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Abstract

We present a quantitative investigation on
the effects of a discrete developmental pro-
gression on the acquisition of a foveation be-
havior by a robotic hand-arm-eyes system.
Development is simulated by (a) increasing
the resolution of visual and tactile systems,
(b) freezing and freeing mechanical degrees of
freedom, and (c) adding neuronal units to the
neural control architecture. Our experimen-
tal results show that a system starting with a
low-resolution sensory system, a low precision
motor system, and a low complexity neural
structure, learns faster that a system which is
more complex at the beginning.

1. Introduction

Development is an incremental process, in the sense
that behaviors and skills acquired at a later point in
time can be bootstrapped from earlier ones, and it is
historical, in the sense that each individual acquires
its own personal history (Thelen, 1999). It is well
known that newborns and young infants have various
morphological, neural, cognitive, and behavioral lim-
itations, e.g., in neonates color perception and visual
acuity are poor implying a poor tracking behavior;
working memory and attention are restricted; and
movements lack control and coordination. The state
of immaturity of sensory, motor, and cognitive sys-
tems, a salient characteristic of development, at first
sight appears to be an inadequacy.

Here, we argue that rather than being a problem,
early morphological and cognitive limitations effec-
tively decrease the amount of information that in-
fants have to deal with, and may lead to an increase
of the overall adaptivity of the organism. Such a

theoretical position has been already pioneered by
Turkewitz and Kenny (1982) more than 20 years ago.
With respect to neural information processing, a sim-
ilar point was made also by Elman (1993). More
specifically, it has been suggested that by initially
limiting the number of mechanical degrees of free-
dom that need to be controlled, the complexity of
motor learning is reduced. Indeed, an initial freezing
of degrees of freedom followed by a subsequent free-
ing might be the strategy figured out by Nature to
solve the degrees of freedom problem first pointed out
by Bernstein (1967), that is, the problem of why de-
spite the highly complex nature of the human body,
well-coordinated and precisely controlled movements
emerge over time. The aim of this paper is to pro-
vide support for the hypothesis that “starting small”
makes an agent more adaptive and robust against en-
vironmental perturbations.

Other attempts have shared explicitly or implicitly
a similar research hypothesis. Nagai et al. (2003),
for instance, applied a developmentally inspired ap-
proach to robotics in the context of joint attention.
The effect of phases of freezing and freeing of me-
chanical degrees of freedom for the acquisition of mo-
tor skills was examined by Lungarella and Berthouze
(2002). Although based on the same research hy-
pothesis, the present study makes at least two novel
contributions: (a) it considers concurrent “develop-
mental changes” in three different systems, i.e., sen-
sory, motor, and neural; and (b) it quantitatively
compares a “developing” system to a “nondevelop-
ing” system.
Obviously, an understanding of development cannot
be limited to the investigation of control architec-
tures only, but must include considerations on phys-
ical growth, change of shape, and body composi-
tion, which are salient characteristics of maturation.
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Given the current state of technology, however, it
is not easy to construct physically growing robots.
We therefore propose a method to “simulate” de-
velopment in an embodied artifact at the levels of
sensory, motor, and neural system. In the following,
we present quantitative results demonstrating how a
concurrent increase of sensory resolution, motor pre-
cision and neural capabilities can shape an agent’s
ability to learn a task in the real world, and speed
up the learning process.

2. Experimental setup

Our experimental setup consisted of: (a) an indus-
trial robot manipulator with six degrees of freedom
(DOF), (b) a color stereo active vision system, and
(c) a set of tactile sensors placed on the robots grip-
per. As can be seen in Figure 1, joint J0 (“shoulder”)
was responsible for the rotation around the vertical
axis, joint J2 (“elbow”), joint J1 (“shoulder”) and
joint J3 (“wrist”) were responsible for the up and
down movements; joint J4 (“wrist”) rotated the grip-
per around the horizontal axis. The additional DOF
came from the gripping manipulator.

