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This paper presents developmental learning on a
humanoid robot from human-robot interactions. We
consider in particular teaching humanoids as children
during the child’s Separation and Individuation de-
velopmental phase (Mahler, 1979). Cognitive devel-
opment during this phase is characterized both by
the child’s dependence on her mother for learning
while becoming awareness of her own individuality,
and by self-exploration of her physical surroundings.
We propose a learning framework for a humanoid
robot inspired on such cognitive development.

1. Introduction

This paper describes work which takes inspiration on
Mahler’s child development theory (Mahler, 1979).
Special emphasis is put on the child’s Separation and
Individuation developmental phase (Mahler, 1979) –
during which the child eventually separates from
his mother bound and embraces the external world.
Mahler’s theory has influences by movements such
as the Ego’s Developmental Psychology and Exper-
imental Psychology, from Freud, Piaget and others.
According to her theory, the normal development of a
child during the Separation and Individuation phase
is divided into four sub-phases, following the Epige-
netic Principle – as each stage progresses, it sets the
foundation for the next stages:

Differentiation (5-9 months) The first sub-phase,
marked by a decrease of the infant’s total depen-
dency on his mother as the former crawls further
away. The infant starts to realize his own individ-
uality and separateness due to the development
of the entire sensory apparatus and therefore a
growing awareness

Practicing (9,10-18 months) Sub-phase character-
ized by the child’s active locomotion and explo-
ration of his surroundings, together with the nar-
cissist exploration of his own functions and body

Re-approximation (15-24 months) Child has an
egocentric view of the world during this phase, in
which he also approximates again to his mother.
World expands as new viewing angles are avail-
able from the child’s erect walking

Individuality and Object Constancy (24-36
months) Defined by the consolidation of individ-
uality, and a clear separation between objects
and himself. Towards the end, the child becomes
aware of object constancy.

Therefore, during the Separation and Individua-
tion phase, the child learns to recognize himself as
an individual, and his mirror image as belonging
to himself. He learns also about its surrounding
world structure - about probable places to find fa-
miliar objects (such as toys) or furniture items. In
addition, he starts to identify scenes - such as his
own bedroom and living-room. And children be-
come increasingly aware (and curious) of the outside
world (Lacerda et al., 2000). This paper describes
the implementation of these cognitive milestones on
the humanoid robot Cog, placing special emphasis
on developmental object perception (Johnson, 2002)
during the Separation and Individuation stage.

The child’s mother plays an essential
role (Gonzalez-mena and Widmeyer, 1997) in
guiding the child through this learning process.
Aiming at teaching humanoid robots as children
during this stage, the child’s mother role will be
attributed to a human tutor/caregiver. Therefore, a
human-centered approach is presented to facilitate
the robot’s perception and learning, while showing
the benefits that result from introducing humans in
the robot’s learning loop.

2. Learning on the Autistic and Sym-
biotic Phases

This section reviews shortly the methodology we
developed for robot interactions motivated by in-
fant’s simple learning mechanisms in Mahler’s autis-
tic and Symbiotic developmental phases, which an-
tecede the Separation and Individuation phase. In
the autistic phase (from birth to 4 weeks old),
the newborn is most of the time in a sleeping
state, awakening to eat or satisfy other necessi-
ties (Mahler, 1979, Muir and Slater, 2000). His mo-
tor skills consist mainly of primitive reflexes until
the end of this phase (Michel and Moore, 1995). To-
wards the Symbiotic phase (until 4-5 months), the

19

In Berthouze, L., Kozima, H., Prince, C. G., Sandini, G., Stojanov, G., Metta, G., and Balkenius, C. (Eds.)
Proceedings of the Fourth International Workshop on Epigenetic Robotics
Lund University Cognitive Studies, 117, ISBN 91-974741-3-4



infant’s attention is often dropped to objects un-
der oscillatory motions, or to abrupt changes of mo-
tion, such as throwing an object. Baby toys are of-
ten used in a repetitive manner – consider rattles,
car/hammer toys, etc. This repetition can poten-
tially aid a robot to perceive these objects robustly.
Playing with toys might also involve discontinuous
motions (for instance, grabbing a rattle results in a
sharp velocity discontinuity upon contact).

