sensed video frames, the proposed algorithm devel-
ops a hierarchy of filters, whose outputs are uncor-
related within each layer, but with increasing scale
of receptive fields from low to high layers. To study
the completeness of the representation generated by
the SHM, we experimentally showed that the re-
sponse produced at any layer is sufficient to recon-
struct the corresponding “retinal” image to a great
degree. This result indicates that the internal rep-
resentation generated for receptive fields at different
locations and sizes are nearly complete in the sense
that it does not lose important information. The at-
tention selection effector is internal and thus cannot
be guided from the “outside” by a human teacher.
The behaviors for internal effectors can be learned
through reinforcement learning and communicative
learning.

4.3 Vision-guided navigation

In the experiment of vision-guided naviga-
tion (Weng et al., 2000a), a human teacher teaches
the robot by taking it for a walk along the hallways
of MSU Engineering Building. Force sensors on the
robot body sense the push action of the teacher and
its two drive wheels complies by moving at a speed
that is proportional to the force that is sensed each
side. In other words, the robot performs supervised
learning in real time through imitation.

The IHDR mapping algorithm processes the input
image in real time. It derives features that are re-
lated to the action but disregard features that are
not. The human teacher does not need to define
features. The system runs at about 10 Hz, 10 up-
dates of navigation decisions per second. In other
words, for each 100 millisecond, a different set of fea-
ture subspaces are used. To address the requirement
of real-time speed, the IHDR method incrementally
constructs a tree architecture which automatically
generates and updates the representations in a coarse
to fine fashion. The real-time speed is achieved by
the logarithmic time complexity of the tree in that
the time required to update the tree for each sensory
frame is a logarithmic function in the number of fine
clusters (prototypes) in the tree.

After 4 trips along slightly different trajectories
along the hallways, the human teacher started to
let the robot go free. He needed to “hand push”
the robot at certain places when necessary until the
robot could reliably navigate along the hallway, with-
out a need for “hand-lead.” We found that about 10
trips were sufficient for the SAIL robot to navigate
along the hallways, using only vision, without using



Inter−neuron distance

0

1

2

3

4

5

6

7

8

9

Layer
No.

Size of the
receptive field

16

20

24

28

40

34

48

58

70

Output of
SHM

To cognitive 
mapping

Figure 6: The architecture of SHM. Each square denotes a neuron. Layer 0 is the input image. The neurons marked

as black in layer 1 belong to the same eigen-group. Bold lines that are derived from a single neuron and expanded to

the original image mark the receptive field of that neuron. The size of the receptive field in a particular layer is 20%

larger than its previous layer in this diagram, which is shown at the right. The size of the receptive field is rounded to

the nearest integer. SHM allows not only a bottom up response computation, but also a top down attention selection.

The oval indicates the lines selected by attention selector.

any range sensors. Fig. 7 shows some images that
the robot saw during the navigation.

4.4 Grounded speech learning

Similar to learning vision-guided navigation, the
SAIL robot can learn to follow voice com-
mand through physical interaction with a human
trainer (Zhang and Weng, 2001b). In the early su-
pervised learning stage, a trainer spoke a command
to the robot and then executed a desired action by
pressing a pressure sensor or a touch sensor that was
linked to the corresponding effector. At later stages,
when the robot can explore more or less on its own,
the human teacher uses reinforcement learning by
pressing its “good” or “bad” button to encourage and
discourage certain actions. Typically, after about
15-30-minute interactions with a particular human
trainer, the SAIL robot could follow commands with
about 90% correct rate. Table 1 shows the voice
commands learned by the SAIL robot and its perfor-
mance. Fig. 8 shows the graphic user interface for
humans to monitor the progress of online grounded
speech learning.

4.5 Communicative learning

Recently, we have successfully implemented the new
communicative learning mode on the SAIL robot.
First, in the language acquisition stage, we taught
SAIL simple verbal commands, such as “go ahead,”

(a) (b)

Figure 8: The GUI of AudioDeveloper: (a)During online

learning; (b)After online learning.

