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Abstract

For a robot to be capable of development, it
must be able to explore its environment and
learn from its experiences. It must find (or
create) opportunities to experience the unfa-
miliar in ways that reveal properties valid be-
yond the immediate context. In this paper, we
develop a novel method for using the rhythm
of everyday actions as a basis for identifying
the characteristic appearance and sounds as-
sociated with objects, people, and the robot
itself. Our approach is to identify and seg-
ment groups of signals in individual modali-
ties (sight, hearing, and proprioception) based
on their rhythmic variation, then to identify
and bind causally-related groups of signals
across different modalities. By including pro-
prioception as a modality, this cross-modal
binding method applies to the robot itself,
and we report a series of experiments in which
the robot learns about the characteristics of
its own body.

1. Introduction

To robots and young infants, the world is a puzzling
place, a confusion of sights and sounds. But buried
in the noise there are hints of regularity. Some of
this is natural; for example, objects tend to go thud
when they fall over and hit the ground. Some is due
to the child; for example, if he shakes his limbs in
joy or distress, and one of them happens to pass in
front of his face, he will see a fleshy blob moving in a
familiar rhythm. And some of the regularity is due to
the efforts of a caregiver; consider an infant’s mother
trying to help her child learn and develop, perhaps
by tapping a toy or a part of the child’s body (such
as his hand) while speaking his name, or making a
toy’s characteristic sound (such as the bang-bang of
a hammer).

In this paper we seek to extract useful information
from repeated actions performed either by a care-
giver or the robot itself. Observation of infants shows
that such actions happen frequently, and from a com-

putational perspective they are ideal learning mate-
rial since they are easy to identify and offer a wealth
of redundancy (important for robustness). The infor-
mation we seek from repeated actions are the char-
acteristic appearances and sounds of the object, per-
son, or robot involved, with context-dependent infor-
mation such as the visual background or unrelated
sounds stripped away. This may allow the robot to
generalize its experience beyond its immediate con-
text and, for example, later recognize the same ob-
ject used in a different way.

We wish our system to be scalable, so that it can
correlate and integrate multiple sensor modalities
(currently sight, sound, and proprioception). To that
end, we detect and cluster periodic signals within
their individual modalities, and only then look for
cross-modal relationships between such signals. This
avoids a combinatorial explosion of comparisons, and
means our system can be gracefully extended to deal
with new sensor modalities in future (touch, smell,
etc).

This paper begins by introducing our robotic plat-
form and what it can sense. We then introduce the
methods we use for detecting regularity in individ-
ual modalities and the tests applied to determine
when to ‘bind’ features in different modalities to-
gether. The remainder (and larger part) of the paper
presents experiments where the robot detects regu-
larity in objects, people it encounters, and finally
itself.

2. Platform and percepts

This work is implemented on the humanoid robot
Cog (Brooks et al., 1999). Cog has an active vision
head, two six-degree of freedom arms, a rotating
torso, and a microphone array arranged along its
shoulders. For this paper, we work with visual in-
put from one of Cog’s four cameras, acoustic input
from the microphone array, and proprioceptive feed-
back from joints in the head, torso, and arms.

Figure 1 shows how the robot’s perceptual state
can be summarized – the icons shown here will be
used throughout the paper. The robot can detect
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Figure 1: A summary of the possible perceptual states of

our robot – the representation shown here will be used

throughout the paper. Events in any one of the three

modalities (sight, proprioception, or hearing) are indi-

cated as in block 1. When two events occur in different

modalities, they may be independent (top of 2) or bound

(bottom of 2). When events occur in three modalities,

the possibilities are as shown in 3.

periodic events in any of the individual modalities
(sight, hearing, proprioception). Any two events that
occur in different modalities will be compared, and
may be grouped together if there is evidence that
they are causally related or bound. Such relations
are transitive: if events A and B are bound to each
other, and B and C are bound to each other, then
A and C will also be bound. This is important for
consistent, unified perception of events.