This motivated the design of algorithms which im-
plement the detection of events with such character-
istics. Moving image regions that change velocity ei-
ther periodically, or abruptly under contact produce
visual event candidates. These algorithms, which are
presented in detail by (Arsenio, 2003), identify such
events at multiple spatial/frequency resolutions. Ob-
ject Segmentation, a fundamental problem in com-
puter vision, is then dealt with by detecting and in-
terpreting natural human/robot task behavior from
discontinuous events – such as tapping, waving, shak-
ing, poking, grabbing/dropping or throwing objects
– or from periodic events – such as waving or shaking
an object (Arsenio, 2003, Arsenio et al., 2003).

An active segmentation technique developed re-
cently (Fitzpatrick, 2003) relies on poking objects
with a robot actuator. This strategy operates on
first-person perspectives of the world: the robot
watching its own motion. However, it is not suit-
able for segmenting objects based on external cues.
We would like therefore to transfer skills from hu-
mans to the robot, so that external information can
be incorporated to enable autonomous acquisition of
knowledge by the robot, by exploiting shared world
perspectives between a cooperative human and the
robot. Such developmental approach for skill trans-
fer is presented by (Arsenio, 2004a). By observing
a human interacting with objects (for instance, wav-
ing or poking them), the robot builds Hybrid Markov
Models that model the task, and is then able to act
by itself on (un)known objects to segregate them
from the background, as shown in Figure 1.

The child’s Separation and Individuation
phase (Mahler, 1979) is marked by the separa-
tion of the child from his mother as a different
individual. However, the child still relies heavily
on help provided by his mother to understand the
world and even himself through this developmen-
tal phase (Gonzalez-mena and Widmeyer, 1997).
Indeed, the child is part of a structured world
that includes the immediate emotional (for
robot emotions, not covered by this paper,
see (Breazeal, 2000)), social and physical sur-
roundings (Michel and Moore, 1995). In the
following sections, social help from a human tutor
will be used to guide the robot through learning
about its physical surroundings. In particular, this
helping hand will assist the robot to correlate data

Figure 1: a) Object segmentations extracted from human

created events b) Object segmentations extracted from

robot created events c) robot executes a simple learned

task (waving), and associates the sound to the movement

of its own body d) top: sequence of images extracted from

a poking event; bottom: object and actuator segmenta-

tion from a poking event created by the robot.

among its own senses (Section 3.); to control and
integrate situational cues from its surrounding world
(Section 4.); and to learn about out-of-reach objects
and the different representations in which they
might appear (Section 5.). Special emphasis will
therefore be placed on social learning along a child’s
physical topological spaces, as shown in Figure 2.

Figure 2: Developmental learning during the child’s Sep-

aration and Individuation phase will be described along

three different topological spaces: 1) the robot’s personal

space, consisting of itself and familiar, manipulable ob-

jects (Section 3.); 2) its living space, such as a bedroom or

living room (Section 4.); and 3) its outside, unreachable

world, such as the image of a bear on a forest (Section 5.).

3. Learning about Objects and Itself

This section describes a strategy for a robot to asso-
ciate data from several sources: from its own senses,
to better perceive both itself and objects with which
it interacts, and from its senses and information
stored on the world or on the robot’s memory.
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Information is gathered from a human tutor creat-
ing rhythmic actions, facilitating this way the robot’s
perception. This is motivated from a child’s mother
role in helping the child to learn about objects and
its own body – by tapping or waving a toy or a child’s
body part (such as a hand) while annunciating the
name associated to it, or by performing educational
activities, such as drawing or painting.