“turn left,” “turn right,” “stop,” “look ahead,” “look
left,” “look right,” etc by speaking to it online while
guiding the robot to perform the corresponding ac-
tion. In the next stage, teaching using language, we
taught the SAIL robot what to do in the correspond-
ing context through verbal commands. For exam-
ple, when we wanted the robot to turn left (a fixed
amount of heading increment), we told it to “turn
left.” When we wanted it to look left (also a fixed
amount of increment), we told it to “look left.” This
way, we did not need to physically touch the robot
during training and used instead much more sophis-
ticated verbal commands. This made training more
efficient and more precise. Fig. 9 shows the SAIL
robot navigating in real-time along the corridors of
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Figure 7: A subset of images used in autonomous navigation problem. The number right below the image shows the

needed heading direction (in degrees) associated with that image.

Table 1: Performance of the SAIL robot in grounded speech learning. After training, the trainer tested the SAIL

robot by guiding it through the second floor of Engineering Building. As SAIL did not have perfect heading alignment,

the human trainer used verbal commands to adjust robot heading during turns and straight navigation. During the

navigation, the arm and eye commands are issued 10 times each at different locations.

Commands Go left Go right Forward Backward Freeze

Correct rate(%) 88.9 89.3 92.8 87.5 88.9

Commands Arm left Arm right Arm up Arm down Hand open

Correct rate(%) 90 90 100 100 90

Commands Hand close See left See right See up See down

Correct rate(%) 80 100 100 100 100

the Engineering Building, at a typical human walk-
ing speed.

4.6 Action chaining

The capability of learning new skills is very
important for an artificial agent to scale up.
We have designed and implemented a hierarchi-
cal developmental learning architecture (Fig. 10),
which enables a robot to develop complex behav-
iors (chained actions) after acquisition of simple
ones (Zhang and Weng, 2002b). The mechanism
that makes this possible is chained secondary con-
ditioning. An action chaining process can be written
mathematically as,
Cc → Cs1 → As1 → Cs2 → As2 ⇒ Cc → As1 → As2

(3)
where Cc is the composite command, Cs1 and Cs2

are commands invoking basic actions As1 and As2,
respectively. → means “followed by”, and ⇒ means
“develops”. The problem here is that Cs1 and Cs2

are missing in the developed stimuli-response asso-
ciation. The major challenge of this work is that
training and testing must be conducted in the same
mode through online real-time interactions between
the robot and the trainer.

In the experiment, upon learning the basic gripper

tip movements (Fig. 11), the SAIL robot learned to
combine individually instructed movements to be a
composite one invoked by a single verbal command
without any reprogramming (Fig. 12). To solve the
problem of missing context in action chaining, we
modeled a primed context as the follow-up sensation
and action of a real context. By backpropagating
the primed context, a real context was able to pre-
dict future contexts, which enabled the agent to re-
act correctly even with some missing contexts. The
learning strategy integrated supervised learning and
reinforcement learning. To handle the “abstraction”
issue in real sensory inputs, a multi-level architecture
was used with the higher level emulating the function
of higher-order cortex in biology in some sense.

5. Value system

A value system of a robot enables the robot to know
what is bad and what is good, and to act for the
good. Without a value system, a robot either does
nothing or does every move mechanically and thus
lacks intelligence. We have designed and imple-
mented a low level value system for the SAIL robot.
The value system integrates the habituation mecha-
nism and reinforcement learning so that the robot’s
responses to certain visual stimuli would change after



Figure 9: SAIL robot navigates autonomously using its autonomously developed visual perceptual behaviors. Four

movies are available at http://www.egr.msu.edu/mars/ to provide more results.

Figure 12: The SAIL robot learned the chained action after verbally instructed by human trainers.
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Figure 10: A hierarchical developmental learning archi-

tecture for action chaining.

interacting with human trainers. For more details,
the reader is referred to another paper in the pro-
ceeding of this workshop (Huang and Weng, 2002).

6. Comparison with others’ work

What is the most basic difference between a tradi-
tional learning algorithm and a developmental algo-
rithm? Autonomous development does require a ca-
pability of learning but it requires something more
fundamental. A developmental algorithm must be

(a) (b) (c) (d)

(e) (f) (g)

Figure 11: Gripper tip trajectories of the SAIL robot.

