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Abstract

The Double Cone Model (DCM) is a model
of how the brain transforms sensory input to
motor commands through successive stages of
data compression and expansion. We have
tested a subset of the DCM on speech recog-
nition, production and imitation. The experi-
ments show that the DCM is a good candidate
for an artificial speech processing system that
can develop autonomously. We show that the
DCM can learn a repertoire of speech sounds
by listening to speech input. It is also able to
link the individual elements of speech to se-
quences that can be recognized or reproduced,
thus allowing the system to imitate spoken
language.

1. Introduction

A robot that gradually develops through interaction
with humans can not be built with a limited fixed
vocabulary or a fixed mode of articulation. An open
ended system should have the ability to learn both
the pronunciation and the use of new words in the ap-
propriate linguistic and conceptual context through
interaction with a human caregiver (Varshavskaya,
2002). In addition, it should use speech to commu-
nicate emotions (Breazeal, 2001, Murray and Arnott,
1993).

Learning to produce and recognize speech sounds
can be done through imitation (Doupe and Kuhl,
1999). This imitation can be either externally or
internally controlled. When the imitation is inter-
nally controlled, the robot attempts to imitate its
own speech sounds. An example would be bab-
bling where the machine produces a sound at ran-
dom that is subsequently recognized by its auditory
system. As a consequence, it attempts to produce
that sound again through its speech organ. This will
result in several repetitions of the same or similar
speech sounds. This is a form of circular reaction
as described by Piaget (1950) which results in self-
imitation.

When the imitation is externally controlled, the
speech sounds of the human caregiver are recognized

by the robot which attempts to reproduce those
sounds. This repetition can either result in the di-
rect imitation of an individual phoneme or in longer
sequences of speech. The complexity of this imita-
tion will depend on how advanced methods are used
for temporal prediction and sequence processing.

The learning depends on two types of associations.
On one hand, the auditory input must be associated
with the appropriate commands to the speech sys-
tem, and on the other, the robot must have the abil-
ity to recognize and produce sequences of sounds.

The goal of our research is to design a (biologically
inspired) speech imitator based on the Double Cone
Model (Breidegard, 2000). The speech imitator is
modelled as an executable computer program with
interaction and auditive and visual feedback. The
program receives real-time sound input and produces
real-time sound output.

There are several aims of this research. The first
is to imitate child language acquisition. We want to
investigate how the ability to understand and pro-
duce speech sounds can develop without initially as-
suming such an ability. This approach can be con-
trasted with the work of de Boer (2000) and Oudeyer
(2002), for example, where the goal is to understand
the emergence of the phonetic system itself.

A second goal is to simulate impairments in lan-
guage acquisition many of which relates to phono-
logical processing (Tallal, et al. 1998). In the fu-
ture, we hope to compare results from the computer
model with the developing child by introducing le-
sions and other disturbances in the model. As a re-
sult, we hope it will be possible to design help and
pedagogical methods for children with speech learn-
ing impairments. By modeling the different types
of aphasia we hope to make conclusions about new
methods for pedagogy and training of patients with
aphasia.

The third goal is to develop a novel type of system
for speech recognition and synthesis based on biologi-
cal principles. Current speech synthesis methods still
require further development before they reach the
intelligibility of human speech (Venkatagiri, 2003).
The speech recognition systems that are available
are even more limited. By letting the system de-
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Figure 1: The Double Cone Model

velop its own speech representation based on its own
motor output, we believe it will be possible to design
a more successful speech recognition and synthesis
system than the current state-of-the-art.

Below we describe the Double Cone Model and
shows how it can model the phonological loop in im-
itation. The goal is to test the basic assumption that
the model can learn to imitate speech sequences. We
also discuss how the system will be extended in the
future to a more complete model of vocal learning.

2. The Double Cone Model

The Double Cone Model (DCM) is a computational
model of the human brain (Fig. 1). It is based on
two data processing cones that are intended to model
the functional role of a number of hierarchically or-
ganized cortical regions (Breidegard, 2000).

The input cone performs hierarchical data reduc-
tion (lossy compression). The role of the input cone
is to reduce the high data rate of the incoming sen-
sory signals. This task is performed in parallel in
different parts of the input cone.

The hierarchical processing allows complex sen-
sory programs to be constructed. It also allows for
sensory fusion between different modalities such as
vision and hearing. The mechanisms can also be
used to integrate several sensory codes within the
same modality such as several visual submodalities
or somatosensory codes for body posture and gaze
direction. The highest level of cognitive processing
occurs where the tops of the cones meet halfway be-
tween input and output where the data rate is the
lowest.

