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Abstract

We explore two controversial hypotheses
through robotic implementation:(1) Processes
involved in recognition and response are tightly
coupled both in their operation and epigenesis;
and(2) processes involved in symbol emergence
should respect the integrity of recognition and re-
sponse while exploiting the periodicity of bio-
logical motion. To that end, this paper proposes
a method of recognizing and generating motion
patterns based on nonlinear principal component
neural networks that are constrained to model
both periodic and transitional movements. The
method is evaluated by an examination of its abil-
ity to segment and generalize different kinds of
soccer playing activity during a RoboCup match.

1. Introduction

Complex organisms recognize their relation to their sur-
roundings and act accordingly. The above sentence
sounds like a truism owing in part to the almost ubiq-
uitous distinction between recognition and response in
academic disciplines. Engineering has successfully de-
veloped pattern recognition and control as independent
fields, and cognitive psychology and neuroscience often
distinguish between sensory and motor processing with
researchers specializing in one area or the other. Never-
theless, in some sense recognition and response entail one
another. Recognizing an object, action, or sign is largely
a matter of recognizing what it does for us and what we
can do with it. Indeed, much of what we perceive can be
described in terms of potential actions.Doingandseeing
cannot so readily be distinguished because we acquaint
ourselves with our world through what we do and our
actions drive what distinctions we learn to make. None
of this is meant to deny that we can experimentally iso-
late purely motor centers in the brain from purely sensory

Figure 1: In the proposed approach, a neural network learns
each kind of periodic or transitional movement in order to rec-
ognize and to generate it. Recent sensorimotor data elicit ac-
tivity in corresponding networks, which segment the data and
produce appropriate anticipatory responses. Active networks
constitute an organism’s conceptualization of the world since
they embody expectations, derived from experience, about the
outcomes of acts and what leads to what. It is assumed that
behavior is purposive: affective appraisals guide the system to-
ward desired states.

ones, but rather to assert that these centers are intimately
linked both in their everyday operation and in their epi-
genetic development. Thus, as scientists and engineers,
we may have reified the distinction between recognition
and response, when their main difference is merely in de-
scriptive focus.

In this paper, we will entertain and begin to explore two
controversially and, as yet, unproven hypotheses: First,
there is an integrity of recognition and response. We rec-
ognize an object or event largely because it elicits expec-
tation about what we can do with it — or at least piggy-
backs on those kinds of expectations. In addition, these
expectations are expressed in terms of (or decontextu-
alized from) how motor signals transform sensory data.
Second, biological motion is in some sense periodic. To
put it simply, patterns repeat. (If they did not, there would
be little point in learning.) That is as much a function of
the ‘hardware’ as it is the often routine nature of exis-
tence: Joints, for example, have a limited range and will
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eventually return, more or less, to a given configuration.
Moreover, bodies have certain preferred states: for peo-
ple walking is a more efficiently means of locomotion
than flailing about randomly. All gaits exhibit a certain
periodicity as do many gestures and vocalizations.

This paper proposes a method of generalizing, recog-
nizing, and generating patterns of behavior based on non-
linear principal component neural networks that are con-
strained to model both periodic and transitional move-
ments. Each network is abstracted from a particular kind
of movement. Learning is competitive because sensori-
motor patterns that one network cannot learn will be as-
signed to another network, and redundant networks will
be eliminated and their corresponding data reassigned to
the most plausible alternative. Recognition is also com-
petitive because proprioceptive data is associated with the
network that best predicts it. (The data can be purely
kinematic or dynamic depending on the dimensions of
the sensorimotor phase space.) Since each network can
recognize, learn, and generalize a particular type of mo-
tion and generate its generalization, the integrity of recog-
nition and response are maintained. These generaliza-
tions are grounded in sensorimotor experience. They can
be varied, depending on the networks’ parameterization.
They may be viewed as a kind of protosymbol. While
we do not claim that the networks have neural analogues,
we believe the brain must be able to implement similar
functions.

1.1 The emergence of signs in communication

In one vein, we are exploring the application of
periodically-constrainedNLPCA neural networks to vo-
cal and gesture recognition and generation. Our aim is
to develop robots whose activity is capable of support-
ing the emergence of shared signs during communica-
tion. Signs take on meaning in a given situation and re-
lationship, as influenced by an individual’s emotional re-
sponses and motivation (see Figure 1). They reflect mu-
tual expectations that develop over the course of many
interactions. We hypothesize that signs provide develop-
mental scaffolding for symbol emergence. For infants,
the caregiver’s intentions are key to fostering the devel-
opment of shared signs.

We believe that periodically-constrainedNLPCA neu-
ral networks could be one of the embedded mechanisms
that support the development of shared signs. We are
testing this hypothesis by comparing the behavior gen-
eralized by these neural networks with motion tracking
data from mother-infant interactions.1 The results of be-
havioral studies are applied to the android robot, Actroid,
which has 33 degrees of freedom.

1From this we have ascertained that certain important micro-
behaviors that make movement seem lifelike may have been overlooked
in the approach outlined here, and we are starting to develop a micro-
behavior filter.

1.2 Outline

This paper is organized as follows. Section 2 extends an
NLPCNN with periodic and temporal constraints. Sec-
tion 3 presents a method of assigning observations to
NLPCNNs to segment proprioceptive data. Section 4 re-
ports experimental results usingNLPCNNs to characterize
the behavior of a FujitsuHOAP-1 humanoid robot that has
been developed to play RoboCup soccer.

