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Abstract
Synchrony detection between different sensory

and/or motor channels appears critically important

for young infant learning and cognitive

development. For example, empirical studies

demonstrate that audio-visual synchrony aids in

language acquisition. In this paper we compare

these infant studies with a model of synchrony

detection based on the Hershey and Movellan

(2000) algorithm augmented with methods for

quantitative synchrony estimation. Four infant-

model comparisons are presented, using audio-

visual stimuli of increasing complexity. While

infants and the model showed learning or

discrimination with each type of stimuli used, the

model was most successful with stimuli comprised

of one audio and one visual source, and also with

two audio sources and a dynamic-face visual motion

source. More difficult for the model were stimuli

conditions with two motion sources, and more

abstract visual dynamics—an oscilloscope instead of

a face. Future research should model the

developmental pathway of synchrony detection.

Normal audio-visual synchrony detection in infants

may be experience-dependent (e.g., Bergeson, et al.,

2004).

1. Introduction
We are exploring formal models of infant synchrony

detection (Prince, Helder, Mislivec, Ang, Lim, & Hollich,

2003) in order to further elucidate the mechanisms of

infant development and to create practical robotic

systems (e.g., Weng, McClelland, Pentland, Sporns,

Stockman, Sur, & Thelen, 2001). Synchrony detection

mechanisms appear critically important for young infant

learning and cognitive development, and have been

strongly implicated in developments ranging from word-

learning (Gogate & Bahrick, 1998), to learning arbitrary

intermodal relations (Bahrick, 2001; Slater, Quinn,

Brown, & Hayes, 1999), object interaction skills

(Watson, 1972), emotional self-awareness and control

(Gergely & Watson, 1999), naïve theory understanding

(Gopnik & Meltzoff, 1997), and learning related to the

self (Rochat & Striano, 2000). Because synchrony

detection plays such a pervasive role in infant

development, it seems important to increase our

understanding of the mechanisms utilized by infants. It is

one thing to tacitly acknowledge the importance of

synchrony detection, but quite another to use formal

modeling to help us build more specific psychological

theories of these developmental mechanisms (Shultz,

2003). To accomplish the formal modeling we must

carefully consider what synchrony is, and what specifics

of audio-visual representation are necessary to recreate

the synchrony detection abilities of infants. Additionally,

we want to create practical robotic systems that utilize

knowledge of how infants develop their skills. We

suggest that understanding the mechanisms related to

infants’ developing synchrony detection skills can assist

us in designing algorithmic mechanisms. For example,

understanding the kinds of synchrony detection skills

possessed by infants should help us specify requirements

for synchrony detection algorithms and using these

algorithms in epigenetic robotics may enable the robots to

develop synchrony detection skills in a manner analogous

to infants.

In epigenetic robotics, the need for detecting

synchrony and contingency (e.g., detecting relationships

between the motor output of a robot and the ensuing

sensory consequences) has recently been considered

(Asada, MacDorman, Ishiguro, & Kuniyoshi, 2001;

Fasel, Deak, Triesch, & Movellan, 2002; Lungarella,

Metta, Pfeifer, & Sandini, in press). For example, in a

robotic implementation, Arsenio and Fitzpatrick (2003)

detected rhythmic audio-visual synchrony relationships

using histograms of durations between signal features to

measure periodicity within audio and within visual

stimuli, and histogram comparisons to evaluate cross-

modal synchrony.

In this paper we use algorithmic methods that directly

compute audio-visual synchrony relationships between

low-level audio-visual features (e.g., RMS audio and

grayscale pixels). The algorithm we use is based on that

of Hershey and Movellan (2000; HM  algorithm in the

following), which while detecting audio-visual

synchrony, defined as Gaussian mutual information, may

also be useful in contingency detection (Helder, 2003).

The HM algorithm was originally applied to the problem

of detecting synchrony between a stream of visual data

and a stream of audio data in order to find the spatial

position of a vocalizing person in the visual image

dynamics. The point of highest audio-visual synchrony

when someone speaks is approximately the lips (see also

Nock, Iyengar, & Neti, 2003). The HM algorithm is

relatively general, detecting temporal synchrony between

two time-based input streams and thus makes an excellent

starting point for modeling general synchrony detection

mechanisms in infants. Infants are known to be skilled at
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detecting temporal, sensory-relational (contingencies

wherein the amount of sensory change is expected to be

proportionate to the amount of motor force exerted), and

spatial synchrony (Gergely & Watson, 1999).

In this paper we compare a model based on the HM

synchrony detection algorithm to four empirical studies

of synchrony detection in infants. Our hypothesis is: Can

a single general-purpose synchrony detection

mechanism, estimating audio-visual synchrony from low-

level signal features, account for infant synchrony

detection across audio-visual speech integration tasks of

increasing comp lex i t y? Our first infant-model

comparison looks at the case of integrating punctuate

visual movements of an object and synchronous audio

presentations of a word. The second infant-model

comparison looks at the more difficult case of integrating

the continuous visual movements of a face with the

speech stream. The third comparison looks at the harder

task of separating out an irrelevant speech stream using

the continuous visual movements of a face. The final

comparison uses stimuli that may be even harder to

process — we substitute the continuous visual

movements of an oscilloscope for the speech movements

of a face.

