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ABSTRACT

In RoboCup, all objects in the game are color coded to
allow easy segmentation and identification. However,
color vision is very sensitive to the exact color of the
illumination which makes the identification task much
harder than is often anticipated. Algorithms that work
in the lab in fluorescent light may not function at all
in an actual game where incandescent lights are used.
This article is intended as a short tutorial on color vi-
sion and demonstrates a method for retrieving the color
of image patches independently of the color of the illu-
mination. The computational scheme is tested on a set
of images of orange balls on a green background with
varying illumination.

1 INTRODUCTION

To recognize objects in a video image in real time is a
very difficult problem. Even if the objects are known
beforehand and there are plenty of computational re-
sources available, it is not yet possible to solve this
problem. One way to make object recognition tractable
in real time is to color code the objects such that the
color of each object indicates its identity. For example,
in RoboCup the goals are yellow and light blue, the field
is green and the ball is orange. All robots are black with
colored markers identifying each team. This allows the
identity of each object to be recognized as soon as the
color of the object is categorized.

Although color categorization is a much easier task
than full object recognition, it is not as easy as is often
imagined. Variations in the color of the illumination
and the shading of objects will vary the spectral content
of the reflected light considerably. A color recognition
system that works in the lab in fluorescent light does not
necessarily work at a game where incandescent lights
are used.

The current rules leave some lighting parameters un-
specified which can lead to poor performance of many
vision systems. A very exact definition of the lights
that could be used during the games has been proposed
to overcome this problem (Johansson, Rassmus-Gröhn
and Balkenius, 2002).

While it would be possible to device a more strict
control of the illumination in RoboCup, a better solu-
tion would undoubtedly be to make the color vision sys-
tems of the robots more robust and give them color con-
stancy: the ability to recognize colors independently of
the color of the illumination.

The human ability for color constancy is so good
that we are not usually aware of how much effort our
brain must spend before we are able to identify colors
(Palmer, 1999). During a day, the light color temper-
ature changes from 2000K in the morning to 8000K
during mid day — from reddish dawn to bright white
noon. The spectral content also changes when the sun-
light passes through the gases in the atmosphere and
clouds in the sky. Though the human ability for color
constancy is a high level phenomenon that sometimes
even depends on an understanding of the visual scene,
color constancy is also present in relatively primitive
animals such as moths (Kelber, Balkenius and Warrant,
2002) and honeybees (Werner, Menzel and Wehrhahn,
1988). This implies that it should be possible to design
a color constancy system with rather limited computa-
tional resources.

The goal of the present article is to describe a color
constancy system that can be easily implemented in a
robot that solves the color categorization problem in an
environment like the one in RoboCup. Before the sys-
tem can be described, however, we need to consider ex-
actly what color is.
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1.1 WHAT IS COLOR?

While most of us have been taught in school that color
is the wavelength of light, this is only true when we are
talking about the color of a monochromatic light source.
The color of an object is something much more indirect
and intricate (Hardin, 1988).

Let us assume that the scene is illuminated by a light
source with a spectral composition described by I(λ),
where λ ranges over the wavelengths of visible light
(approximately 400-700 nm) and I is the intensity of
the light at each wavelength1. We now need to con-
sider how the illuminated light is transformed when it
is reflected at a surface patch on an object in the scene.
Here, we will make the simplifying (but generally in-
correct) assumption that the surface patch is Lamber-
tian, that is, it looks equally bright independent of the
viewing angle. How the surface patch reflects each
wavelenght of the illuminating light can be described
with the function S(λ). This means that the spectral
content of the light reaching the eye or camera is given
by I(λ)S(λ). However, this spectral composition is gen-
erally not available directly (unless a photospectrometer
is used), but is measured by the a number of photore-
ceptors (in the human eye) or photosensors (in a video
camera).