This kind of summarization ignores cases in
which there are, for example, multiple visible ob-
jects moving periodically making different sounds.
We return to this point later in the paper. We
have previously demonstrated that our system can
deal well with multiple-binding cases, since it
performs segmentation in the individual modali-
ties (Arsenio and Fitzpatrick, 2003). For this work,
we expect the caregiver is cooperative, and do not
expect the malicious introduction of distractors into
the robot’s environment – but nevertheless dealing
with such cases is a valuable feature of our algorithm,
which we now present.

Figure 2: When watching a person using a hammer, the

robot detects and groups points moving in the image with

similar periodicity (Arsenio et al., 2003) to find the over-

all trajectory of the hammer and separate it out from the

background. The detected trajectory is shown on the

left (for clarity, just the coordinate in the direction of

maximum variation is plotted), and the detected object

boundary is overlaid on the image on the right.

3. Detecting periodic events

We are interested in detecting conditions that re-
peat with some roughly constant rate, where that
rate is consistent with what a human can easily pro-
duce and perceive. This is not a very well defined
range, but we will consider anything above 10Hz to
be too fast, and anything below 0.1Hz to be too slow.
Repetitive signals in this range are considered to be
events in our system. For example, waving a flag is
an event, clapping is an event, walking is an event,
but the vibration of a violin string is not an event
(too fast), and neither is the daily rise and fall of the
sun (too slow). Such a restriction is related to the
idea of natural kinds (Hendriks-Jansen, 1996), where
perception is based on the physical dimensions and
practical interests of the observer.

To find periodicity in signals, the most obvi-
ous approach is to use some version of the Fourier
transform. And indeed our experience is that
use of the Short-Time Fourier Transform (STFT)
demonstrates good performance when applied to
the visual trajectory of periodically moving ob-
jects (Arsenio et al., 2003). For example, Figure 2
shows a hammer segmented visually by tracking and
grouping periodically moving points. However, our
experience also leads us to believe that this approach
is not ideal for detecting periodicity of acoustic sig-
nals. Of course, acoustic signals have a rich struc-
ture around and above the kHz range, for which
the Fourier transform and related transforms are
very useful. But detecting gross repetition around
the single Hz range is very different. The sound
generated by a moving object can be quite compli-
cated; while the object has inertial and continuity
constaints on its position, those constraints have lit-
tle impact on sound generation. In our experiments,
we find that acoustic signals may vary considerably
in amplitude between repetitions, and that there is
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Figure 3: Extraction of an acoustic pattern from a pe-

riodic sound (a hammer banging). The algorithm for

signal segmentation is applied to each normalized fre-

quency band. The box on the right shows one complete

segmented period of the signal. Time and frequency axes

are labeled with single and double arrows respectively.

significant variability or drift in the length of the pe-
riods. These two properties combine to reduce the
efficacy of Fourier analysis. This led us to the de-
velopment of a more robust method for periodicity
detection, which is now described. In the follow-
ing discussion, the term signal refers to some sensor
reading or derived measurement, as described at the
end of this section. The term period is used strictly
to describe event-scale repetition (in the Hz range),
as opposed to acoustic-scale oscillation (in the kHz
range).

Period estimation – For every sample of the sig-
nal, we determine how long it takes for the sig-
nal to return to the same value from the same
direction (increasing or decreasing), if it ever
does. For this comparison, signal values are
quantizing adaptively into discrete ranges. In-
tervals are computed in one pass using a look-
up table that, as we scan through the sig-
nal, stores the time of the last occurrence of a
value/direction pair. The next step is to find the
most common interval using a histogram (which
requires quantization of interval values), giving
us an initial estimate pestimate for the event pe-
riod. This is essentially the approach presented
in (Arsenio and Fitzpatrick, 2003). For the work
presented in this paper, we extended this method
to explicitly take into account the possibility of
drift and variability in the period, as follows.