3. Task specification

The task of the robot was to learn how to bring a
colored object from the periphery of the visual field
to the center of it through movements of its robotic
arm. At the outset of each experimental run, the ac-
tive vision system was initialized to look at the center
of the visual scene (xc, yc), and the position of its
motors were kept steady throughout the operation.
The robot arm was placed at a random position in
the periphery of the robot’s visual field and a colored
object was put in its gripper. Once the object was
detected by the pressure sensors the robot started to
learn how to move the arm in order to bring the ob-
ject from the periphery of the visual field (x0, y0) to
the center of it (xc, yc). For more details see Gómez
and Eggenberger Hotz (2004).

4. Neural control architecture

The components of the neural structure and its con-
nections to the robot arm are depicted in Figure 1.
For more details see (Eggenberger Hotz et al., 2002;
Gómez and Eggenberger Hotz, 2004).

4.1 Sensory field

The sensory field had three components: (a) Color :
Neuronal units of area RedColorField (see Figure
1a) were active when the value of a “broadly” color-
tuned channel for red: R=r-(g+b)/2 passed a given
threshold θ1, (b) Motion detection: Neuronal units
of areas RedMovementToRightField (see Figure 1b)
and RedMovementToLeftField (see Figure 1d) were

active when the value of a motion detector reactive to
red objects passed a given threshold θ2, and (c) Pro-
prioceptive feedback : The movements of each joint
of the robot arm were encoded using eight neuronal
units. Joint J0 had a range of movements from -60
to 60 degrees, joint J1 moved in a range from -25 to
25 degrees, and joint J2 moved in a range from 0 to
100 degrees.

4.2 Learning Mechanism

The active neurons controlling the robot arm were
“rewarded” if the movement of the arm brought the
colored object closer to the center of the visual field
and “punished” otherwise. In this way the synaptic
connections between the neuronal areas Neuronal-
Field (see Figure 1e) and MotorField (see Figure 1f)
were changed. A learning cycle (i.e., the period dur-
ing which the current sensory input is processed, the
activities of all neuronal units are computed, the con-
nection strengths of all synaptic connections are up-
dated, and the motor outputs are generated) had a
duration of approximately 0.35 seconds.

5. Simulating development in a real
robot

Because we are dealing with embodied systems, there
are two dynamics, the physical one or body dynam-
ics and the control one or neural dynamics. There
is the deep and important question of how the two
can be coupled in optimal ways. It has been hypoth-
esized that given a particular task environment, a
crucial feature of adaptive behavior is a balance be-
tween the complexity of an organism’s sensor, motor,
and control system (this is also referred to as princi-
ple of ecological balance) (Pfeifer and Scheier, 1999).
Here, we extended this principle to developmental
time, and attempted to comply to it by simultane-
ously increasing the sensor resolution, the precision
of the motors, as well as the size of the neural struc-
ture. Such concurrent changes provide the basis for
maintaining an adequate balance between the com-
plexity of the three sub-systems, which reflects the
development of biological systems.

The robot’s movements were continuously shaped
by the aforementioned learning mechanism, and “de-
velopmental” changes were triggered by the robot’s
internal performance evaluator (see definition of in-
dex “P” for the robot’s task performance in Section
6.). Such changes consisted in advancing the present
developmental stage (DS-i) to the next one (DS-i+1).

This was achieved as follows: (a) the resolution of
the camera image was increased (by increasing the
sharpness of a Gaussian blur lowpass filter applied
to the original image capture by the cameras), and
one or two pressure sensors were added, (b) another
degree of freedom was released and came into op-
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Figure 1: Neural structure and its connections to the robot’s

sensors and motors. Neuronal areas: (a) RedColorField.

(b) RedMovementToRightField. (c) ProprioceptiveField. (d)

RedMovementToLeftField. (e) NeuronalField. (f) Motor-

Field. (g) MotorActivites.

eration, and (c) the size of the neuronal area “Pro-
prioceptiveField” (see Figure 1c) was increased in 8
neuronal units, the size of the neuronal area “Mo-
torField” (see Figure 1f) was increased by a factor
of four. In order to preserve the previous knowledge
acquired by the robot, the new weights were initial-
ized randomly and the old weights were kept at their
current values.

