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Abstract

This paper presents an ontogenetic model of
self-organization for robotic intermediary vision.
Two mechanisms are under concern. First, the de-
velopment of low-level local feature detectors that
perform a piecewise categorization of the sen-
sory signal. Second, the hierarchical grouping of
these local features in a holistic perception. While
the grouping mechanism is expressed as a classi-
cal agglomerative clustering, underlying similar-
ity measures are not pre-given but developed from
the signal statistics.

1. Background

Following the recent approach of “epigenetic robotics”
[Weng et al., 2000] [Zlatev and Balkenius, 2001], our
goal is to take inspiration from biological studies and cog-
nitive development theories to design an agent able to ex-
ploit the regularities of its environment to anticipate, act,
and develop its own representations.

Our robot’s internal drives are curiosity, pain avoid-
ance and pleasure search. Punitions and recompenses can
whether be given by a human trainer trying to teach a
particular visual concept or automatically induced (e.g.
bumper activation). Our robot’s goal is to ”navigate” to-
wards rewarding states while avoiding bad ones. This
supposes: 1. the acquisition of mental structures for the
characterization of “obstacles” and “goals” concepts in
terms of certain features and 2. to learn the effects of its
actions on these features, so that states of the environment
prescribe ”affordances” for action [Gibson, 1979].

The global architecture of our epigenetic system can be
roughly described as a superposition of self-organizing
layers (fig.1). We first have a local feature detectors layer
and an abstraction layer that together segment raw data
into perceptual ”objects”. Then the percepts are orga-
nized in higher level categories that may serve recog-
nition. An affective layer evaluates the key-features of
these higher-level categories which relate to the concepts
of “good” and “bad” from reinforcement values. A mo-
tor map layer that learns to relate elementary actions to

their effects on the concepts’ key features finally orients
action.

2. Paper focus

For a robot aiming at developing higher-level concepts
about its environment, one fundamental problem is the
abstraction of highly redundant sensory signals into a
limited number of higher-level “objects” using a certain
vocabulary of low-level features. This process is alter-
natively called ”feature grouping”, ”perceptual organiza-
tion”, ”saliency detection” or simply ”segmentation”, and
is the focus of the lower-level layers of our architecture.

While image segmentation has been intensively stud-
ied most approaches make use of ad-hoc knowledge,
whether they make hypotheses about the image, pre-
define convenient features or set particular thresholds.
Our goal here is to propose a biologically-inspired model
of development for “perceptual organization” that avoids
as much as possible ad-hoc settings through the use of
unsupervised learning mechanisms.

Our argument will be articulated into two parts. We
will first describe the development of low-level local fea-
ture detectors that can perform a piecewise categorization
of the input. The aim of this layer is to discretize a con-
tinuous and complex input signal using a finite vocabu-
lary (or “codebook”) of features. Then we will consider
how these local features can be grouped using an agglom-
erative clustering mechanism whose underlying similar-
ity measures are learned from the features co-occurrence
statistics. Using Information Theory we will define what
a “good” abstraction level is and see how segmentation
results are adapted to the robot’s experience. The mech-
anisms we proposed will be illustrated with examples in
both color and edge segmentation.

3. Global design choices

Traditionally, the computational model of choice to emu-
late biological processes are Neural Networks (NN). One
problem with classical NN is that simply co-activating el-
ementary symbols leads to binding ambiguity when more
than one composite symbol is to be expressed; this is the
“binding problem” [von der Malsburg, 1995] [Rosenblatt,
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1961]. In NN feed-forward hierarchies, the only way to
capture increasingly complex features are combination or
“grandmother” cells, which leads to combinatorial explo-
sion. For the needs of compositionality, a mechanism of
dynamical binding between neurons or group of neurons
is needed [Bienenstock and Geman, 1995].