The output cone operates in the reverse way. It
expands the signals from the input cone to generate
parallel muscle control signals with a high data rate.
The expansion occurs both in time and space as the
output cone will both extend the number of parallel
signals and the bandwidth of each signal. This even-
tually results in the formation of motor programs in
the output cone.

Processing in the Double Cone Model is similar
to the perception-action cycle described by Fuster
(1995) where the input cone corresponds to the sen-
sory hierarchy and the output cone corresponds to
the motor hierarchy (See also Grossberg, 1986).

The main feedback loop is via the T-selector. A
control signal Inner/Outer determines the propor-
tions between sensory data from the outer world and
mental data from the inner world. This makes it pos-
sible for the model to be driven either by external or
internal perceptions. This also introduces the possi-
bility of performing inner simulations before making
movements in the external world. These inner simu-
lations may be the origin of thought (Hesslow, 2002).

Both the input and output cones consist of Se-
quential Self-Organizing Maps (SSOM), which are
intended as models of the cortical feature maps found
in the human brain (Gazzaniga, Ivry and Man-
gun, 2002). The SOM architecture has previously
been shown to map the phonetic space on a two-
dimensional surface through a self-organizing process
(Kohonen, 1988). The SSOM is an extension of the
original SOM architecture (Kohonen, 1997) that has
been enhanced with a capability to link SOM ele-
ments into unique sequences (Fig. 2). In the output
cone, the function of the linking mechanism together
with the SOM categories are similar to the avalanche
network proposed by Grossberg (1986).

First, the SOM is trained until all the SOM ele-
ments become specialists on different regions of the
input space, e.g. it may develop partitions for the
different vowels in a speech signal. In this case, each
node in the SOM corresponds to a snapshot of the
sound spectrum. Second, the SSOM is trained to
recognize (or generate) small sequences of those fea-
tures, e.g. the syllables of speech. These sequences
are constructed by chaining those SOM elements
that best match the sequential features in the in-
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Figure 3: The Phonological Loop is the auditive subset
of the Double Cone Model. The ear (cochlea) is mod-
elled by a microphone and Fourier Transform which gives
the spectral components of each time sample (snapshots).
The speech organ is modelled by a dynamic muscle model
that is used to set the parameters for a Klatt synthesizer
which generates the speech signal to the loudspeaker. Here
the input cone and the output cone consist of one SSOM
each.

put signal. Once a sequence has been learned, it can
be triggered by a part of the sequence in the input
code and then produced automatically in the output
cone.

3. Modeling the Phonological Loop

Our goal is to apply the Double Cone Model to the
phonological loop (See Gazzaniga, Ivry and Mangun,
2002). The system that is currently being imple-
mented is shown in (Fig. 3).

To model the auditory input we use the Fast
Fourier Transform (FFT) and filtering in space and
time as a simple model of the cochlea. This is cer-
tainly a simplification compared to the more ad-
vanced cochlear models that have been suggested
(Roberts, 2002, Nobili, Mammano and Ashmore,
1998), but has the important advantage that it can
be run in real time. The output from the FFT pre-
processing are time samples, or snapshots, of the in-
coming speech signal. These snapshots are subse-
quently learned by the nodes of the input SOM.

In the final implementation, the output SSOM
will be connected to a model of a muscle controlled
speech organ. This speech organ consists of three
parts:

• A dynamic muscle model that adds physical and
timing constraints similar to the human speech
organ.

• An interpolation model that calculates the large
number of parameters needed to control the Klatt
synthesizer based on a number of calibration
points for speech sounds (e.g. vowels).

• The Klatt synthesizer which produces the sound
fed to the loudspeaker.

The output SSOM will learn the possible patterns
of muscle activations through feedback from the mus-
cle model about the actual movement made. That is,
even when the SSOM is initially producing noise as
output, the muscle model will transform that noise
into a physically possible articulation which will be
learned by the output SSOM. It will thus gradually
be tuned to the muscle model.

In the simulations described below, this speech or-
gan was not used since we wanted to investigate how
well the model could imitate speech independently of
the model of the speech organ. In this implementa-
tion, the same spectrum snapshots are used by both
the input SSOM and the output SSOM. It was thus
possible to use a single SSOM for both input and
output (Fig. 4).

4. Materials and Methods

The phonological loop in the Double Cone Model has
been implemented as a computer program. A stan-



dard PC with sound card, a microphone and loud-
speaker was used to run the model. The program
was developed using Microsoft Visual C++.