Clustering – The previous procedure gives us an
estimate pestimate of the event period. We now
cluster samples in rising and falling intervals of
the signal, using that estimate to limit the width
of our clusters but not to constrain the distance
between clusters. This is a good match with real
signals we see that are generated from human ac-
tion, where the periodicity is rarely very precise.
Clustering is performed individually for each of
the quantized ranges and directions (increasing
or decreasing), and then combined afterwards.

Figure 4: Results of an experiment in which the robot

could see a car and a cube, and both objects were mov-

ing – the car was being pushed back and forth on a table,

while the cube was being shaken (it has a rattle inside).

By comparing periodicity information, the high-pitched

rattle sound and the low-pitched vroom sound were dis-

tinguished and bound to the appropriate object, as shown

on the spectrogram. The object segmentations shown

were automatically determined.

Starting from the first signal sample not assigned
to a cluster, our algorithm runs iteratively un-
til all samples are assigned, creating new clus-
ters as necessary. A signal sample extracted at
time t is assigned to a cluster with center ci if
‖ ci − t ‖2< pestimate/2. The cluster center is the
average time coordinate of the samples assigned
to it, weighted according to their values.

Merging – Clusters from different quantized ranges
and directions are merged into a single cluster if
‖ ci − cj ‖2< pestimate/2 where ci and cj are the
cluster centers.

Segmentation – We find the average interval be-
tween neighboring cluster centers for positive and
negative derivatives, and break the signal into
discrete periods based on these centers. Notice
that we do not rely on an assumption of a con-
stant period for segmenting the signal into re-
peating units. The average interval is the final
estimate of the signal period.

The output of this entire process is an estimate of
the period of the signal, a segmentation of the sig-
nal into repeating units, and a confidence value that
reflects how periodic the signal really is. The period
estimation process is applied at multiple temporal
scales. If a strong periodicity is not found at the de-
fault time scale, the time window is split in two and
the procedure is repeated for each half. This consti-
tutes a flexible compromise between both the time
and frequency based views of a signal: a particular
movement might not appear periodic when viewed
over a long time interval, but may appear as such at
a finer scale.

Figure 2 shows an example of using period-
icity to visual segment a hammer as a human
demonstrates the periodic task of hammering,
while Figure 3 shows segmentation of the sound
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Figure 5: Here the robot is shown a tambourine in use.

The robot detects that there is a periodically moving

visual source, and a periodic sound source, and that the

two sources are causally related and should be bound. All

images in these figures are taken directly from recordings

of real-time interactions, except for the summary box in

the top-left (included since in some cases the recordings

are of poor quality). The images on the far right show the

visual segmentations recorded for the tambourine in the

visual modality. The background behind the tambourine,

a light wall with doors and windows, is correctly removed.

Acoustic segmentations are generated but not shown (see

Figures 3 and 4 for examples).

of the hammer in the time-domain. Segmenta-
tion in the frequency-domain was demonstrated
in (Arsenio and Fitzpatrick, 2003) and is illustrated
in Figure 4). For these examples and all other ex-
periments described in this paper, our system tracks
moving pixels in a sequence of images from one of
the robot’s cameras using a multiple tracking algo-
rithm based on a pyramidal implementation of the
Lukas-Kanade algorithm. A microphone array sam-
ples the sounds around the robot at 16kHz. The
Fourier transform of this signal is taken with a win-
dow size of 512 samples and a repetition rate of
31.25Hz. The Fourier coefficients are grouped into
a set of frequency bands for the purpose of further
analysis, along with the overall energy.