3.1 Cross-Modal Data Association

Cross-modal data association from the robot’s own
senses is briefly described hereafter (for details
see (Fitzpatrick and Arsenio, 2004)). This is an im-
portant capability for a humanoid robot, so that it
can better perceive itself and objects with which it
interacts. In children, such capability appears with
the development of the sensory apparatus on the first
differentiation sub-phase.

Due to physical constraints, the set of sounds that
can be generated by manipulating an object is often
quite small. For toys which are suited to one specific
kind of manipulation – as rattles encourage shaking –
there is even more structure to the sound they gener-
ate (Fitzpatrick and Arsenio, 2004). When sound is
produced through motion for such objects the audio
signal is highly correlated both with the motion of
the object and the tools’ identity. Therefore, the spa-
tial trajectory can be applied to extract visual and
audio features – patches of pixels, and sound fre-
quency bands – that are associated with the object
(see Figure 3), which enables the robot to map the
visual appearance of objects manipulated by humans
or itself to the sound they produce.

Proprioceptive data is a sensorial modality very
important to control the mechanical device, as
well as to provide workspace information (such
as the robot’s gaze direction). But it is also
very useful to infer identity about the robotic
self (Fitzpatrick and Arsenio, 2004) (for instance, by
having the robot recognize itself on a mirror). Chil-
dren become able to self-recognize their image on a
mirror during the practicing sub-phase, which marks
an important developmental step towards the child
individuality. On a humanoid robot, large corre-
lations of a particular robot’s limb with data from
other sensorial inputs indicates a link between such
sensing modality to that moving body part (which
generated a sound, or which corresponds to a given
visual template, as shown in Figure 4). Therefore,
the binding algorithm was extended to account for
proprioceptive data, which is matched to both vi-
sual and audio signals. Such an approach enables
not only the identification of the robot’s own acous-
tic rhythms, but also the visual recognition of the
robot’s mirror image, as shown in Figure 4 (this is an
important milestone on the development of a child’s
theory of mind (Baron-Cohen, 1995)).

Figure 3: a) A child and a human playing with a ham-

mer, which bangs in a table, producing a distinctive au-

dio signal. b) A human moves a car repetitively for-

ward/backward producing sound in each direction, which

is matched to the visual trajectory. The sound energy has

two peaks per visual period, since the sound of rolling is

loudest during the two moments of high velocity motion

between turning points in the car’s trajectory (because

of mechanical rubbing). c) top: tracking an oscillatory

instrument; down: image of object segmentation and dis-

play of a detected visual/sound matching.

Figure 4: a) Child and robot looking at a mirror, asso-

ciating their image to their body (image of robot/sound

association shown amplified for the robot) b) Visual seg-

mentations organized according to the robot’s body parts

for which they were matched.

3.2 Object Recognition

Sensorial data strongly correlated to proprioceptive
data is therefore labelled with the correspondent
robot’s body part. However, it is necessary to de-
velop a recognition scheme for objects other than
robot’s body parts, which enables object recognition
under different contexts.

The object recognition algorithm consists of three
independent algorithms. Each recognizer operates
along orthogonal directions to the others over the in-
put space (Arsenio, 2004b). This approach offers the
possibility of priming specific information – which
will be shown a property of paramount importance –
such as searching for a specific object feature (color,
shape or luminance) independently of the others. For
instance, the recognizer may focus the search on a
specific color or sets of colors, or look into both de-
sired shapes and luminance (Arsenio, 2004b):
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Color. Input features consist of groups of connected
regions with similar color

Luminance. Input space consists of groups of con-
nected regions with similar luminance

Shape. A Hough transform is applied to a contour
image (from a Canny edge detector). Line orien-
tation is determined using Sobel masks. Pairs of
oriented lines are then used as input features