The remainder of this paper comprises a description

of the video stimuli and algorithm, a series of four infant

and modeling comparison sections, and a closing

discussion section. The comparison sections correspond

to four sets of increasing complexity audio-visual data:

A, B, C and D. These comparison sections first present

results from work with infants on either comparable

(Stimuli A & B) or identical stimuli (Stimuli C & D), and

then present results from our perceptual model of

synchrony detection based on the HM algorithm

(Mislivec, 2004). The infant results for Stimulus A and B

are from the general literature on infant psychological

development (Dodd, 1979; Gogate & Bahrick, 1998).

Infant results from Stimulus C and D are from the lab of

the second author (Hollich, Newman, & Jusczyk, in

press).

2. Stimuli and Algorithm
We constructed digital video clips containing various

types and degrees of temporally synchronous audio-

visual stimuli. We processed this video data as input to

our synchrony detection program, S e n s e S t r e a m

(Mislivec, 2004), based on the HM algorithm. In the

SenseStream program, we measured synchrony using

either a centroid method (from HM), a connected region

method, or an edge detection method. We developed the

latter two methods to quantitatively estimate the degree

of synchrony represented by the outputs of the HM

algorithm. While the HM algorithm generates a

topographic representation of synchrony (see below), it

does not provide a scalar estimate of the synchrony in

that representation. An alternative approach to

quantitative audio-visual synchrony estimation, based on

canonical correlation, is given by Slaney and Covell

(2001).

Stimuli. MPEG-1 digital video files were used as

inputs for the model, with 29.97 video frames per second,

44.1 kHz audio, and rendering with the highest settings

for data rate (Adobe Premier 6.5), to minimize

compression. These stimuli are summarized in Table 1.

Stimulus A had one sound source (speech) and one visual

motion source. In the video, the word “modi” was uttered

nine times during intervals when a suspended object was

in vertical motion in front of a white background. This

stimulus approximates the synchronous condition

stimulus used by Gogate and Bahrick (1998), which was

used by those authors to assess if syllables co-uttered

with moving objects would enhance infants’ learning of

audio-visual associations. The clip duration was 30s.

Sound Source(s) Visual Motion

Source(s)

Stim.

No. Description No. Description

A 1 “Modi” word 1 Vertical

object motion

B 1 Male voices

alternating

2 Two males

talking

C 2 Female voice

& male voice

1 Face of

female

D 2 Female voice

& male voice

1 Oscilloscope:

female voice

Table 1: Stimuli design for infant-model comparisons of

synchrony detection. Video files are on the Internet:

http://www.cprince.com/PubRes/EpiRob04

Stimulus B had one sound source at any one time

(speech or background noise), but had two visual motion

sources. In this clip, two adult males, fix-positioned on

both sides of a split screen, were talking for 30s. For the

first 5s, the audio source was from the right male, the

next 5s from the left male, and the next 5s the audio

source was background noise. The remaining 15s

repeated this right, left, noise pattern with different video

data. Two additional 30s clips, controls for the model

only, were also used. Control 1 had the right speaker only

(same position as before) talking for the clip duration

(30s), and background visual stimuli on the left. Control

2 was analogous (and also 30s duration) but with the left

person.

Stimulus C and D both had a single visual motion

source and two audio sources. The audio sources had a

female and a male speaking, while the visual motion

source was synchronized with the female voice. The

visual motion source for Stimulus C was the dynamic

image of the female’s face as she was speaking, and for

Stimulus D was a dynamic oscilloscope representation

(amplitude analysis) of the female voice. Stimulus C and

D each had two comparison video clips, in which only

one of the male (Male-only condition) or female voice

(Female-only condition) was present. Stimuli with both

male and female voices are termed the Both condition.

Stimulus C and D were from Hollich, et al. (in press).

The duration of these clips was 22s.

Algorithm . The SenseStream program (Mislivec,

2004) implements Equation 3 of HM, which is repeated

here as Equation 1.
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Equation 1 computes the Gaussian mutual information

between a pixel at location (x, y) across a series of S

consecutive frames of visual data (V; dimension 

! 

h " w
pixels) and the audio data (A) co-occurring with those

visual frames. For example, with S=15 and 30 frames per

second video, Equation 1 gives the mutual information

between a “column” of pixels and the audio source across

1/2 second of audio-visual data. Higher values of mutual

information are interpreted as higher levels of synchrony;

lower values of mutual information are interpreted as

lower levels of synchrony. The mutual information

minimum is 0 (no synchrony). In the model processing

described here, S=15. Equation 1 is applied by our model

to each pixel of data in each visual frame after the first S-

1 visual frames of a clip. As in HM we used grayscale

pixels (0…255), and RMS audio (one scalar per visual

frame). We refer to each 

! 

