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Abstract

We are concerned with the design of a devel-
opmental robot that learns from scratch sim-
ple models about itself and its surroundings.
A particular attention is given to perceptual
abstraction from high-dimensional sensors.

1. Introduction

The hand-programming of autonomous robot is a
tiresome process. In unstructured environments, it
may be impossible for a designer to select relevant
features in regard to the robot’s capabilities. Of
particular interest would be an ”intelligent” system
able to autonomously acquire more adapted repre-
sentations and controls...a little bit like biological
organisms naturally do during their cognitive de-
velopment. The design of such an entity is a fun-
damental question in Artificial Intelligence, and it
brings in its tray many debates in philosophy around
themes like ”Symbol grounding” or “consciousness”
(Ziemke, 2001).

Our aim is to design a robotic system that em-
ulates such a cognitive development. As such, our
research belongs to the recent field of Developmen-
tal or Epigenetic Robotics [(Zhang and Weng, 2002),
(Zlatev and Balkenius, 2001)]. Though sharing the
same inspirations and vocabulary of “schemas”,
“stages” or “biological motivation”, our research
may be characterized by its object-oriented approach
and the attention given to high-dimension sensors.

2. Problem setting

Though the goals of this research are general, we
consider a simplified “ecological niche”, where the
robot is the only agent of change. All actions in-
duce sensory feedback and are reversible. The agent
recognizes innately an obstacle as a state where ac-
tions do not bring internal feedback. Practically, we
use a wheeled mobile robot with high-dimension re-
dundant sensory inputs: vision and laser range sen-
sor. Though we intend to use soon real robots, our
first experiments were accomplished using a simula-
tor (written in Java).

The robot has three internal drives: curiosity (ex-
ploration), avoid pain (obstacles) and seek pleasure
(recompense). A recompense is given by a human
trainer when the robot is close to a visible goal land-
mark. The robot should therefore be motivated to
navigate towards these landmarks while avoiding ob-
stacles. This supposes the development of mental
structures for the characterization and recognition
of obstacles and goals concepts and controls to act
on them and naviguate.

Figure 1: Pictures from our simulator environment

3. Development Plan

Very classically, we took inspiration from construc-
tivist theories to propose stages of development dur-
ing which the robot progressively constructs hierar-
chies of perceptual concepts and refines the motor
schemas that manipulates them.

1. Calibration and self-organization of its sensory
space so that change can be defined as motion.

2. Coarse perceptual abstraction and categoriza-
tion. The robot ”play” with its basic reflex actions
to discover their general effect.

3. From reliably observed state/action relations,
characterization of obstacle and goal states. Reflex
actions with a one-time step visibility for avoidance.

4. Assimilation of reactive control policies to pro-
long certain interactions. The robot stays away from
obstacles and is attracted by goals.

5. Proto-intentionality: the robot learns control
laws for manipulating visible objects from one con-
figuration to another.

6. Intentionality and object permanency. The
robot can build a world model and plan its actions.



4. Approach

To represent abstraction hierarchies we use an
object-oriented approach using “concepts” as basic
bricks and cluster analysis as a unifying principle
to abstraction from low-level sensory processing to
higher level cognition. We define a perceptual state
as a union of concepts, each defined by a list of at-
tributes (e.g. raw perceptual data is UnOn(v, p) with
v measurement and p sensor reference). The goal of
abstraction is to acquire an adequate low-dimension
representation of the stimulus: compress the numer-
ous raw data in a few high-level concepts.

We distinguish two types of bottom-up abstrac-
tion. 1. The redescription of actual perceptual data
in a more suitable “summary” representation, and 2.
the categorization of objects traceable through time
for later recognition. A top-down process character-
izes obstacle and goal states from defined concepts.
Concepts can be dynamically linked by “is-a” (be-
longs to a category), “part-of” (belongs to a larger
group of parts) and “related-to” (possibility of pas-
sage from one concept to another by change or ac-
tion) links. Each cluster abstract underlying data by
a statistical summary.

5. Experimental results

Up to stage 2, our first experiments aim at the ab-
straction of perceptual information from laser sen-
sor and vision, without considering the grounding of
concepts in action.

Having in mind the Gestalt grouping criteria
(Elder and Goldberg, 2002) of proximity, continua-
tion and common fate, we first enrich raw data with
new attributes. We determine proximity from the
idea that “close” sensors should produce similar mea-
sures. The method was inspired from (Pierce, 1997)
and makes use of Multidimensional Scaling. For con-
tinuation, a codebook of “local shape” feature vec-
tors was learned in an unsupervised manner from
stimulus statistics using Independant Component
Analysis (Hyvarinen and Oja, 1999). Common fate
-or motion- of raw data objects is determined by a
global optical flow method based on Dynamic Pro-
gramming (Bellman, 1997). This method can pro-
duce quickly approximate dense motion fields.

Perceptual abstraction is done with a fast agglom-
erative clustering method. The decision to group
together objects in a more abstract cluster is classi-
cally done by comparing a similarity measure with
a threshold. The originality of our method is that
this distance is learned from the environment. The
distance between two attributes A and B is the prob-
ability pA/B for a concept of attribute A to have
a neighbor of attribute B. A table of distance can
be easily learned online and accessed during clus-
tering. Clusters of raw data are characterized by

a statistical summary: mean values and distribu-
tion histograms (correlation will be considered in a
future work). Distance between clusters is a cross
product on the histograms of the previous distances:∑
i

∑
j h(i) ∗ h(j) ∗ pi/j with h(x) size of bin in his-

togram. In a few iterations meaningfull data groups
can be extracted (fig.2).

Figure 2: 1,2: Motion flow with real and simulator im-

ages. 3: raw image level. 4: 1st abstraction level. 5: 2nd

level. 6: 4th level. Graphs show neighborhood relations.

7,8: real image and segmentation results
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