Geometric hashing is a rather useful technique
for high-speed performance. In this method, in-
variants (or quasi-invariants) are computed from
training data in model images, and then stored
in hash tables. Recognition consists of accessing
and counting the contents of hash buckets. An
Adaptive Hash table (Arsenio, 2004b) (a hash table
with variable-size buckets) was implemented to store
affine color, luminance and shape invariants (which
are view-independent for small perspective deforma-
tions). Figure 5 shows results for each of these in-
put spaces, while experimental results for real objects
will be shown in the next sections.
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Figure 5: (left) Conjunction searches; Top row, from left

to right: normalized color buckets for the original image,

with results for a yellow-green query superimposed; and

Luminance buckets of the original image, together with

query results for a dark-light object; Bottom row: Search

for triangles (conjunction of three oriented lines); and the

target identification (a conjunction of features) among

distracters. (right) Object recognition and location. The

train appears under a perspective transformation in a

computer generated bedroom. Scene lines matched to

the object are outlined.

3.3 Learning from Educational Activities

A common pattern of early human-child interac-
tive communication is through activities that stim-
ulate the child’s brain, such as drawing or paint-
ing. Children on the practicing sub-phase of devel-
opment, and older, are able to extract information
from such activities while they are being performed
on-line. This capability motivated the implementa-
tion of three parallel processes which receive input
data from three different sources: from an atten-
tional tracker (Fitzpatrick, 2003), which tracks the
attentional focus and is attracted to a new salient
stimulus; from a multi-target tracking algorithm, im-
plemented to track simultaneously multiple targets;

and from an algorithm that selectively attends to the
human actuator for the extraction of periodic signals
from the trajectory of oscillating skin blobs.

Whenever a repetitive trajectory is detected from
any of these parallel processes, it is partitioned into
a collection of trajectories, being each element of
such collection described by the trajectory points be-
tween two zero velocity points with equal sign on a
neighborhood (similarly to the partitioning process
described in (Fitzpatrick and Arsenio, 2004)). As
shown in Figure 6, the object recognition algorithm
is then applied to extract correlations between these
sensorial signals perceived from the world and geo-
metric shapes present in such world, or on the robot
object database, as follows:

1. Each partition of the repetitive trajectory is
mapped into a set of oriented lines by applica-
tion of the Hough transform.

2. By applying the recognition scheme previously
described, trajectory lines are matched to ori-
ented edge lines (from a Canny detector) on

(a) a stationary background,

(b) objects stored in the robot’s object recogni-
tion database.

This way, the robot learns object properties not
only through cross-modal data correlations, but
also by correlating human gestures and information
stored in the world structure (such as objects with a
geometric shape) or on its own database.

On children, such capabilities evolve according to
the epigenetic principle as they start to move around
on their physical surroundings, learning about its
structure. This occurs mainly during the practic-
ing developmental sub-phase, and towards the re-
approximation phase the child gets a completely new
view of the world from erect walking.

4. Learning the World Structure of
the Robot’s Physical Surroundings

Autonomous agents, such as robots and humans,
are situated in a dynamic world, full of information
stored on its own structure. For instance, the prob-
ability of a chair being located in front of a table is
much bigger than that of being located on the ceil-
ing. A robot should place an object where it can
easily find it - if one places a book on the fridge, he
will hardly find it later!

This dual perspective on object recognition is an
important milestone for children - not only to be able
to infer the presence of objects based on the scene
context, but also to be able to determine where ob-
jects should be stored based on the probability of
finding them on that place later on.
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Figure 6: Learning activities, such as drawing on paper

or boards. Shows a human painting a black circle on

a sheet of paper with a ink can. The circle is painted

multiple times. The hand trajectory is shown, together

with edge lines on the background image matched to such

trajectory. It also shows a human drawing a circle on a

sheet of paper with a pen, which is matched into a circle

drawn previously and stored in the robot’s database.

Therefore, a statistical framework was developed
to capture knowledge stored in the robot’s surround-
ing world. This framework consists of: 1) learning
3D scenes from cues provided by a human actor; and
2) learning the spatial configuration of objects within
a scene.