Basic bricks: We decided to use programming object-
oriented concepts that are well-adapted to the recursive
representation of abstraction hierarchies and the dynami-
cal “binding” of distributed information. The basic brick
of our system is a “Node”. Standing for an assembly of
cells, it can bind the information from different feature
spaces into one entity. A node may for example stand
for a simple image pixel along with its features “posi-
tion” and “color”, or for a whole object with features like
“shape”, “position” or “motion”. Just like neural popu-
lations may be composed of smaller ones, Nodes can be
hierarchically linked using “belongs-to” and “contains”
links. These links can code a conjunction of information
as well as a change in the level of abstraction at which
information is considered. “Related-to” links represent
at one abstraction level the possible interactions between
topologically neighboring Nodes. Each Node also has an
identification and a level within the hierarchy. A global
size variable gives the number of elemental particles con-
tained (nb-pts) in a Node.

Information coding: Within each Node, information
about a particular feature is considered statistically as a
histogram over component features’ categories. This de-
sign choice reflects the recent insight that information is
coded in the brain by populations of broadly tuned neu-
rons (“coarse coding”) in the shape of Probability Density
Functions [Pouget et al., 2000] [Anderson and Van Essen,
1994]. As expressed by [John, 2001],”The activity of any
individual cell is informational only insofar as it contributes to
the overall statistics of the population of which it is a member”.

Basic processing and initialization: Within our
framework, processing and learning will be seen in terms
of object creation, updating and dynamic binding. Clus-
ter analysis will be used as a unifying principle from
low-level vision abstraction to higher-level categoriza-
tion. The basic strategy of clustering is simple and gen-
eral: according to a certain similarity principle (to be de-
fined in section 5), some Nodes are grouped together and
the resulting “group” Node summarizes information of
interest in underlying Nodes’ attributes.

Before perceptual abstraction takes place, raw data is
first filtered through the feature detectors. At each loca-
tion a detector outputs for a local signal a histogram over
its corresponding feature categories. These histograms
will be the initial data of elementary Node (nb-pts=1) be-
fore clustering starts. The initial topological neighbor-
hood relationship between elementary Nodes (“related-
to” links) is given.

Figure 1: The general architecture of our system. The lower
layers of “feature categorization” and “perceptual abstraction”
are the focus of the paper.

4. The development of feature detectors

4.1 Biological process

In the visual cortex some neurons act in a very selective
way as feature detectors within a certain physical ”recep-
tive field” (e.g. selectiveness to a bar of a certain orien-
tation, color or form). Neurons responding to similar ori-
entations are grouped in columns and such columns ag-
gregate in ”hypercolumns” with all preferred values for
common receptive field. A cortical map can thus carry
out a complete piecewise analysis of the input in terms
of “local features”. Cortical maps were found to self-
organize according to the type of input and on the basis
of experience [Hubel and Wiesel, 1962]. Our goal here is
to emulate the development of such hypercolumns.

4.2 Mathematical models

To explain the development of local feature detectors, it
has been hypothesized that in the competition for sur-
vival, the cortex has discovered efficient coding strate-
gies. Several mathematical models based on the concepts
of “redundancy reduction” [Barlow, 1961], “mutual in-
formation maximization” [Bell and Sejnowski, 1997] and
“minimum entropy coding” [Olshausen and Field, 1996]
were used to produce results qualitatively similar to cell
properties. However most of these ”infomax” models are
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not biologically plausible (only outputs are), they need
pre-processing (e.g. whitening) and take a long time to
converge. We experimented with Hyvarinen fast method
[Hyvarinen and Hoyer, 2001] but found the setting of pa-
rameters difficult and had stability problems within our
dynamic environment. Another problem was the non-
hierarchical shape of obtained codebooks: it is compu-
tationally very heavy to compare each single input with
all basis vectors.

The key concept of recoding the sensory signal through
a codebook of feature detectors is the preservation of in-
formation using as little structure as possible. For in-
stance, for an input signal characterized by a certain prob-
ability distribution, it is more interesting for a feature de-
tector neuron to be selective for inputs around peaks of
distribution than in a range that has few chances to occur.
This is the reason why Infomax methods like Independent
Component Analysis try to find the peaks of distribution
for a random signal. We thought this behavior could be
approximated by simpler winner-takes-all categorization
methods1, and decided to take inspiration from Carpen-
ter and Grossberg’s (Fuzzy) Adaptive Resonance Theory
(ART) [Carpenter et al., 1991] that was introduced as a
theory of human cognitive information processing and is
well known for its fast and stable learning capabilities.