4. Learning about objects

Segmented features extracted from visual and acous-
tic segmentations (using the method presented
in last section) can serve as the basis for an
object recognition system. In the visual do-
main, (Fitzpatrick, 2003) used segmentations de-
rived through physical contact as an opportunity for

a robot to become familiar with the appearance of
objects in its environment and grow to recognize
them. (Krotkov et al., 1996) has looked at recog-
nition of the sound generated by a single contact
event. Visual and acoustic cues are both individually
important for recognizing objects, and can comple-
ment each other when, for example, the robot hears
an object that is outside its view, or it sees an object
at rest. But when both visual and acoustic cues are
present, then we can do even better by looking at the
relationship between the visual motion of an object
and the sound it generates. Is there a loud bang at
an extreme of the physical trajectory? If so we might
be looking at a hammer. Are the bangs at either ex-
treme of the trajectory? Perhaps it is a bell. Such
relational features can only be defined and factored
into recognition if we can relate or bind visual and
acoustic signals.

Several theoretical arguments support the idea
of binding by temporal oscillatory signal correla-
tions (von der Malsburg, 1995). From a practical
perspective, repetitive synchronized events are ideal
for learning since they provide large quantities of re-
dundant data across multiple sensor modalities. In
addition, as already mentioned, extra information is
available in periodic or locally-periodic signals such
as the period of the signal, and the phase relation-
ship between signals from different senses – so for
recognition purposes the whole is greater than the
sum of its parts.

Therefore, a binding algorithm was developed to
associate cross-modal, locally periodic signals, by
which we mean signals that have locally consistent
periodicity, but may experience global drift and vari-
ation in that rhythm over time. In our system, the
detection of periodic cross-modal signals over an in-
terval of seconds using the method described in the
previous section is a necessary (but not sufficient)
condition for a binding between these signals to take
place. We now describe the extra constraints that
must be met for binding to occur.

For concreteness assume that we are comparing a
visual and acoustic signal. Signals are compared by
matching the cluster centers determined as in the
previous section. Each peak within a cluster from
the visual signal is associated to a temporally close
(within a maximum distance of half a visual period)
peak from the acoustic signal, so that the sound
peak has a positive phase lag relative to the visual
peak. Binding occurs if the visual period matches the
acoustic one, or if it matches half the acoustic period,
within a tolerance of 60ms. The reason for consid-
ering half-periods is that often sound is generated
at the fastest points of an object’s trajectory, or the
extremes of a trajectory, both of which occur twice
for every single period of the trajectory. Typically
there will be several redundant matches that lead
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Figure 6: In this experiment, the robot sees people shak-

ing their head. In the top row, the person says “no, no,

no” in time with his head-shake. The middle row shows

the recorded state of the robot during this event – it binds

the visually tracked face with the sound spoken. The

lower row shows the state during a control experiment,

when a person is just nodding and not saying anything.

Recorded segmentations for these experiments are shown

on the right.

to binding within a window of the sensor data for
which several sound/visual peaks were detected. In
(Arsenio and Fitzpatrick, 2003), we describe a more
sophisticated binding method that can differentiate
causally unconnected signals with periods that are
similar just by coincidence, by looking for a drift in
the phase between the acoustic and visual signal over
time, but such nuances are less important in a benign
developmental scenario supported by a caregiver.

Figure 5 shows an experiment in which a person
shook a tambourine in front of the robot for a while.
The robot detected the periodic motion of the tam-
bourine, the rhythmic rise and fall of the jangling
bells, and bound the two signals together in real-
time.

5. Learning about people

In this section we do not wish to present any new al-
gorithms, but rather show that the cross-modal bind-
ing method we developed for object perception also
applies to perceiving people. Humans often use body
motion and repetition to reinforce their actions and
speech, especially with young infants. If we do the
same in our interactions with Cog, then it can use
those cues to link visual input with corresponding
sounds. For example, Figure 6 shows a person shak-
ing their head while saying “no! no! no!” in time to
his head motion. The figure shows that the robot ex-
tracts a good segmentation of the shaking head, and

Figure 7: Once the cross-modal binding system was in

place, the authors started to have fun. This figure shows

the result of one author jumping up and down like crazy

in front of the robot. The thud as he hit the floor was

correctly bound with segmentations of his body (column

on right). The bottom row shows segmentations from a

similarly successful experiment where the other author

started applauding the robot.

links it with the sound signal. Such actions appear
to be understood by human infants at around 10-12
months (American Academy Of Pediatrics, 1998).