Figure 2 presents a summary of the configura-
tion of the robot as well as the number of neuronal
units in each neuronal area at each developmental
stage. Through this simulated development (from
DS-1 (“immature”) to DS-3 (“mature”)) the initial
setup with reduced visual capabilities, low number
of degrees of freedom, a few pressure sensors and a
neural control architecture with a reduced number
of neuronal units, was converted into an experimen-
tal setup with good vision, larger number of degrees
of freedom, larger number of pressure sensors and a
neural control architecture with a sufficient number
of neuronal units. At developmental stage number
3 (DS-3), the robotic agent reaches the same sen-
sory, motor and neural configuration than the con-
trol setup. At this point, their performances could be
compared to see whether the learning was affected or
not by the developmental approach described above.

6. Experiments and results

Figure 3 shows a typical experiment where the robot
learned to move the object from the periphery of its
visual field to the center of it by means of its robotic
arm. To evaluate the change of the robot’s task per-
formance over time, at each time step i, we computed
the cumulated distance covered by the center of the
object projected onto one of the robot’s cameras (xi,

Figure 2: Configuration of the sensory, motor and neural

components of the robot through the developmental approach.

From top to bottom: DS-1 (“immature state”), DS-2 (“inter-

mediate state”) and DS-3 (“mature state”).

yi) as: Ŝ =
∑N−1

i=0

√
((xi+1 − xi)2 + (yi+1 − yi)2).

Thus, (x0, y0) is the initial position of the object as
perceived by the robot, and (xN , yN ) = (xc, yc) is
the center of the robot’s visual field (assuming that
the robot learns to perform the task). The shortest
possible path between (x0, y0) and (xc, yc) is de-
fined as: S =

√
((x0 − xc)2 + (y0 − yc)2). By using

S and Ŝ, we defined an index for the robot’s task
performance: P = S

Ŝ
. The closer P is to 1, the more

straight the trajectory, and therefore the better the
robot’s behavioral performance. This performance
criterion was always the same.

Figure 4 shows how the robot’s behavior improved
over time for the last part of the experiment number
1 (see Figure 3d) and gives the performance mea-
sure over time. A total of 15 experiments were per-
formed with two types of robotic agents: one sub-
jected to developmental changes (i.e., DS-1, then DS-
2 and finally DS-3), and one fully developed since
the onset (control setup). The results clearly show
that the robotic agents that followed a developmen-
tal path took considerably less time to learn to per-
form the task. These robotic agents started with
the configuration of the developmental stage “DS-
1” and learned to solve the task during the learning
cycle 483 ± 70 (where ± indicates the standard de-
viation), then they were converted to robotic agents
with a configuration as described by the developmen-
tal stage “DS-2” which subsequently learned to solve
the task around the learning cycle 1671± 102 and fi-
nally they become to be in the developmental stage
“DS-3” (with the same configuration than the con-
trol setup) and solve the task around the learning
cycle 4150± 149 (this is a cumulative value).
The control setup agents with full resolution camera
images, four pressure sensor, three DOF (i.e., J0,
J1 and J2), and a neural network with 542 neu-
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ronal units (randomly initialized synaptic connec-
tions) learned to solve the task around the learning
cycle 7480 ± 105. In other words, a reduction of
about 44.5 percent in the number of learning cycles
needed to solve the task can be observed in the case
of robotic agents that followed a developmental ap-
proach when compared to the control setup agents.

(a) (b)

(c) (d)

Figure 3: Experiment number 1. Learning to move a colored

object from the upper left corner of the visual field to the

center of it. Position of the center of the object in the visual

field during the learning cycles in the interval (a) [1, 400]. (b)

[401, 800]. (c) [801, 1200]. (d) [1201, 1602].

(a) (b) (c)

(d) (e) (f)

Figure 4: Robot’s internal performance evaluator “P” during

the learning cycles in the interval (a) [1232, 1266], P=0.2898;

(b) [1313, 1340], P=0.3574; (c) [1370, 1393], P=0.5114; (d)

[1438, 1455], P=0.5402; (e) [1502, 1519], P=0.6569;(f) [1565,

1582], P=0.9176. (see Figure 3d).

7. Discussion and conclusions

As shown by the results presented in this paper, a
system starting with low resolution sensors and low

precision motor systems, whose resolution and pre-
cision are then gradually increased during develop-
ment, learns faster than a system starting out with
the full high resolution high precision system from
scratch. For this particular case, by employing a de-
velopmental approach the learning was speeded up
by 44.5 percent. To our knowledge this is the first
time that this point is actually shown in a quantita-
tive way.
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