The main feature of ART systems is a matching
process between bottom-up input vector and top-down
learned categories. This matching leads to a ”resonant
state” that triggers prototype learning if the input vector
is close enough to the stored pattern or -if matching does
not occur within a certain tolerance (”vigilance”)- cre-
ation of a new pattern similar to the input vector. That no
stored pattern is modified unless it matches the input vec-
tor within a certain tolerance means that the system has
both plasticity and stability.

4.3 Basic architecture description

Our system goal is to progressively develop feature de-
tectors, neurons with a certain selectivity in feature space,
that will recode an input signal. This development is pro-
gressive and hierarchical and follows the shape of the
probability distribution of the signal towards its peaks.
One basic feature detector cell is represented by a Node.

Category representation. Each feature detector Node
has a certain selectivity, corresponding to a certain cat-
egory of signal feature. We express this category as a
hyper-rectangle in data space, with a ”range” defined by
a minimum and a maximum in each dimension (min[i],
max[i]) (fig.1). Each category also includes variance of

1Infomax models like ICA consider a signal S is represented as a
linear superposition of a set of basis functions Ai:S= ∑i si .Ai (gen-
erative approach). Learning rules could be generalized as a distri-
bution density gradient-following process similar to competitive cate-
gorization methods:Anew

i ← Aold
i + f (xTAold

i )(x−Aold
i ) with f (x) ∈

[0,1] associated with decorrelation of basis vectors:Ap+1 = Ap+1−
α∑ j∈[0,p] A

T
p+1A j .A j and re-normalizationAi = Ai

|Ai | .

Figure 2: Category learning with 2D data points (in green). Cat-
egories are rectangles (in blue). Neighborhood links are thin
lines (in gray). Complex cells are thick points (in red) and links
to simple cells are thick lines (in black). Down-left we can no-
tice two mixed gaussians had their peaks correctly detected

data for each dimension (var[i]) and keeps in memory the
total number “nb” of points it contains, that is to say the
number of input vectors that entered in resonance with it.

Category updates and creation. Similarly to ART,
there is a matching process between bottom-up input vec-
tors X and top-down learned categories C. To evaluate a
matching, the measures of similarity between two vectors
X and Y we use are:< x,y>= 1−( 1

dim.∑i(x[i]−y[i])2)−
1
2 and<

x,y >= X.Y
|X|.|Y| (dot product). Similarity between a vector X

and a category C is in both cases< X,C >= miny∈C < X,y >.
If the matching value is below a certain vigilance, a new
Node with a new category is created with :

max[i] = min[i] = center[i]
var[i] = 0

nb= 1

Otherwise there is resonance and the Node of closest
category is updated as:

i f (x[i] > max[i])max[i] = U(nb)∗x[i]+ (1−U(nb))max[i]
i f (x[i] < min[i])min[i] = U(nb)∗x[i]+ (1−U(nb))min[i]
var[i] = (nb∗var[i]+ (x[i]−center[i])2)/(nb+1)
center[i] = V(nb)∗x[i]+ (1−V(nb))∗center[i]

nb++

U and V are 2 parameter functions that determine the
rate of adaptation of the borders and the center of a cate-
gory.

Intersection of categories. One problem that can oc-
cur in ART systems is the proliferation of categories with
wide overlaps. As an option, our system can look during
matching for the closest category that - if chosen - would
not overlap with others. Considering two categories A
and B defined by(minA[i],maxA[i])and(minB[i],maxB[i]), inter-
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Figure 3: Category learning results as color quantization: an in-
put signal can be recoded using a vocabulary of 11 colors with-
out an important loss of information

section is easy to test: if∃i/(minA[i] > maxB[i])∪ (maxA[i] <

minB[i]) then the two categories do not intersect.

A hierarchical process. We embedded this basic
learning scheme in a hierarchical architecture where each
Node can recursively point to sub-category Nodes start-
ing from one “Root” which range is the whole feature
space ([m[i], M[i]). The process of matching and updat-
ing categories is recursively done at each level of the hi-
erarchy. The maximum number of subnodes a node can
have is defined beforehand.

Using the number of points “nb” in a category, the sys-
tem can recursively maintain for each category an esti-
mation of its importance, that is to say the probability
for a future input vector to enter in resonance with it:
Proba= E( nb

nb−root ) with “nb-root” the total number of vectors
that entered the root Node.