The photoreceptors of the human eye are tuned ap-
proximately to red, green and blue light (564, 533 and
437 nm, Dowling, 1987). As a consequence, a similar
tuning is also often used in color cameras, for example
650, 530, 470 nm (Kodak, 2002). It is important to real-
ize that the use of red, green and blue has nothing to do
with the nature of light, it is simply a way to reduce the
infinite dimensional spectrum to three measurements in
an arbitrary way that parallels the way our eyes code
colors at the receptor level. Some color cameras use a
different coding internally, which is subsequently con-
verted to an RGB representation.

The reason RGB coding is used on computer screens
is that the three light sources on the screen tap directly
into the three receptor types in our eye. When we see
the same colors on the computer screen as in the real
scene, it is not because they are identical, but a con-
sequence of the limitation of the human color vision
system. Other animals have different and sometimes
even more types of receptors tuned to different wave-
lengths and would not see the same colors in the two
cases. For example, the stomatopod Odontodactylus
scyllarius have more than ten different types of photore-
ceptors tuned to varying wavelengths (Osorio, Marshall
and Cronin, 1997).

The reaction of a photoreceptor or output from a sen-
sor in a camera can be modeled in the following way
(Mausfeld, 1998). Let i be the specific type of sensor
and let Ri(λ) be the spectral sensitivity of the sensor.

1There are several more or less complicated units in which to mea-
sure the intensity of light. We will not discuss them here, but see for
example Ryer (1997).

The output from the sensor qi is described by,

qi =
Z 700nm

400nm
I(λ)Ri(λ)S(λ)dλ.

If i = R,G,B, the above equation converts the spec-
trum of the light that reaches the camera to a three di-
mensional vector 〈qR,qG,qB〉. How does this vector
represent the color or the surface patch? According
to the equation above it doesn’t since the output from
the photosensors depends on the three factors I, S and
R, only one of which is related to the surface patch.
Only in the ideal case when the illumination is perfectly
white, that is when I(λ) = 1, does the camera give an
unique estimation of the color of the surface.

1.2 COLOR CONSTANCY

The main problem of a color vision system is to calcu-
late the vector qi for each element in the camera image
as if I(λ) = 1. If the spectrum I(λ) is known, color con-
stancy can be obtained by dividing the output of each
sensor with its sensitivity to the illumination. Let q′i be
the color coordinates after compensation for the illumi-
nant. The new coordinates are calculated as

q′i = ρiqi

where ρi is the inverse of the response of each receptor
to the illumination, that is,

ρi =

[

Z 700nm

400nm
I(λ)Ri(λ)dλ

]−1

The values ρi are called von Kries coefficients (von
Kries, 1902, Mausfeld, 1998). By multiplying the color
coordinates with these coefficients a partial color con-
stancy is obtained.

There are two main obstacles that makes the above
scheme intractable in practice. First, the spectrum of
the illumination I(λ) is not known. It can only be
sensed indirectly from reflections in surfaces. Second,
only the approximate spectrum is coded by qi.

Clearly the color constancy problem is ill posed and
cannot be solved without making further assumptions
about the scene. Several such assumptions have been
suggested in the literature. They are all based on the
idea that the scene has some property that can be ex-
ploited in the calculation of the correct color.

If it is assumed that the average color of the image is
gray, it is possible to scale the sensitivity of each sen-
sor type until this becomes true. This will result in an
insensitivity to the color of the illumination. This type
of color compensation is often used in automatic white
balancing in video cameras.

Another common assumption is that the brightest
point in the image has the color of the illumination.
This is true when the scene contains specular reflections
which have the property that the illuminating light is re-
flected without being transformed by the surface patch.
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FIGURE 1: The RGB ranges of the orange ball (black) and
the green background (white).

By using this information in a von Kries compensation,
another form of color constancy can be obtained.

Still, another possibility is to calculate the derivative
of the color change over the image since this will dis-
card the illuminant. To get the color back, the brightest
point is used as a reference. This is the approach taken
by the Retinex theory of color vision (Land, 1977).

Although the reaction to white or gray is often used
in color constancy algorithms, it is possible to use
knowledge about the color of any surface in the scene
to correct the others. If we know that the response to a
surface is 〈qR,qG,qB〉 in white light but it is sensed as
〈pR, pG, pB〉 in the changed illumination, the von Kries
coefficients can be estimated as ρi = qi/pi.