The real-time simulator is highly interactive with
auditive and visual feedback and allows easy explo-
ration of the different codings in the double cone.
By clicking SOM elements with the computer mouse
(i. e. computerized Penfield probing) it is possible
to visualize and hear the SOM elements constituting
different SSOM sequences. When a SOM element is
clicked, it triggers the imitation and starts the sound
output. Depending on which SOM element is clicked,
the part of the speech starting with this SOM ele-
ment is heard. The first element in the sequence is
highlighted with a special color and by clicking on it,
the whole sequence will be produced.

In the experiments described below we used the
simplest possible Double Cone Model where the in-
put cone and the output cone consist of the same
SSOM (Fig. 4). This is possible due to the choice
of data representation. The input data represen-
tation from the ‘cochlea’ are the spectral compo-
nents obtained by the Fourier transform (FFT). Con-
sequently, each SOM element becomes a specialist
on some aspect of the speech signal and a sequence
of SOM elements represent some perceived speech.
This sequence also constitutes a motor program. The
same sequence of SOM elements are used both to
recognize a speech sequence and to produce that se-
quence by feeding the Fourier spectrum coefficients
for each node to the speech organ. In this initial im-
plementation, the speech organ was modeled as the
Inverse Fast Fourier Transform (IFFT). This con-
verts the speech data to a time-domain signal that
drives the loudspeaker. In the current implementa-
tion, each sequence of input features allocates unique
SOM elements. These SOM elements can thus not
be used in other chains. This implementation has the
advantage that it is easy to understand and control
but has the limitation that the memory for sequences
will eventually be used up unless older sequences are
removed or forgotten.

The length of the Fourier transform is 512 and
each snapshot is the mean of a time slot of 46.4 ms.
The output sound, the imitated speech, is obtained
by concatenating snapshots to an auditive sequence.
All processing takes place in real time.

5. Experiment 1

In the first experiment we tested the ability of the
model to imitate speech without first being trained
on any speech. All SSOM elements were randomly
initialized and there were no sequences in the SSOM.
Since the model had never heard any speech sounds,
the SSOM showed no form of partitioning or spatial
ordering – all SOM elements are specialists on dif-
ferent random aspects of the input signal. This cor-
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Figure 4: The simplified Double Cone Model. The in-
put cone and the output cone are the same SSOM. This is
possible due to the choice of data representation: both in-
put and output data are spectral components. The speech
organ here consists of an Inverse Fourier Transform driv-
ing the loudspeaker.

responds to a developmental stage where the child
has not yet learned to recognize speech sounds or to
produce any sound of its own.

Imitation was tested by giving spoken sentences as
input. Interestingly, this immature machine is able
to learn to imitate speech in a reproducible way, but
a human listener is not able to understand the imi-
tation. When exposed to speech sounds, the model
will allocate best-fit SOM elements and create a se-
quence. When the imitation starts the machine will
‘say’ the sequence of SOM element features as an
auditive sentence. Although we will not hear any
intelligible speech, the length of imitation is exactly
the same as the original speech.

6. Experiment 2

In the next experiment, the double cone was trained
on speech input in two ways. With training 1, three
Swedish sentences were repeated for 50 minutes while
the SSOM was in learning mode. During this time,
each sentence was presented to the system 500 times.
With training 2, the system listened to a chapter
from an Astrid Lindgren book for 50 minutes. With
this training, the material was not repeated. The
ability of the system to repeat the three sentences
used in training 1 as well as its ability to generalize
to a new sentence was subsequently tested with the
two types of training.

After the 50 minute training, the SSOM elements
developed sensitivity to the different features in the
speech input (Fig. 5). The thick grid of lines in-



Figure 5: The SSOM has been trained with three
Swedish sentences. The SSOM shows some organization.

Figure 6: The SSOM has learnt to imitate the three
Swedish sentences. The white and light gray elements
are the allocated SOM elements for these sentences. The
white elements are the sequence “Jag är hungrig” (“I am
hungry” in Swedish). By probing other SOM elements,
the other sentences are imitated.

dicates by thickness the distance between neighbor-
ing SOM elements. With thinner lines between the
nodes, the neighboring SOM elements detect similar
features in the speech signal. Probing different SOM
elements with the mouse give sounds which bare a
resemblance to speech sounds and not only noise as
in the first experiment.

The machine is now prepared to learn speech se-
quences – the mature model can recognize and im-
itate speech snapshots. Fig. 6 shows the allocated
SOM elements for the three Swedish sentences. The
highlighted elements are the allocated SOM ele-
ments. The white elements are included in the se-
quence “I am hungry” in Swedish. By probing other
SOM elements, the other sentences are imitated. The
sonogram (speech spectrogram) in Fig. 7 shows the
third sentence: “The square root of nine is three” (in
Swedish).