(a)-(d) are basic actions, each of which starts from the

black dot. (e)-(g) are composite actions chaining some

or all of the basic ones.

able to learn tasks that its programmers do not
know or even cannot predict. This is because a de-
velopmental algorithm, once designed before robot
“birth,” must be able to learn new tasks and new
skills without requiring re-programming. The rep-
resentation of a traditional learning algorithm is de-
signed by humans for a given task but that for a de-
velopmental algorithm must be autonomously gener-
ated. As a working example, humans’ developmental
algorithm enables humans to learn new skills without
a need to change the design of their brain.

However, the motive of developmental robots is
not to make robot more difficult to program, but rel-



atively easier instead. The task nonspecific nature of
a developmental program is a blessing. It relieves
human programmers from the daunting tasks of
programming task-specific visual recognition, speech
recognition, autonomous navigation, object manip-
ulation, etc, for unknown environments. The pro-
gramming task for a developmental algorithm con-
centrates on self-organization schemes, which are
more manageable by human programmers than the
above task-specific programming tasks for unknown
or partially unknown environments.

Designing and implementing a developmental pro-
gram are systematic, clearly understandable using
mathematical tools. Designing a perception program
and its representation in a task-specific way using a
traditional approach, however, is typically very com-
plex, ad hoc, and labor intensive. The resulting sys-
tem tends to be brittle. Design and implementa-
tion of a developmental program are of course not
easy. However, the new developmental approach is
significantly more tractable than the traditional ap-
proaches in programming a perception machine. Fur-
ther, it is applicable to uncontrolled real-world envi-
ronments, the only approach that is capable of doing
this.

Due to its cross-environment capability, the SAIL
robot has demonstrated vision-guided autonomous
navigation capability in both complex outdoor
and indoor environments. The Hierarchical Dis-
criminant Regression (HDR) engine played a cen-
tral role in this success. Although ALVINN at
CMU (Pomerleau, 1989) can in principle be applied
to indoor, however the local minima and loss of mem-
ory problem with artificial intelligence make it very
difficult to work in the complex indoor scenes.

The SAIL robot has successfully developed real-
time, integrated multimodal (vision, audition, touch,
keyboard and via wireless network) human-robot in-
teraction capability, to allow a human operator to
enter different degrees of intervention seamlessly. A
basic reason for achieving this extremely challeng-
ing capability is that the SAIL robot is developed
to associate over tens of thousands of multi-modal
contexts in real-time in a grounded fashion, which is
another central idea of AMD. Some behavior-based
robots such as Cog and Kismet at MIT do online in-
teractions with humans, but they are off-line hand
programmed. They cannot interact with humans
while learning.

The perception-based action chaining allows the
SAIL robot to develop complex perception-action se-
quences (or behaviors) from simple perception-action
sequences (behaviors) through real-time online hu-
man robot interactions, all are done in the same
continuous operational mode. This capability ap-
pears simpler than it really is. The robot must
infer about context in high-dimensional perception

vector space. It generates new internal representa-
tion and uses it for later context prediction, which
is central for scaling up in AMD. David Touresky’s
skinnerbot (Touretzky and Saksida, 1999) does ac-
tion chaining, but it does it through preprogrammed
symbols and thus the robot is not applicable to un-
known environments.

7. Conclusion

For a robot, every action is context dependent, i.e., it
is tightly dependent on the rich information available
in the sensory input and the state. The complexity
of the rules of such context dependence is beyond
human programming, which is one of the fundamen-
tal reasons that traditional ways have been proved
to be extremely difficult to develop robots running
in a typical human environment.

We introduced here a new kind of robots – develop-
mental robots that can develop their mental skills au-
tomatically through real-time interactions with the
environment. Motivated by human mental develop-
ment from infancy to adulthood, the proposed the-
oretical framework have been proved on the SAIL
robot in multiple tasks, from vision-guided naviga-
tion, grounded speech learning, to behavior scale-
up through action chaining, all learned and per-
formed online in real time. The main reason be-
hind this achievement is that the robot does not rely
on human to pre-define representation. The repre-
sentation of the system is automatically generated
through the interaction between the developmental
mechanism and the experience. We believe what we
have achieved is a starting point of the promising new
direction of robotics. While there are yet plenty of
practical questions waiting for us to answer, it opens
a wide range of opportunities for future research.
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