Using these statistics, a category can split in subcate-
gories when it reaches a certain probability(Proba> Pmin),
at the condition its variance, volume and size are im-
portant enough. ”Splitting” may inititiate uncommitted
(nb=0) subcategories randomly or according to the high-
est variance direction. Inversely, categories of negligible
importance can be deleted at periodic checks. A parallel
can be drawn with the natural processes of growth and
death of cells.

Neighborhood links. Every time a category is updated
and grows, the system recursively checks if it comes in
the neighborhood of another category, and in that case
a “related-to” link is created between the two category
nodes. for two categories A and B if∃i/( minA[i]−maxB[i]

M[i]−m[i] >

α)∪ ( minB[i]−maxA[i]
M[i]−m[i] > α) then A and B are not neighbors.α

determines how close the categories A and B must be to
be defined as neighbors. Ifα = 0 the categories must be
in contact. It is therefore possible to maintain for the low-
est nodes of the hierarchy a knowledge of neighborhood
relationships (2D “neighbors links” can be seen in fig.2).

Simple and complex cells. We call the lowest nodes
of the hierarchy “simple cells”. Since it would be inef-
ficient to account for different prototypes whose centers

converged to a similar peak of distribution, a final one-
step clustering method links each “simple cell” Node to
a “complex cell” Node. The procedure is the follow-
ing: Each node can be given a ”density” corresponding
to Proba

vol=∏i (max[i]−min[i]) from its probability and its volume in
feature space. Starting from the densest, for each simple
cell we check among its neighbors of higher density the
closest Node N2, and if the similarity between N1 and
N2’s attractor is higher than a threshold then N2’s attrac-
tor becomes also N1’s and is updated accordingly; else
a new attractor is created with N1 values. The ”complex
cells” thus obtained may not correspond exactly to the bi-
ological elements, but they do present a more complex se-
lectivity by pooling ”simple cells”. Complex cells are au-
tomaticaly listed and each obtains an identification num-
beraid ∈ [0,NBC] with NBC the total number of complex
cells.

Utilization. The recursive search for an input vector’s
category can be very efficient in the case we limited the
number of subnodes to two and used the non-overlapping
mode, since at each level we just need to check if input
x is within the range of one category. Though within a
feature space not fully explored that may lead for some
inputs to suboptimal classification, this has never been a
problem in practical use.

4.4 Results

The “parameter functions” we used areU(x) = 1: any new
vector is absorbed within the range of the category and
V(x) = 1

nb so the center of a category converges to the data’s
mean.

The behavior of the algorithm in 2D is illustrated in
fig.2 with a data distribution of 10,000 points. With a
high vigilance (0.93), the system developed a high num-
ber of ”simple cell” categories that were then clustered in
”complex cells”. Categorization was immediate.

In the case of color information, our method showed to
be an efficient color quantization algorithm. Fig.3 shows
the famous ”pepper” image expressed with a codebook of
11 categories. Learning was immediate.

We also applied our algorithm to the categorization
of local shape features. To express the local shape of
a luminance signal x[i], all input X are re-centered so
that ∑i xi = 0, then inserted in the system using the dot
product similarity measure. In that example, we used
V(x) =< x,Ai .center>3 to imitate Infomax methods’ learning
rule. Fig.4 shows a feature codebook that was learned in
3 to 4 minutes of exploration for an image definition of
200*200 and patches of 15*15. The figure under it shows
the example of one ”complex cell” with related ”simple
cells”. Learned detectors present an orientation selectiv-
ity with differences in shift like their biological models.