The imitation of the three sentences used in train-
ing 1 was tested after training 1 and 2. Regardless
of the material used during training, the imitation
of the three sentences could easily be recognized (if
the sentences were already known), but as expected,
the system trained on these sentences (training 1)
performed better than the system trained on a book
chapter (training 2). This was particularly the case

Figure 7: The sonogram (speech spectrogram) for the
sentence: “Roten ur nio är tre” (“The square root of
nine is three” in Swedish).

Figure 8: The SSOM was trained with the C major
scale of sine tones. The SSOM shows a very specialized
SOM organization with eight partitions – one for each
tone in the scale. Most SOM elements within a partition
are very similar (due to the lack of variation in the rigid
sine tones).

in the high frequency regions.

In addition, we tested the ability of the model to
reproduce a new sentence not present in either train-
ing condition (“Today I’m really happy” in Swedish).
Now the imitation was much better when the model
was trained with the more variable material (train-
ing 2) than when trained on only three sentences
(training 1). This shows that although much repe-
tition improves performance on the trained speech
sequences, better generalization is obtained with a
more natural and varied training material. Interest-
ingly, the prosody of the novel sentence is imitated
in both conditions although the one trained with the
story (training 2) performs better.

7. Experiment 3

In experiment 3, the machine had never heard any
speech sounds. It had only heard a C major scale
of sine tones. It was fully capable of imitating the
Swedish sentences, but the imitation was now a cas-
cade of flute-like tones. Fig. 8 shows a very spe-
cialized SOM organization with eight partitions and
most SOM elements within a partition are very sim-
ilar (due to no variation in the rigid sine tones).
Training on piano tones would also have shown eight
partitions, but they would not have been so distinct



Figure 9: The SSOM has been trained with with a
Chopin piano piece. The imitation is not very speech-like
– it is more piano-like. But sounds reminding of speech
can actually be heard.

since the spectral complexity and time variation of
the tones are higher.

8. Experiment 4

In the final experiment, we tested the ability of the
model to use a more complex auditory material to
produce speech. The machine was nurtured with a
Chopin piano piece repeted many times. Here the
imitation is of course not very speech-like – it is more
piano-like, but some sounds resembling speech can
actually be heard. Fig. 9 shows the SOM organi-
zation resulting from repeated listening to a Chopin
piano piece. This illustrates that the model is able to
use whatever training it has received in an attempt
to reproduce speech.

9. Discussion

The Double Cone Model is a model of how informa-
tion is processed in the brain from sensory organs
to motor output. The model was applied to speech
processing and it was shown that it is able to reduce
the continuous speech input to a sequence of speech
categories that can be recognized and reproduced.

Comparing the results of experiment 1 and 2 shows
that initial training on speech signals is necessary
to produce intelligible speech output. In the lan-
guage acquisition literature, it has often been sug-
gested that humans must be born with an innate
ability to recognize and produce the sounds of hu-
man languages (Gibson and Spelke, 1983). Although
this may be the case, it is also possible that the
sound of the mother’s voice has been learned prior
to birth, but as in the model, some tuning toward
speech sounds is necessary before recognizable speech
can be produced. It has been suggested that infants
are initially sensitive to all the speech sounds of the
world but gradually tune in to the sounds of their
specific language (Werker and Tees, 1999).

Experiments 3 and 4 show that the model is able to
make use of whatever sound it has been trained on to

attempt to produce speech. The categories formed
in the input cone are templates that are matched
to a spectral representation of the incoming speech.
It was recently shown that template based meth-
ods can be as good as a human listener in recogniz-
ing speech sounds (Hillenbrand and Houde, 2003).
When trained on sinusoidal tones or piano music it
will attempt to use those sounds to imitate human
speech. This result is relevant to the difficulties most
of us face in learning a second language. Instead of
adapting our speech to the new language, the sounds
learned from our first language are used but in new
combinations.

Although the model is able to imitate speech, there
are two main limitations. The first is that the se-
quence mechanism added to the original SOM model
is too simple for a larger amount of speech material.
In the current version of the model, each SOM ele-
ment can only be included in a single sequence. This
was sufficient for the experiments performed, but this
mechanism must be extended in the future with con-
textual control of the learned sequences (Grossberg,
1986, Balkenius and Morén, 2000).