Algorithms that are based on any of these assump-
tions work well when their underlying assumption is
valid. When it is not, however, the result can be far
from satisfactory.

1.3 COLOR SPACES

In computer graphics, colors are often represented in
the RGB color space, but many different color spaces
are possible and the solution to many vision problems
depends on the use of an appropriate color representa-
tion.

One problem with the RGB representation of color is
that it mixes the two properties of color and intensity. It
thus makes it hard to distinguish between effects caused
by color and light intensity. For example, looking at
the individual red, green and blue images one can see
shadows and shading in all of them.

Fig. 1 illustrates the problem. Here, the ranges of the
RGB values for an orange ball are plotted next to the
RGB values for the green background. As can be seen,
the two ranges overlap considerably. As a consequence,
it is not a good strategy to use raw RGB values to find
the orange ball in the scene.

The human visual system solves this problem by
transforming the initial RGB-like representation into
a more useful form that separates out lightness from

hue and saturation. Color is coded in two dimensions
ranging from green to red, and yellow to blue, while
lightness is coded in a separate channel (Palmer, 1999,
Roberts, 2002).

It is possible to transform the RGB color coordinates
into a more useful form without too much effort. A
suitable color space is the CIE L*a*b* space that have
been designed to more closely parallel the human visual
system (CIE, 1978). Although it is not perfect, it avoids
many problems of the RGB space.

Given a color coordinate 〈qR,qG,qB〉, it can be trans-
formed into L*a*b* space in the following two steps.
The first step is a linear transformation from RGB space
to the CIE XYZ color space (CIE, 1978):





X
Y
Z



 = M





qR

qG

qB





where,

M =





0.412453 0.35758 0.180423
0.212671 0.71516 0.072169
0.019334 0.119193 0.950227





Then follows a non-linear transformation to the CIE
L*a*b* color space (CIE, 1978):

L∗ =







116( Y
Yn

)1/3 −16 for Y
Yn

> 0.008856

903.3( Y
Yn

) otherwise

a∗ = 500( f (X/Xn)− f (Y/Yn))

b∗= 200( f (Y/Yn)− f (Z/Zn))

where Xn = 0.950456, Yn = 1.000000 and Zn =
1.088754 are the values for the white reference.

f (t) =







t1/3 for t > 0.008856

7.787t + 16
116 otherwise

The L*a*b* representation has a number of useful
properties: First, it separates the effect of lightness and
color. When illuminated with reasonably white light,
the shading of an object will appear almost entirely in
the L* channel while the color will appear in the a* and
b* channels. This allows for independent analysis of
shading and color. Second, under the same conditions,
soft shadows will only appear in the L* channel and
not in the a* and b* channels. This is very useful when
shadows need to be recognized or discarded in the im-
age. Third, the coding of color parallels the opponent
(red–green and yellow–blue) representation used by the
human visual system. Transformations along any of
the two dimensions will thus have predictable results.
Fourth, the color can easily be represented in a polar
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form which allows independent coding of hue ϕ∗ and
saturation σ∗2:

ϕ∗ = arctan
(a∗

b∗

)

σ∗ =
√

(a∗)2 +(b∗)2

2 COLOR BASED SEGMENTATION

In this section, we describe an algorithm that can be
used to segment a scene based on object color. The al-
gorithm takes as input a single RGB image, with each
pixel described by a vector 〈qR,qG,qB〉, together with a
region R of known color and produces a hue-estimation
ϕ∗ for each differently colored region in the image
(Fig. 2). The algorithm proceeds in the following steps:

Estimation of von Kries coefficients. The first step
is to estimate the von Kries coefficients as described
in section 1.2. To do this we need to know the sen-
sor responses to a certain reference color in a reference
illumination. The reference color is often chosen as
white. The reference illumination should preferably be
approximately a black body radiator such as the sun or
an incandescent light.