Thanks to its non-overlapping mode, our system can
obtain smaller categories than ART and cut on redun-
dancy. The “complex cell” clustering avoids overfitting.
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Figure 4: Learned codebook of localshape feature detectors
(15*15). Down: two examples of complex cell and associated
simple cells

5. The development of perceptual binding

5.1 Biological process

The following question is that of ”perceptual grouping”
or ”object unity”: how locally coded representation of
features can be ”gathered” together into a holistic per-
ception? In the first half of the century, the gestalt school
tried to explain perceptual organization by certain sim-
ple ”laws” like grouping by proximity, similarity, clo-
sure, symmetry, and good continuation [Koffka, 1935],
but the underlying neuronal processes were largely un-
known. It was then experimentally found that neurons in
separated columns of the visual cortex are able to syn-
chronize their oscillatory spiking-activities. This lead
to the proposal that ”perceptual binding” might be per-
formed by the visual cortex organizing into separate neu-
ron groups defined by synchronization [Gray and Singer,
1987] [von der Malsburg, 1995]. The degree of synchro-
nization would represent the perceptual saliency of an ob-
ject. Evidence supports the idea that this synchronization
could also subserve the integration of memory, emotions,
motor planning [Varela, 1995]. The ability to achieve
object unity seem to not be fully-formed in the neonate
but to develop over time [Johnson, 2002] and it had been
shown that synchronizing connections are susceptible to
use-dependent modifications [Herculano and al., 1999].

5.2 Mathematical interpretation of binding

As stated previously, an important concept is the Bar-
lowian principle of “redundancy reduction” [Barlow,
1961]: the goal of a perceptual system should be to min-
imize statistical dependencies of its inputs and come up
with a compact and sparse code. Asking what kind of in-
formation would be worth noting and keeping for a per-
ceptual system, Barlow advocated the concept of ”suspi-
cious coincidences”: the co-occurence of two events A
and B may justify remembering if this co-occurence is
surprising (=unlikely) given prior knowledge of the oc-

curence of individual events. Inversely two components
A and B should be combined in a composite object if
they can “predict” each other, since it may be a waste
of resources to consider them independently. An equiv-
alent view of the problem, that fits well our framework,
would be to see clustering as the transmission of maxi-
mum information using as few components -or Nodes- as
possible.

5.3 Learning a similarity measure.

To progressively cluster local features, we need a similar-
ity measure. However, in our system, a similarity mea-
sure between two input vectors A and B is not based on
a pre-defined distance (e.g. cartesian distance), but de-
pends on their statistical co-ocurrence. This learning is
possible because of the discretization of the input signal
in a finite number of feature categories.

The procedure is the following: at each time step, for
N elementary Nodes randomly chosen, the system con-
siders all direct neighbor nodes. The relative position of
two nodes can be classified according to AO angular ori-
entations and thus coded by a numberd ∈ [0,AO]. Since
each elementary Node refers to one of the NBC “com-
plex cell” feature categories that was learned during the
first phase, a feature A can be coded by its identification
numbera∈ [0,NBC].

With such a code, it is possible to keep a statistical ta-
ble of co-ocurrences T[AO][NBC][NBC] by increment-
ing, every time a couple of features (A,B) of identifica-
tion number (a,b) with directiond ∈ [0,AO] is randomly
registered, the elementsT[d][a][b], T[d][b][a], T[d][a][NBC],

T[d][b][NBC] and Total; where Total is the total number of
observed Node couples andT[d][a][NBC] = ∑i T[d][a][i].

The probabilities of the different events can be writ-
ten: P(B) = T[d][b][NBC]

Total andP(B/A,D) = T[d][a][b]
T[d][a][NBC] . A possible

coefficient of “Suspicious Coincidence” between two el-
ementary nodes (A,B,D) can therefore be written:

SC(D,A,B) = P(B/A,D)
P(B) = Total.T[d][a][b]

T[d][a][NBC].T[d][b][NBC]

The logarithm of this measure can also be used: this is
the Mutual InformationSC(D,A,B) = log( P(A,B,D)

P(A)P(B) ) of events
A and B. With such a measure, grouping can be seen as a
result of a minimum mutual information partitioning, that
is also a form of sparse coding.

However, since such measure may be difficult to in-
terpret without re-normalization, we use in practice (and
with better results!)- another measure of “suspicious co-
incidence” that is symmetric and in the range [0,1]. If we
write T[d][a][max] = maxb T[d][a][b], the measure we propose
is : SC(D,A,B) = T[d][a][b]+T[d][b][a]

T[d][a][max]+T[d][b][max] which is equal to 1 for a
couple (A,B) if they are both the most common neighbor
of the other.