The second limitation is the speech synthesis part.
The use of the inverse Fourier transform made it
easy to investigate the model, but did not produce
very good speech. The main reason for this is that
the sequence of spectra produced were not smoothly
joined which resulted in audible clicks between the
segments. Although it would be possible to overcome
this limitation, we have instead aimed at a more in-
teresting solution. We are now developing a muscle
controlled speech organ – a virtual tongue. The back-
end speech synthesizer is the Klatt formant synthe-
sizer (Klatt, 1980). It is controlled by 40 indepen-
dent parameters that should be updated at least each
5th ms. In this type of synthesizer a wide-spectrum
excitation signal, that can be voiced with a funda-
mental frequency or unvoiced noise, excites a set of
resonators (formants). These formants reflect the
resonators created within the human speech organ
and its parameters (e.g. center frequency) vary with
the tongue position, openness of the mouth and so
on (Ladefoged 1962, 2001). Although the intelligibil-
ity of this type of formant synthesis is not as good as
methods based on concatenation of speech segments
(Venkatagiri, 2003), it allows for much easier mod-
ulation of prosody and emotional content (Carlson,
1991, Braezeal, 2001).

The imitatation will be performed by a Double
Cone Model consisting of one sensory SSOM and
one motor SSOM controlling the speech organ (See
Fig. 3). In this extended model, it will be necessary
for the model to convert between a sensory and a mo-
tor code thus producing a more realistic phonological
loop (cf Morasso, Sanguineti and Frisone, 2001). The
model will be trained by letting it listen to its own
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Figure 10: The tongue position diagram for the virtual
tongue. The numbers represent the frequency of the third
formant.

spontaneously produced speech sounds and tune it
to perceived speech (cf. Holmes and Pearce, 1990).

We will introduce constraints on the 40 param-
eters that will produce human speech sounds and
hopefully babbling when set randomly (Stevens and
Bickley, 1991). With all 40 parameters, most set-
tings do not produce speech sounds. A muscular
interface (the dynamic muscle model) will be placed
in front of the Klatt synthesizer to obtain a speech
organ with physical and timing constraints similar
to the human speech organ. Among the parame-
ters are tongue positions: front-back, high-low and
in our model they approximately represent the first
two formants F1 and F2. Other important param-
eters are the amplitudes, frequency and proportions
of the voiced/unvoiced source. This approach agrees
with the view that the phonemes of natural lan-
guages are based on simple (and possibly binary) mo-
tor parameters (Chomsky and Halle, 1968, Stevens,
2002), though the innateness of such features has
been questioned (Oudeyer, 2002).

The third formant, F3, is important for speech in-
telligibility, but we have found no simple and obvi-
ous way to control it programmatically. Also higher
formants, and the relative amplitudes and the band-
widths for the formants are important to increase
speech quality. We have chosen to interpolate them
from tongue position. This is obtained by calibrat-
ing the tongue position diagram (Fig. 10) with these
values for all vowels (and also for many consonants).
For example, if we move the tongue from the sound
I to E, F3 is interpolated from their calibrated val-
ues. This interpolation will expand the few, and con-
strained, outputs from the dynamic muscle model to
the many parameters that control the final sound-
producing Klatt synthesizer. This idea is related to
the suggestion that speech sounds can be coded in
terms of acoustic landmarks (Stevens, 2002).

Our hope is that this speech organ will be of high

quality, if we succeed in controlling it accurately. A
main problem with formant synthesizers is to con-
trol the parameters well and sufficiently often. Our
challenge will be to get the motor SSOM to produce
appropriate muscle control signals by learning this
through imitation (and more imitation to improve
the motor programs).

We have tested the virtual tongue by interactive
control of the parameters. Trimming this control
has shown that intelligibility is much increased. The
parameters we programmatically control are: fun-
damental frequency, amplitude and proportions of
voiced/unvoiced source, tongue position, nasal for-
mant, speech segment time and interpolation time.

With zero interpolation time, the tongue is indefi-
nitely fast and the sound is not very good. By requir-
ing a time to move from one position to another, the
quality increases. A distinctness in the speech ap-
pears. We obtain coarticulation and have also been
able to produce Swedish diphthongs and triphthongs.
By controlling the glottis frequency, F0, over a word
we have also increased its intelligibility. This im-
plies that better control can yield very good speech
quality with the Klatt synthesizer. However, a gen-
eral mechanism to produce the sequence of muscle
control parameters instead of hand-coded control is
needed. In the near future, we will do this with the
two SSOM Double Cone Model (Fig. 3).

The inner simulation feedback (Fig. 1) will even-
tually be used for short term memory, and to con-
vert between short term and long term memory. The
double cone will probably be expanded with more
feedback paths and selectors, e.g. the T-selector will
consist of many parallel selectors with different con-
trol signals.
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