The von Kries coefficients 〈ρR,ρG,ρB〉 are set to the
responses to the reference color in the reference image
divided by the responses to the reference color in the
current image. Since the illumination can be assumed
to change slowly, it is not necessary to have a region of
known color in every image. Instead, the von Kries co-
efficients can be estimated at regular intervals or when
a region of known color is present in the image.

RGB Correction. In the second step, the von Kries
coefficients are used to scale the initial RGB values
for each pixel as describes in section 1.2 to the vector
〈q′R,q′G,q′B〉 = 〈ρRqR,ρGqG,ρBqB〉.

Conversion to L*a*b* Coordinates. When the RGB
coordinates have been scaled, the color coordinates are
transformed into L*a*b* color space as described in
section 1.3. Since lightness is not used, each pixel is
now represented by two values 〈a∗,b∗〉.

Contour Extraction. Before the average colors of
the different objects in the scene can be calculated, it
is necessary to find the borders between differently col-
ored areas. This is done using a contour algorithm that
works independently in the a* and b* spaces.

Since we are interested in contours between different
colors, we do not use the lightness channel. This avoids

2Beware that arctan only works in one quadrant. In a C program,
use atan2(a, b), rather than atan(a/b), to get the correct result in all
quadrants.

many problems associated with finding real contours in
the lightness channel. For example, artificial contours
will not be introduced around most diffuse shadows.

Several contour algorithms have been proposed that
can be used in this stage of the algorithm, for exam-
ple by Grossberg and Mingolla (1985) and von der
Heydt (1995). Here, we use the algorithm described
by Månsson (2000). These algorithms have the prop-
erty that they do not only find edges in the scene, but
also extend them to continuous contours. This con-
trasts with the much used Canny edge detector which
does not introduce edge elements without some support
in the image (Canny, 1986). When contours have been
found in the a* and b* channels they are merged into a
single contour representation.

Color Averaging. When we know the borders of the
elements in the image, the color coordinates 〈a∗,b∗〉 for
all pixels in each area are averaged to give one estimate
〈a∗,b∗〉 per region.

Hue Estimation. In the final stage, the hue ϕ∗ of each
region is calculated from the a∗ and b∗ values (See sec-
tion 1.3).

3 MATERIALS AND METHODS

The algorithm above was tested on a number of im-
ages. A scene was arranged with an orange Ping-Pong
ball on a green paper surface similar to the ones used in
RoboCup. In addition, a white paper patch was placed
in the scene as reference. The scene was lit by a halo-
gen lamp as the only light source. The light was filtered
using different color filters (Rosco, Supergel) to sim-
ulate the effect of varying illumination. The different
filters are listed in Table 1. The effect on the illumina-
tion using these filters is much larger than what can be
expected at the RoboCup games. The very colored illu-
minations were used to test the limits of the algorithm
rather than to simulate natural variations in illumina-
tion.

Images were taken with a digital Canon IXUS V
camera at 1600× 1200 resolution. The images were
scaled to a resolution of 160× 120 pixels and aligned
in Adobe Photoshop. This allowed the same pre-
calculated segmentation of all images to be used for
validation of the color constancy algorithm.

The color of the ball in each image was categorized
by a human observer in three categories (Table 1): or-
ange (*), different from the background (+), or same as
the background (–).

We calculated von Kries coefficients based on either
a known white region in the image or the green back-
ground.
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a* b*

a* contoursa*+b* contours b* contours

a* areahue angle b* area

FIGURE 2: Stages of the color processing algorithm. R, G, and B are the original image. R’ G’ and B’ are the channels after
von Kries compensation. The a* and b* images shows the red-green and yellow-blue channels. The next row shows the contours
in the a* and b* channels and their combination. The bottom row shows the a* and b* values assigned to each area and the
final hue angle ϕ∗ assigned to each area. (The contours are here included in the areas.)
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TABLE 1: Overview of the images used in the experiment.
Rosco Supergel filter numbers and the colors of the illumina-
tion. The human color categorization of the images is given
in the column H, and the performance of the algorithm in col-
umn A: colors are identified as orange and green (*), colors
are identified as different (+), no color difference can be seen
(–).