Extension of the measure to feature histograms.
The measure of similarity we presented can be used with
elementary Nodes that refers to only one feature. This
measure is easily extended to more abstract Nodes refer-
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ing to an histogram of activity over feature categories.
If we write the histogram data S of a non-basic Node:
S= ∑i si∗Ai

∑i si
, the similarity measure of a couple of Nodes of

histograms K and L is:SC(D,K,L) = ∑i, j ki∗l j SC(D,Ai ,A j )
∑i ki∗∑ j l j

Segmentation strategy. Once percepts have been fil-
tered and represented within “local feature” Nodes, the
progressive ”binding” of these Node will be realized in
our system by a classical bottom-up greedy clustering.
Nodes that synchronize together shall point to a similar
superior Node that abstracts the information detained by
underlying Nodes through a weighted fusion of their his-
tograms (using nb-pts).

Neighbor relationships (“related-to” links) that also
represent possible synchronizations, are given for the
lowest nodes right at the output of the feature detectors,
and then propagated according to the Nodes’ fusions.

Since the creation of new Node objects for each new
segmentation would be very computationally heavy, all
nodes are in fact already instantiated in one big table.
What we do is therefore only to dynamically update
pointers and contained data while keeping for each level
of abstraction the indices of starting and ending node in
the table. Our clustering algorithm is the following:

Given a threshold T
For each node N1 at level n
. Check the most similar neighbor N2
. If (similarity > T)(
. If N2 has no superior Node give a sup. to N2
. Link N1 to N2’s superior and update the superior
. )else set N1’s superior as a copy of itself

Decrease threshold T

The only parameter of the algorithm is the pace at
which the threshold T is decreased. A slower pace will
give a little bit more robustness to the clustering at the
expense of memory and speed. The choice of this pace is
not critical though.

Stopping criterion. We do not use a stopping criterion
but instead let the algorithm run until the whole visual
scene can be summarized in one Node, we then backtrack
to find an appropriate level of abstraction we characterize
as preserving as much information as possible within as
few Nodes as possible.

If we write I(Li ,X) the mutual information between
the Nodes of the abstraction layerLi and raw input data
X; δIi = |I(Llast,X)− I(Li ,X)| measures the gain in mutual
information when considering the level of abstraction
Li instead of the last level with the unique NodeLlast.
Our criterion is to find the global maximum of the “per-
tinence” functionS(i) = |I(Llast,X)−I(Li ,X)|

log(1+nb−nodesi )
that evaluates the

gain of information relatively to the number of Nodes
usednb−nodesi when considering a percept at abstrac-
tion levelLi .

δIi can also be written using conditional entropy as:
δIi = |H(Llast/X)−H(Li/X)|= |H(Llast/X)−∑i Pi .H(Ci/X)|, where

Figure 5: An example of learned table: for one feature (A) and
one orientation (D), the most common features (B) are shown
with their probability (normalized to the maximum). We can
remark the self-similarity along the feature’s orientation.

H(Ci/X) is the conditional entropy of a clusterCi rela-
tively to its raw input X andPi is its proportional size
in the scene: nb−pts−Ci

nb−pts−Cf inal
. During clustering, though in-

formation on the pixels’ position is progressively lost,
information on the other features is summarized in his-
tograms. The conditional entropy of a clusterC con-
taining the histogramK = ∑i kiAi relatively to its raw in-
put X is thus equal to its conditional entropy with itself:
H(C/C) = ∑i, j ki .k j .log(P(Ai/A j )). This measure could be in-
terpreted as a measure of the “stability” of the clusterC.

The pertinence functionS(i) has one global maximum
that determines the level of abstraction at which the robot
will consider its visual field. With our clustering method,
based on a measure of similarity other than Mutual In-
formation,S(i) may present several local maxima, corre-
sponding to different numbers of clusters. As the robot
moves in its environment, qualitative changes in decom-
position can occur as a local maximum becomes global.

5.4 Results

We used our method to segment images using color
and edge orientation. A ”Suspicious Coincidence” ta-
ble was learned for image patches using four directions:
(0,π/4,π/2,3π/4) (fig.5) and in the case of color with
no orientation distinction. The visual scenes presented to
the system were synthetic images from a 3D simulator
and pictures from a thematic series.