4.1 Learning about Scenes

The world structural information should be exploited
in an active manner. A significant amount of con-
textual information may be extracted from a pe-
riodically moving actuator – most often such mo-
tions are from interactions with objects of interest
– which can be framed as the problem of estimating
p(on|vB~p,ε

, actper
~p,S), the probability of finding object n

given a set of local, stationary features v on a neigh-
borhood ball B of radius ε centered on location p, and
a periodic actuator on such neighborhood with tra-
jectory points in the set S ⊆ B. The Segmentation
from Demonstration method which will be described
in Section 5. solves such problem.

The environment surrounding the robot also pro-
vides additional structure that can be learned
through supervised learning techniques. Hence,
scenes will be defined as a collection of objects with
an uncertain geometric configuration, each object be-
ing within a minimum distance from at least another
object in the scene. Figure 7 presents statistical re-
sults for segmentations of several furniture items on
a scene. Scene descriptions are built by mapping
all information about objects (mainly furniture) into
egocentric coordinates. Figure 7 also shows both the
reconstruction of the visual appearance of a scene in
the robot’s lab and a coarse depth image for such
scene.

Figure 7: (left) Segmentation error analysis for furni-

ture items on a scene – segmentation samples are also

shown (right) Furniture image segmentations– on top –

and depth map – bottom – for a scene in Cog’s room.

Depth maps are extracted by an active, embodied ap-

proach that relies on a human to actively change the con-

text of a scene, so that the human arm diameter is used

as a reference for extracting relative monocular depth.

4.2 Learning about Objects in Scenes

Children need to be able not only to built environ-
ment descriptions for safety locomotion, but also to
learn the relative probability distribution of objects
in a scene – for instance, books are often found on top
of shelves. Therefore, the scene context puts a very
important constraint on the type of places in which
a certain object might be found. From a humanoid
point of view, contextual selection of the attentional
focus is very important both to constrain the search
space for locating objects (optimizes computational
resources) and also to determine common places on
a scene to drop or store objects such as tools or toys.

Given the image of an object, its meaning is of-
ten a function of the surrounding context. Con-
text cues are useful to remove such ambiguity. Ide-
ally, contextual features should incorporate the func-
tional constraints faced by people, objects or even
scenes (eg. people cannot fly and offices have
doors). Therefore, functionality plays a more im-
portant role than more ambiguous and variable fea-
tures (such as color, which selection might depend
on human taste). Functionality constraints have
been previously exploited for multi-modal associa-
tion (Fitzpatrick and Arsenio, 2004) and for deter-
mining function from motion (Duric et al., 1995),
just to name a few applications.

As such, texture properties seem ap-
propriate, which led to the selection of
Wavelets (Strang and Nguyen, 1996) as contex-
tual features, since they are much faster to compute
than Gabor filters and provide a more compact
representation. Input monochrome images are
transformed using a Daubechies-4 wavelet tree,
along 5 depth scales. The input is represented
by v(~p) = {vk(x, y), k = 1, . . . , N}, with N=15.
Each wavelet component is down-sampled to a
8 × 8 image, so that v̄(x, y) has dimension 960.
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Figure 8 shows image reconstruction from the sets of
features v(~p) (also denoted image sketch or holistic
representation (Torralba, 2003)).

Figure 8: Reconstruction of the original image

(by the inverse Wavelet transform). As suggested

by (Torralba, 2003), this corresponds to an holistic rep-

resentation of the scene.

The dimensionality problem is reduced to become
tractable by applying Principal Component Anal-
ysis (PCA). The image features from the wavelet
transformation v̄(~p) are decomposed into the basis
functions provided by the PCA, encoding the main
spectral characteristics of a scene with a coarse de-
scription of its spatial arrangement. The decom-
position coefficients are obtained by projecting the
image features vk(~p) into the principal components
~c = {ci, i = 1, . . . , D} (~c denotes the resulting D-
dimensional input vector, used thereafter as input
context features). These coefficients can be viewed
as a scene’s holistic representation since all the re-
gions of the image contribute to all the coefficients,
as objects are not encoded individually. The effect
of neglecting local features is reduced by mapping
the foveal camera (which grabs data for the object
recognition scheme based on local features described
in Section 3.2) into the image from the wide field of
view camera, so that the weight of the local features
is strongly attenuated. The position vector ~p is thus
given in wide field of view retinal coordinates.