Sometimes a person’s motion causes sound, just as
an ordinary object’s motion might. Figure 7 shows
a person jumping up and down in front of Cog. Ev-
ery time he lands on the floor, there is a loud bang,
whose periodicity matches that of the tracked visual
motion. We expect that there are many situations
like this that the robot can extract information from,
despite the fact that those situations were not con-
sidered during the design of the binding algorithms.
The images in all these figures are taken from online
experiments – no offline processing is done.

6. Learning about the self

So far we have considered only external events that
do not involve the robot. In this section we turn to
the robot’s perception of its own body. Cog treats
proprioceptive feedback from its joints as just an-
other sensory modality in which periodic events may
occur. These events can be bound to the visual ap-
pearance of its moving body part – assuming it is
visible – and the sound that the part makes, if any
(in fact Cog’s arms are quite noisy, making an audi-
ble “whirr-whirr” when they move back and forth).

Figure 8 shows a basic binding experiment, in
which a person moved Cog’s arm while it is out of
the robot’s view. The sound of the arm and the
robot’s proprioceptive sense of the arm moving are
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Figure 8: In this experiment, a person grabs Cog’s arm

and shakes it back and forth while the robot is looking

away. The sound of the arm is detected, and found to be

causally related to the proprioceptive feedback from the

moving joints, and so the robot’s internal sense of its arm

moving is bound to the external sound of that motion.

bound together. This is an important step, since in
the busy lab Cog inhabits, people walk into view all
the time, and there are frequent loud noises from the
neighboring machine shop. So cross-modal rhythm
is an important cue for filtering out extraneous noise
and events of lesser interest.

In Figure 9, the situation is similar, with a per-
son moving the robot’s arm, but the robot is now
looking at the arm. In this case we see our first
example of a binding that spans three modalities:
sight, hearing, and proprioception. The same is true
in Figure 10, where Cog shakes its own arm while
watching it in a mirror. This idea is related to work
in (Metta and Fitzpatrick, 2003), where Cog located
its arm by shaking it.

An important milestone in child development is
reached when the child recognizes itself as an indi-
vidual, and identifies its mirror image as belonging to
itself (Rochat and Striano, 2002). Self-recognition
in a mirror is also the focus of extensive study
in biology. Work on self-recognition in mirrors
for chimpanzees (Gallup et al., 2002) suggests that
animals other than humans can also achieve such
competency, although the interpretation of such re-
sults requires care and remains controversial. Self-
recognition is related to the notion of a theory-of-
mind, where intents are assigned to other actors,
perhaps by mapping them onto oneself, a topic of
great interest in robotics (Kozima and Yano, 2001,
Scassellati, 2001). Proprioceptive feedback provides

Figure 9: In this experiment, a person shakes Cog’s arm

in front of its face. What the robot hears and sees has the

same rhythm as its own motion, so the robot’s internal

sense of its arm moving is bound to the sound of that

motion and the appearance of the arm.

very useful reference signals to identify appearances
of the robot’s body in different modalities. That is
why we extended our binding algorithm to include
proprioceptive data.

Children between 12 and 18 months of age be-
come interested in and attracted to their reflec-
tion (American Academy Of Pediatrics, 1998). Such
behavior requires the integration of visual cues from
the mirror with proprioceptive cues from the child’s
body. As shown in Figure 11, the binding algo-
rithm was used not only to identify the robot’s
own acoustic rhythms, but also to identify visu-
ally the robot’s mirror image (an important mile-
stone in the development of a child’s theory of
mind (Baron-Cohen, 1995)). It is important to stress
that we are dealing with the low-level perceptual chal-
lenges of a theory of mind approach, rather than the
high-level inferences and mappings involved. Cor-
relations of the kind we are making available could
form a grounding for a theory of mind and body-
mapping, but are not of themselves part of a the-
ory of mind – for example, they are completely un-
related to the intent of the robot or the people
around it, and intent is key to understanding oth-
ers in terms of the self (Kozima and Zlatev, 2000,
Kozima and Yano, 2001). Our hope is that the per-
ceptual and cognitive research will ultimately merge
and give a truly intentional robot that understands
others in terms of its own goals and body image –
an image which could develop incrementally using
cross-modal correlations of the kind explored in this
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Figure 10: In this experiment, Cog is looking at itself