Image Filter Color H A

1 - None * *
2 01 Light Bastard Amber * *
3 05 Rose Tint * *
4 11 Light Straw * *
5 26 Light Red –
6 27 Medium Red –
7 46 Magenta –
8 52 Light Lavender * *
9 66 Cool Blue *

10 80 Primary Blue +
11 382 Kongo Blue +
12 388 Gaslight Green *
13 389 Chroma Green +
14 90 Dark Yellow Green +
15 96 Lime * *
16 120 Red Diffusion –
17 122 Green Diffusion –
18 127 Amber Cyc Silk –

TABLE 2: Standard deviation for the normalized RGB val-
ues compared to the normalized L*a*b* angles for images
marked with * in Table 1.

Reference R G B ϕ∗
None 0.081 0.136 0.098 0.0199
White 0.045 0.040 0.083 0.0044
Green 0.071 0.028 0.057 0.0069

4 RESULTS

In Table 2, the standard deviations of the RGB values
of the ball are shown in the initial images and after
RGB correction using either white or green as refer-
ence. These values are compared to the hue angles ϕ∗
before and after color correction.

The table shows that the standard deviation of the
RGB values decreases as an effect of the RGB color
correction. However, the main effect results from mov-
ing from RGB coordinates to L*a*b* coordinates. For
this transformation, the standard deviation is much re-
duced in all cases. The best result is obtained when the
RGB correction with white reference is followed by a
transformation to L*a*b* space.

Fig. 3 shows the hue angles before and after compen-
sation for the correctly identified images with white or
green as reference color. The graph shows how the hue
of the ball is moved toward the actual color. As could
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FIGURE 3: Top: The performance for the algorithm for the
correctly classified images using the white reference patch.
Bottom: The performance for the same images but with green
as the reference color. Diamonds: before color correction.
Square: after color correction.

be expected, the result is better for the white reference
than for the green, but the effect is clearly seen in both
cases.

For the majority of the images in which the human
eye can identify the colors, the algorithm correctly clas-
sifies the color of the ball. In the other two cases, the
von Kries adaptation overcompensates the hue angle.
These images were taken in a very saturated illumina-
tion.

5 DISCUSSION

The proposed method is able to restore the colors in
images under varying illumination. The performance
is comparable to that of a human observer but fails
in a few cases where humans can identify the colors.
However, the illuminations used for the test images
had a much larger variation than the illumination in
RoboCup.

The success of the method depends on three process-
ing stages: RGB correction, area averaging, and coding
in L*a*b* coordinates. Of these three stages, the main
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effect comes from transforming the image into L*a*b*
space, but the other stages also contribute.

The method works best with the white reference
patch since it reflects more of the illumination. This
will make the estimation of the von Kries coefficients
more accurate. The green surface reflects very little
in the red region of the spectrum which makes the von
Kries coefficient for the red channel less reliable.

The color of the illumination combined with the
color of the reference patch also influences the perfor-
mance of the algorithm. For example, when the illumi-
nation is greenish, the color of the background will not
change as much as the color of the orange ball. This
will make the color correction for the ball inaccurate
when the green is used as reference.

In simulation with infinitely narrow tuning of the sen-
sors, the algorithm works perfectly. Since, the response
curves for the sensors in the camera differs consider-
ably between manufacturers, the performance of the al-
gorithm is likely to depend on the camera used.

In the images where the algorithm identified that the
colors of the ball and background are different, but does
not restore these colors correctly, the method overcom-
pensates for the illumination. It appears likely that this
overcompensation can be reduced by including addi-
tional knowledge of the sensor tuning in the algorithm.

In principle, the algorithm is able to identify the color
of shadows and merge them with the background. How-
ever, in the test images, the shadows were almost com-
pletely black and could thus not be identified as parts of
the green background.

With the illuminations used, the required range for
the orange color category is less than ten degrees. This
would allow 36 different colors to be used for object
identification. When less colored light is expected, even
more categories could be used. This is substantially
more than the number of colors used in RoboCup to-
day.
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