The output space is defined by the 6-dimensional
vector ~x = (~q, d, ~s, φ), where ~q is the object’s cen-
troid – a 2-dimensional position vector in wide-field
of view retinal coordinates, d is the object’s depth,
~s = (w, h) is a vector containing the principal com-
ponents of the ellipse that models the 2D retinal size
of the object, and φ is the orientation of such ellipse.

A method based on a weighted mixture of gaus-
sians was applied to find interesting places where
to put a bounded number of local kernels that
can model large neighborhoods. Therefore, given
the context ~c, one needs to evaluate the PDF
p(~x|on,~c) from a mixture of m (spherical) Gaus-
sians (Gershenfeld, 1999):

p(~x,~c|on) =

M∑
m=1

bmnGx(~x, ~ηmn, Xmn)Gc(~c, ~µmn, Cmn)

The mean ~ηmn of the Gaussian Gx is a function
that depends on ~c and on a set of parameters βmn.

A locally affine model was chosen for the mean:
βm,n = (~am,n, Ai,n): ~ηm,n = ~am,n + AT~c. The EM
algorithm is then used to learn the cluster parame-
ters (see (Gershenfeld, 1999) for a detailed descrip-
tion of the EM algorithm). The number M of gaus-
sian clusters is selected in order to maximize the join
likelihood of the data. An agglomerative clustering
approach based on the minimum description length
was implemented to automatically estimate M .

Figure 9 presents results for selection of the atten-
tional focus for several furniture objects. However,
there is a lot of information that cannot be extracted
from scenes familiar to a robot (real whales are not
common in humanoid research labs). But such infor-
mation from the robot’s outside world can be trans-
mitted to the robot by a human tutor using books.

Figure 9: Samples of scene images are shown on the first

column. The next four columns show probable locations

based on context for the smaller sofa, the bigger sofa, the

table and the chair, respectively. Notice that, even if the

object is not visible or present, the system estimates the

places at which there is a high probability of finding such

object. Two such examples are shown for the chair – no

matter the viewing angle, chairs are predicted to appear

in front of the table. It is also shown that occlusion by

humans do not change significantly the global context.

5. Learning about the Outside World
through Books

Children’s learning is often aided by the use of audio-
visuals, and especially books, from social interactions
with their mother or caregiver during the develop-
mental sub-phases of re-approximation and individ-
ual consolidation, and afterwards. Indeed, humans
often paint, draw or just read books to children dur-
ing their childhood. Books are indeed a useful tool to
teach robots different object representations and to
communicate properties of unknown objects to them.

Learning aids are also often used by human care-
givers to introduce the child to a diverse set of
(in)animate objects, exposing the latter to an out-
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side world of colors, forms, shapes and contrasts, that
otherwise might not be available to a child (such as
images of whales or, as shown by Figure 10, images
of cows). Since these learning aids help to expand
the child’s knowledge of the world, they are a po-
tentially useful tool for introducing new informative
percepts to a robot.

Figure 10: a) Child and human learning from a book. A

car template extracted by the robot during an experiment

is shown outlined by a square. b) Extraction of a cow’s

template image from a book.

