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1. Introduction

Historically, a lot of authors in psychology and in
robotics tend to separate “true imitation” and its
related high-level mechanisms which seem to be ex-
clusive to human adult, from low-level imitations or
“mimicries” observed on babies or primates. Closely,
classical researches suppose that an imitative ar-
tificial system must be able to build a model of
the demonstrator’s geometry, in order to reproduce
finely the movements on each joints. Conversely, we
will advocate that if imitation is viewed as a part of a
developmental course, then (1) an artificial develop-
ing system does not need to build any internal model
of the other, to perform real-time and low-level imi-
tations of human movements despite the related cor-
respondence problem between man and robot and,
(2) a simple sensory-motor loop could be at the basis
of multiples heterogeneous imitative behaviors often
explained in the literature by different models.

2. Architecture

The robot system is a Koala mobile platform
equipped with one pan-tilt CCD camera and a 3 de-
grees of freedom (DOF) Katana arm. The arm can
pivot around its base (θ1), and the other two joints
allow the arm to rotate in a vertical plane (θ2,θ3).
With such a system, the control of the arm from the
sole visual information is an ill posed problem, since
the 3-D position of a target cannot be completely de-
fined from the sole 2-D visual information. To solve
this problem, our architecture has to learn the as-
sociations between vision and proprioception infor-
mation about the end point of its arm. The neural
network architecture is designed as an homeostatic

perception-action control loop. The system tend to
maintain the equilibrium between its visual and pro-
prioceptive information. If a difference is perceived,
then the system tries to act in order to reach an
equilibrium state. Inspired from the self-organizing
properties of the Kohonen net, our architecture relies
on two principles. First, our solution to the end point
positioning problem is inspired by the micro-columns
of the brain: A sensory-motor map which consists
in a 2-D arrangement of neural functional units, the
clusters. Each cluster learns many (proprioceptive)-
to-one (visual) associations (Fig. 1), in the manner
of a small Kohonen net. Second, instead of control-

ling the movements in the motor space (matching or
comparing motor position of the joints), our solu-
tion is to control the movements in the visual space.
Therefore, the positioning (or further and more com-
plex tasks) of the end point will be dependent of the
2-D visual space instead of the joint space. This
choice limits the complexity of the computations re-
lated to the arm, to the visual space. The topology
of the map is the same as the visual map (movement
detection on the visual CCD flow), and each cluster
associates a single connection from one neuron of the
visual map with multiple connections from the arm’s
proprioception. Movements can then be computed
in the visual space and benefits from the intrinsic
properties of fields of neurons used for motor con-
trol (Amari, 1977). The activity of the neural field
is used for a speed control of devices. The advantage
of the speed control relies in its intrinsic stability.
A spatial derivative of the field is performed. The
value of the derivative at the position associated to
the joint proprioception is used to set the joint speed
rotation. Hence, the joint will rotate in the direc-
tion of the nearest local maximum of the neural field
activity and not in the direction of the global maxi-
mum. Lateral interaction will allow the most active
goals to override/inhibit the smaller activity bubbles
and will induce smooth joint movements from one
goal to the next one.

3. Exploiting imitation to learn se-

quence of movements

During the learning phase, random arm and head
movements allow the robot to progressively learn the
visuo-motor associations about its end point posi-
tion. Then, if an experimenter comes and start to
move its hand in front of the robot camera, it will
generate new perceptive information that the robot
will mistake for the position of its own mechanical
arm (perception ambiguity). Because the robot acts
as an homeostat, it will tend to reduce the perceptive
error by moving its end point with the same dynamic
as the experimenter’s hand. It will then perform low-
level imitative behaviors, and reproduce a wide va-
riety of simple arm movements (for example simple
vertical and horizontal movements). Moreover, com-
plete trajectories of the demonstrator arm can be
learned in a simple way thanks to the choice of rep-
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Figure 1: The neural network controller for arm movements (simplified architecture). This controller learns visuo-motor

associations about the end point position of the arm. Learning is made by the sensory-motor map of clusters. The activity of one

neuron of the visual map will trigger the learning of the corresponding cluster of the sensory-motor map (one-to-one links,US). The
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resenting proprioception in the visual space of the
robot. To do this we use a modular “sequence learn-
ing” neural network (inspired form the cerebellum
and hippocampus properties (Banquet et al., 1998))
able to perform a one-shot learning and prediction
of sequence of items. The trajectory is coded as a
sequence of attractors triggered on the neural field.
The resulting activity is directly available as a speed
command for any device of the system, and can be
used to control even devices that where not involved
in the learning process.

4. Discussion

If our architecture is already able to exhibit imita-
tive behaviors of different levels of complexity, we
believe that it can also be in further works a good
model for more heterogeneous and apparently com-
plex imitative behaviors. We assume that the cod-
ing and representation of motor action in the visual
space, which allow the independence of the device ex-
ecuting an action, can also represent the core princi-
ple of a perception-action model unifying immediate
and deferred imitation. Traditional studies in psy-
chology often separated immediate imitation of the
baby (a ”mimic” exhibited during the first month of
life) from apparently more complex deferred imita-
tion. Deferred imitation consists in the reproduction
of a previously observed action in different spatio-
temporal modalities from the observation. Indeed,
we showed that our architecture is able to learn a
succession of movements whatever the robotic device
is. For example, a trajectory could be learned only
by using the movements of the head, the tracking ac-
tivity inducing a sequence of internal attractors on
the NF activity. Because the internal representation
of the trajectory is not anchored in the visual envi-

ronment, and because our system does not need any
information about the demonstrator, such a robot is
not dependent of the spatial modality of the demon-
stration. It can reproduce the trajectory anywhere.
If we now suppose that our system possesses an inhi-
bition mechanism allowing to freeze/free the move-
ments of its arm, our robot would be no more de-
pendent from the temporal modality. It would be
able to reproduce the trajectory at any time after
the observation. It could therefore learn a trajec-
tory using only the movement of its eye or head in
the visual space, and then reproduce it with its arm,
performing what could be called a ”deferred imita-
tion” of the trajectory. From a theoretical point of
view, the architecture could represent the first step
of a sensory-motor model unifying two imitative be-
haviors often viewed as separated. Obviously, our
objective is not to add an ad-hoc inhibition mecha-
nism, but to study how an inhibition loop could be
learned to control the action selection from the de-
velopment of the architecture. This perspective im-
poses to restart the whole development process with
consideration of the loop constituted of the imitators
and the imitated agents and the turn-taking related
issue.
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