in a mirror, while shaking its arm back and forth (the

views on the right are taken by a camera behind the

robot’s left shoulder, looking out with the robot towards

the mirror). The reflected image of its arm is bound to

the robot’s sense of its own motion, and the sound of the

motion. This binding is identical in kind to the bind-

ing that occurs if the robot sees and hears its own arm

moving directly without a mirror. However, the appear-

ance of the arm is from a quite different perspective than

Cog’s own view of its arm.

paper.

7. Discussion and conclusions

Most of us have had the experience of feeling a tool
become an extension of ourselves as we use it (see
(Stoytchev, 2003) for a literature review). Many of
us have played with mirror-based games that distort
or invert our view of our own arm, and found that we
stop thinking of our own arm and quickly adopt the
new distorted arm as our own. About the only form
of distortion that can break this sense of ownership is
a delay between our movement and the proxy-arm’s
movement. Such experiences argue for a sense of self
that is very robust to every kind of transformation
except latencies. Our work is an effort to build a per-
ceptual system which, from the ground up, focuses
on timing just as much as content. This is powerful
because timing is truly cross-modal, and leaves its
mark on all the robot’s senses, no matter how they
are processed and transformed.

We are motivated by evidence from human percep-
tion that strongly suggests that timing information
can transfer between the senses in profound ways.
For example, experiments show that if a short frag-
ment of white noise is recorded and played repeat-
edly, a listener will be able to hear its periodicity.

hand arm

body head

Figure 11: Cog can be shown different parts of its body

simply by letting it see that part (in a mirror if necessary)

and then shaking it, such as its (right) hand or (left)

flipper. Notice that this works for the head, even though

shaking the head also affects the cameras.

Figure 12: This figure shows a real-time view of the

robot’s status during the experiment in Figure 9. The

robot is continually collecting visual and auditory seg-

mentations, and checking for cross-model events. It also

compares the current view with its database and per-

forms object recognition to correlate with past experience

(bottom right).

But as the fragment is made longer, at some point
this ability is lost. But the repetition can be heard
for far longer fragments if a light is flashed in syn-
chrony with it (Bashford et al., 1993) – flashing the
light actually changes how the noise sounds. More
generally, there is evidence that the cues used to
detect periodicity can be quite subtle and adaptive
(Kaernbach, 1993), suggesting there is a lot of po-
tential for progress in replicating this ability beyond
the ideas already described.

Although there is much to do, from a practical per-
spective a lot has already been accomplished. Con-
sider Figure 12, which shows a partial snapshot of the
robot’s state during one of the experiments described
in the paper. The robot’s experience of an event is
rich, with many visual and acoustic segmentations
generated as the event continues, relevant prior seg-
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mentations recalled using object recognition, and the
relationship between data from different senses de-
tected and stored. We believe that this kind of expe-
rience will form one important part of a perceptual
toolbox for autonomous development, where many
very good ideas have been hampered by the difficulty
of robust perception.

Another ongoing line of research we are pursuing
is truly cross-modal object recognition. A hammer
causes sound after striking an object. A toy truck
causes sound while moving rapidly with wheels spin-
ning; it is quiet when changing direction – therefore,
the car’s acoustic frequency is twice as much as the
frequency of its visual trajectory. A bell typically
causes sound at either extreme of motion. All these
statements are truly cross-modal in nature, and with
our system we can begin to use such properties for
recognition.
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