The strategies which enable the robot to learn
from books rely heavily in human-robot interactions.
It is essential to have a human in the loop to in-
troduce objects from a book to the robot (as a hu-
man mother/caregiver does to a child), by tapping
on their book’s representations. Segmentation by
demonstration – a human aided object segmentation
algorithm – segments an object’s image from book
pages (or a furniture item from the background), as
follows (Arsenio, 2004b):

1. A color segmentation algorithm is applied to a
stationary image

2. A human actor waves the arm/hand/finger on top
of the object to be segmented

3. The motion of skin-tone pixels is tracked over
a time interval (using the Lucas-Kanade algo-
rithm). The energy per frequency content – using
Short-Time Fourier Transform (STFT) – is deter-
mined for each point’s trajectory

4. Periodic, skin-tone points are grouped together
into the arm mask (Arsenio, 2003).

5. The trajectory of the arm’s endpoint describes an
algebraic variety over N2 (N represents the set of
natural numbers). The target object’s template
is given by the union of all bounded subsets (the
color regions of the stationary image) which in-
tersect this variety

This grouping works by having trajectory points
being used as seed pixels. The algorithm (see Fig-
ure 11) fills the regions of the color segmented image
whose pixel values are closer to the seed pixel values,
using a 8-connectivity strategy.

Color SegmentationStationary image

Actuator Template

Object mask

Periodicity detection

Object Template

1

3 4

5

2

Figure 11: The actuator’s trajectory is used to extract

the object’s color clusters.

Therefore, points taken from waving are used to
both select and group a set of segmented regions
into the full object. This strategy segments ob-
jects that cannot be moved independently, such as
objects printed in a book, or heavy, stationary ob-
jects such as a table or a sofa. This scheme was
successfully applied to extract templates for animals
(many of which might not be visually accessible to
the child from sources other than learning aids), fur-
niture items, musical instruments, fruits, clothes, ge-
ometric shapes and other elements from books, under
varying light conditions (as shown in Figure 12).

Figure 12: Statistical analysis for object segmentation

from books. Templates for several categories of objects

(for which a representative sample is shown), were ex-

tracted from a collection of children books.

5.1 Matching Multiple Representations

Object representations acquired from a book are in-
serted into a database, so that they become avail-
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able for future recognition tasks. However, object
descriptions may came in different formats - draw-
ings, paintings, photos, etc. Hence, methods were
developed to establish the link between an object
representation in a book and real objects recognized
from the surrounding world using the object recog-
nition technique described in Section 3.2, as shown
by Figure 13. Except for a description contained in a
book, the robot had no other knowledge concerning
the visual appearance or shape of such object.

Figure 13: (left) Geometric shapes recognized using

the descriptions from a book triangle–top– and circle–

bottom. The recognition from chrominance features is

trivial – objects have a single, identical color (right)

Recognition of geometric, manual drawings from the de-

scription of objects learned using books.

Additional possibilities include linking different
object descriptions in a book, such as a drawing, as
demonstrated by the results presented in Figure 13.
These results demonstrated the advantages of ob-
ject recognition over independent input features: the
topological color regions of a square drawn in black
ink are easily distinguished from a yellow square.
But they share the same geometric contours.

Other feasible descriptions to which this frame-
work was applied include paintings, prints, photos
and computer generated objects (Arsenio, 2004b).

6. Conclusions

This paper described a framework for developmental
object perception and learning on a humanoid robot,
which aims at teaching humanoids as children. We
described algorithms to learn about the robot’s self
appearance and its surrounding world. The epige-
netic principle established the foundations for these
algorithms. Learning about new object representa-
tions was possible after some knowledge about the
object (for example, from a book) was actively intro-
duced by a human actor. The robot learned about
its surrounding world by first building scene descrip-
tions of world structures. Such descriptions then gen-
erated training data which enabled contextual selec-
tion of the attentional focus – to find regions on the
visual field where there is a high probability of find-
ing an object. We also shown learning from educa-
tional activities, such as drawing, enabled by previ-
ous storage of information concerning object shapes.

Children development is indeed a rich source of

inspiration towards cognitive development on hu-
manoid robots. But to achieve such an endeavor the
mother’s (and the child’s caregiver) role should not
be neglected – robots will also benefit from having a
human helping hand that guides them through the
learning process.
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