Feature segmentation was done using a coverage of
5*5 pixels patches in 200*200 images so that two neigh-
bor basic nodes share half their receptive field. Our al-
gorithm was able to segment simple simulator images
into more or less ”homogeneous” and ”line” areas (fig.7).
However no contour completion can be done with our al-
gorithm since local relationships of features are progres-
sively lost while homogeneous clusters emerge. Real-
world images were less successful and will need further
enquiry.

Color segmentation gave some very interesting results.
Starting from only local color information at the pixel
level, our algorithm was able to segment correctly tex-
tured real world images (see fig.6). In the case of the
simulator, with no consideration on visual contrast, the
system was able to ”guess” from its experience that the

56



Figure 6: Color segmentation of real-world images from the-
matic series.

white and black squares composing the wall should be
seen as one entity (fig.8).

The stopping criterion had been tested with both simu-
lator and real images and produced results, on the choice
of a level of abstraction, that were coherent with the
choice a human user would have done. Within the simu-
lator, the criterion also proved to be robust, with a good
stability in the decomposition of a scene from one frame
to the next. Changes in abstraction level happen for in-
stance when the robot moves towards an object until this
object occupy most of the field of vision; details of this
object then “spring out” (fig.8).

Segmentation times on a Pentium IV 2.5Ghz were typ-
ically less than 0.3 seconds for a 200*200 image in 8-10
abstraction steps. The code is in Java.

6. Conclusion and future work

With “traditional” segmentation techniques, one has to
choose between robustness and speed. The simplest
method such as thresholding can be used in real-time
applications but face problems with more complex tex-
tured images. On the other hand, global energy opti-
mization methods can perform quality segmentation but
are computationally heavy. A common weakness is a
reliance on ad-hoc parameters. (For a review see [Pal
and Pal, 1993].) Adaptive approaches were proposed, but
they usually rely on a pre-specified evaluation function
[Bhanu and Lee, 1994] or a database of manually seg-
mented images [Meila and Shi, 2000]. Fewer approaches
have the goal of biological modeling, e.g. oscillatory net-
works [Terman and Wang, 1995]; but these are sensitive
to noise.

We presented models of development for both lo-
cal feature detectors and perceptual binding based on

Figure 7: Up: Edge grouping on simulator image. Down: Edge
grouping with real-world images (“peppers” and “tiger” images
shown previously in fig.6). A random color expresses a syn-
chronized group of neurons.

Figure 8: Example of three successive scene abstractions as the
robot navigates towards a wooden wall. From a certain dis-
tance, the details on the wall appear as relevant. Up: raw im-
age. Down: the selected level of abstraction. Middle: the curve
of decomposition pertinence S(i). The point the farthest on the
right corresponds to the final Node then towards the left are the
different possible levels of abstraction. Numbers indicate the
chosen number of clusters for a decomposition: 4 for the left
frame, 2 for the middle frame and 10 for the right frame. The
possible sub-decomposition of the wooden panel could be seen
as the 18-clusters S(i) local maximum in middle frame.
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neurobiologically-inspired dynamic mechanisms. While
our method inherits the simplicity and speed of pixel clas-
sification and clustering techniques, our system can au-
tonomously learn from local statistics binding rules that
may handle more complex patterns (e.g. textures). More-
over, the learning of co-occurrence statistics between fea-
tures allows an Information Theoretic interpretation of
what a “pertinent” decomposition is. Another -more
fundamental- result of this work is the demonstration that
Perceptual Organization (and hence the Gestalt Criteria)
could be based on minimal and generic bottom-up mech-
anisms with a simple probabilistic foundation.

Thanks to segmentation, we now have the decomposi-
tion of a scene in few high-level objects with statistical
features (e.g. color histograms). These objects can be
further characterized by their envelope’s shape and their
position in the scene. From this level, we are now investi-
gating how more complex features - like “object features”
- can be developed in a bottom-up manner, and how they
can be linked with the top-down reinforcement values
that characterize a concept. Our strategy is to extend the
simple and general idea of Adaptive Resonance Theory
from vectors of fixed dimension, to non-dimensional en-
tities like histograms, weighted combinations of features,
and recursive compositions of objects.
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