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Abstract

We present the architecture and distributed
algorithms of an implemented system called
NeuSter, that unifies learning, perception and ac-
tion for autonomous robot control. NeuSter com-
prises several sub-systems that provide online
learning for networks of million neurons on ma-
chine clusters. It extracts information from sen-
sors, builds its own representations of the envi-
ronment in order to learn non-predefined goals.

1. A need for a common framework

Several approaches and models propose developmen-
tal robot properties (Tijsseling and Berthouze, 2001,
MacDorman et al., 2001). From a robotics point of view,
all these properties should be implemented in a single
system and the question of system integration must be ad-
dressed. We propose a multi-scale and distributed model
which permits to address online perception, representa-
tion, goal learning, and skill acquisition. With this sys-
tem, the robot acquires new capabilities by building new
representations, starting from a very elementary prede-
fined set, and by synthezising new actions (or skills) also
using a very limited elementary set as a starting vocabu-
lary. Learning and adaptation rely on an exploration pro-
cess that enables to build and reinforce the representa-
tions and actions. These actions are the more rewarding
in achieving the system’s goals, which are also incremen-
tally learned. No predefined structures are given to the
system - except its general neural architecture. The clas-
sical symbol grounding problem (Harnad, 1990) is thus
addressed.

System architecture is described in the next section,
and an example of operation in section 3.

2. System Architecture

The global system has two main properties :a) the first is
extraction of representations from the environment, and
b) the second is action chaining to obtain the representa-
tions which produce the best global effect. The system is
composed of seven functional subsystems as depicted in
Figure 1 (Paquier and Chatila, 2002).

The system is structured inslices of connected
Pulsed Neural Networks (PNN) based on a discrete in-
tegrate and fire model. PNN provide a level of de-

scription that allows to develop the learning process
(Gerstner and Kistler, 2002), categorization and associ-
ation, while avoiding combinatorial explosion. Within
each slice’s thickness, six neurons are connected to form
a columnwhich is the basic element of the system. The
first three neurons of a column are responsible for infor-
mation extraction and competition in the input stream, the
fourth neuron is responsible for the persistence of detec-
tion and is the input to the next slices. The last two neu-
rons are responsible for the scoring process and its diffu-
sion in the global system.
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Figure 1: Global system and sensory-motor loops. Plain ar-
rows are hard-coded pathways and dotted arrows correspond to
learned pathways.

The functions of the seven subsystems are as follows:
• Sensing(SEN) is the input of the global system

and is the frontier between the environment and the neu-
ral space. It is composed of maps of converter neu-
rons between physical value and computable information
wherein the potential values are static and dynamic “im-
ages” of the stimuli.

• Initial Representations (IR) is a neuronal structure
which is the initial set of representation goals. Each neu-
ron in IR can be activated by SEN, and the result of this
activation has a predefined effect on the criteria satisfac-
tion (see GE next). IR can be considered as the initial
position in therepresentation/scorespace. The system
behaviour will grow from this point.

• Context Decomposition(CD) can be defined as the
categorization engine. It extracts all the high-level fea-
tures that could be used to describe the environment. It is



composed of a multilayer network of maps in a pyrami-
dal structure. The layers of CD build representations by
detecting regularities in the preceeding ones.

• Learned Representations(LR) receives inputs
from CD and itself. This sub-system has the properties
of an associative memory. It is responsible for learn-
ing of new skills and determines the global system be-
haviour. Each neuron of LR is connected to GE for cri-
teria evaluation. We define representations as the set of
active columns in LR at timet.

• Elementary Actions and Action Synthesis(AS
and ACT) are the action sub-systems. AS produces com-
binations of elementary actions. Its outputs are connected
to ACT. ACT is the interface between the neuron/pulse
space and the environment. It is a one-layer set of maps
where each map drives a degree of freedom of the effec-
tors in a multi-scale way.

• Global Effects (GE) is a scoring system which as-
sociates a value with each representation. We call effects
the score obtained through a representation. GE repre-
sents the criterion the system wants to maximize. When
the effects of a representation are negative the system will
produce actions to increase the criterion value.

3. Developmental properties

The system is able to detect spatial and temporal invari-
ants, and to produce new actions. We will provide here an
example of detection of spatial invariants. Patterns are ex-
tracted from images and grouped in classes according to
an invariance criterion - which will be related to shapes in
the environment. SEN neuron potentials are composed of
images of projections of these shapes. CD extracts what
is common or different among the features that compose
them.

Figure 2 shows a simple result where 3 distinct objects
are presented to the system. After decomposing the im-
age into elementary features, three LR maps are learned
to detect and localize each particular object. This exam-
ple only uses the spatial competition property. The im-
ages of potentials are decomposed by applying groups
of competitive filters systematically and simultaneously
on each part of the images. The layered architecture of
CD permits to repeat this process across the structure so
that the neurons at the top of CD correspond to a recep-
tive field as large as the whole image. At this level of
representation, input images have been diffracted in the
sub-system, decomposed in spatial frequencies and pat-
tern contents, and recomposed in more complex struc-
tures. This ”decomposition and recomposition” evolves
across time and converges toward a stable state. All the
learned weight kernels are based on the image frequen-
cies and feature contents. The activity of the high end
neurons of CD provides this distributed representation of
the environment.
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Figure 2: Simple example of spatial competition among neu-
rons of different maps of the same layer. In LR layer, burst
state are represented by grey level. White means no discharge.
The system is able to discriminate and localize the two kinds
of chairs and the trash bin from 128x128 input image. In this
example, the system includes 20 480 neurons and 13 922 304
synapses. The extraction stability is obtained after 500 time
steps (less than a minute on SunBlade 100 workstation) while
recognition duration is much smaller (about 12Hz in the same
conditions).

4. Conclusion

Implementation of this architecture is in progress and first
experiments are underway with a Nomadics XR 4000 and
a six-legged robots for the elaboration of new behaviors.
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