2. A periodic nonlinear principal compo-
nent neural network

The human body has 244 degrees of freedom
(Zatsiorsky, 2002) and a vast array of proprioceptors.
Excluding the hands, a humanoid robot generally has at
least 20 degrees of freedom — and far more dimensions
are required to describe its dynamics precisely.
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Figure 2: An Target values presented at the output layer of a
nonlinear principal component neural network are identical to
input values. Nonlinear units comprise the encoding and de-
coding layers, while either linear or nonlinear units comprise
the feature and output layers.NLPCA neural network with the
activations of nodesp andq constrained to lie on the unit circle.

Given a coding functionf : RN 7→ RP and decoding
function g : RP 7→ RN that belong to the sets of con-
tinuous nonlinear functionsC andD, respectively, where
P < N , nonlinear principle component networks mini-
mize the error functionE

‖~x− g(f(~x))‖2, ~x ∈ RN

resulting inP principal components[y1 · · · yp] = f(~x).
Kramer (1991) first solved this problem by training a
multilayer perceptron using the backpropagation of error.

2.1 The periodicity constraint

Kirby and Miranda (1996) constrained the activation val-
ues of a pair of nodesp andq in the feature layer of an
NLPCNN to fall on the unit circle, thus acting as a single
angular variable:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the cir-
cular node-pair are calculated by the chain rule
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(Kirby and Miranda, 1996), resulting in the update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.

3. Automatic segmentation

We conceived of the automatic segmentation problem as
the problem of uniquely assigning data points to nonlin-
ear principal component neural networks. As the robot
begins to move, the first network is assigned some min-
imal number of data points (e.g., joint-angle vectors),
and its training begins with those points. This gets the
network’s learning started quickly and provides it with
enough information to determine the orientation and cur-
vature of the trajectory. If the average prediction error
of the data points assigned to a network is below some
threshold, the network is assigned additional data points
until that threshold has been reached. At that point, data
points will be assigned to another network, and a network
will be created, if it does not already exist. To avoid insta-
bilities, only a single data point may shift its assignment
from one network to another after each training cycle.

Since a network is allowed to learn more data points
as long as its average prediction error per point is low
enough, it may learn most data points well but exhibit
slack near peripheral or recently learned data points. At
the start of learning, the network should be challenged to
learn data points even when its prediction error is large.
As learning converges, however, the slack leads to seg-
mentation errors. Therefore, we alter the method of seg-
mentation once the network nears convergence so that a
network may acquire neighboring points if its prediction
error for those points is lower that the network currently
assigned to those points.

4. Humanoid experiments

This section shows the result of automatic segmentation
and neural network learning. We assess the accuracy of
the result based on a manual segmentation of the data
points and an analysis of how they are allocated among
the networks.

Figure 3: FujitsuHOAP-1 robots are playing RoboCup soccer.
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Figure 4: Recognized motion patterns embedded in the dimen-
sions of the first three nonlinear principal components of the
raw proprioceptive data. The top and bottom plots differ only
in the viewpoint used for visualization.
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Figure 5: The percentage of data points allocated to each net-
work before and after eliminating redundant networks and reas-
signing their data.

First, we recorded motion data while aHOAP-1 hu-
manoid robot played soccer. Each data point is consti-
tuted by a 20-dimensional vector of joint angles. A stan-
dard (noncircular)NLPCNN reduced the dimensionality
of the data from 20 to 3. We then applied our algorithm
to segment, generalize, and generate humanoid motion.

Our algorithm uniquely assigned the data points
among a number of circularly-constrainedNLPCNNs.
Each of the networks learned a periodic motion pattern
by conjugate gradients. Our algorithm successfully gen-
eralized five out of six primary motion patterns: walk-
ing forward, turning right or left, and side-stepping to the
right or left. It failed to generalize as a single periodic tra-
jectory the kicking motion, which has a highly irregular,
self-intersecting shape. However, human subjects were
also unable to determine the kicking trajectory from the
data points. Figure 4 shows that the automatic segmenta-
tion algorithm successfully employed circularNLPCNNs
to separate and generalize five of the periodic motions.

We calculated statistics based on running the automatic
segmentation for 20 trails. The algorithm resulted in five
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decoding subnetworks for 45% of the trials, which is the
most parsimonious solution. It resulted in six subnet-
works for 50% of the trials, and seven for the remaining
5%.

In a separate run of the learning and segmentation algo-
rithm, the motion sequence of recorded data during soc-
cer playing was walking forward, turning right, turning
left, walking forward, sidestepping to the right, sidestep-
ping to the left, and kicking. We counted the number of
point belonging to each network before and after remov-
ing redundant networks. Redundant networks were re-
moved by means of linear integration. The angular value
θ was varied from0 to 2π at the bottleneck layer of one
network to obtain its predicted output. This value was
fed into another network to obtain its predicted value. If
the integral of the sum of the squared distances of the
predicted outputs was less than a threshold, one network
was removed and its points reassigned to the other net-
work (see Figure 5). This method removed all redundant
networks.

5. Conclusion

Our proposed algorithm abstracted five out of six types of
humanoid motion through a process that combines learn-
ing and data point assignment among multiple neural
networks. The networks perform periodic, temporally-
constrained nonlinear principal component analysis. The
decoding subnetworks generate motion patterns that ac-
curately correspond to the five motions without including
outliers caused by nondeterministic perturbations in the
data. By means of linear integration, we were able to re-
move redundant networks according to the proximity of
their predictions.

A kind of behavior can be recognized by selecting the
network that best predicts joint-angle values. It can be
generated by varying the value ofθ in the bottleneck
layer. This shows the effectiveness of a tight coupling be-
tween recognition and response since the same networks
may be used for both processes and they developed by the
same mechanisms. The significance of periodicity may
be more limited, however. Some motions are not peri-
odic, and in the experiment the kicking motion, although
it occurs repeatedly, was difficult to segment because of
its highly irregular, self-intersecting shape.
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