I(A(tk );V (x, y,tk ))  value

computed using Equation 1 as a mixel , for mutual

information pixel, and refer to the entire output display

(dimension 

! 

h " w  mixels) as a mixelgram. These

mixelgrams can be interpreted as topographic

representations of synchronization between the incoming

data streams. More specifically, the occasions that these

mixelgrams are classified by human raters as perceptually

relevant (e.g., containing shapes) correlate strongly with

the intervals of MPEG data in which the audio-visual

signal is synchronized (Vuppla, 2004). Figure 1 gives an

example of a perceptually relevant mixelgram from

processing the Stimulus A data.

Figure 1: A mixelgram from an interval of synchronous

audio-visual data in Stimulus A. Mixelgrams are typically

perceptually relevant only when the two input streams

(e.g., audio-visual) are synchronous (i.e., co-varying; see

Vuppla, 2004).

HM used the centroid of the mixelgram to determine

the (x, y) location of the peak of any synchrony existing

between the audio and visual data. To quantitatively

estimate the degree of audio-visual synchrony

represented by the mixelgrams, we devised two

additional methods to augment the HM algorithm, each

of which operated as functions of mixelgrams and

resulted in scalar estimates of synchrony. Our connected

region method was based on the observation that in some

cases of synchrony mixelgrams have groups of mixels

with similar values, some of which are large groups,

some of which are small. That is, in these cases of

synchrony, there are often connected mixel regions and

often substantial variation in the sizes of these regions.

We therefore computed the variance in the sizes of the

connected regions per mixelgram. Connected regions

were defined (recursively) as having eight-neighbor

mixels with values within a factor of 1.125 of each other

(edge mixels have fewer neighbors). The other method

was based on edge detection, and used a similar

observation to that above. In this case, we used Equation

2 as an estimate of the degree of synchrony.

        

! 
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i=1

h#w

$    (2)

We first blurred the mixelgram (M), reducing noise by

convolution with a 15x15 Gaussian filter. Sobel edge

detection was then applied, and the resulting values were

summed over the matrix.

3. Stimulus A: Object Motion and

Speech
Infant data and background. Bahrick and colleagues

(Bahrick, 2001; Bahrick & Lickliter, 2000) have

suggested that audio-visual temporal synchrony is one of

the most consistent and early relations to which infants

are sensitive. For example, Gogate and Bahrick (1998)

found that 7-month-olds could learn the link between

speech sound and object only if the sound was presented

synchronously with object movement. In that study, 48

infants were tested across three conditions: a synchronous

movement condition (n=16 infants), a static condition

(n=16), and an asynchronous condition (n=16). In the

synchronous condition, infants saw a hand move an

unfamiliar object (either a toy crab or a porcupine)

forward, synchronous with the vowel “ahhh” (for the

crab) or “eee” (for the porcupine). On half of the

conditions, the vowel-object pairing was switched. In the

static condition the audio was the same, but the hand was

not seen and the objects did not move. In the

unsynchronized condition the movements were the same

as in the synchronized condition, however the vowels

were uttered between the forward movements.

Infants were familiarized to one of these conditions

and then tested to see if they noticed if the vowel pairing

was changed (as indicated by increased looking to the

display when the pairing was “switched”). Only in the

synchronized condition did infants increase their looking

time over control trials (where no change was observed).

Specifically, infants increased their looking by an average

of 4.68s – a large effect in such experiments. Indeed, 11

out of 16 infants in the synchronous condition showed the

predicted response.  In contrast, the infants in the other

two conditions actually looked more on the control trials

than in the test trials when the vowel pairing was

changed. Only 7 total out of the 32 infants in these

conditions showed evidence of having noticed the switch

in sound object pairings. Thus, it appears that 7-month-

olds can use synchrony to learn a link between speech

and object.

Word learning is an extremely complicated task

involving multiple cues (Hollich, Hirsh-Pasek, Golinkoff,
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2002), and including numerous social-pragmatic factors

(Baldwin, 1993; Bloom, 2002). While one of our long-

term goals is to incorporate these multiple factors in a

model of word learning, the scope of the first simulation

here was much more mundane. Given that infants must

have detected the synchrony between punctuate

movement and sound to have succeeded in this task (i.e.,

Gogate & Bahrick, 1998), the goal of the model was to

do the same.

Model. To simulate this sound and object-motion

synchrony detection, our model was exposed to stimuli

similar to that of Gogate and Bahrick (1998), i.e.,

Stimulus A which contains utterances of the word “modi”

co-occuring with vertical object motion. The connected

region method was used to generate quantitative

synchrony estimates for this data. Figure 2 shows the

model processing results regarding the estimated degree

of synchrony for the Stimulus A data. The model appears

to have tracked the synchrony very well: periods of high

synchrony closely match the periods of audio onset and

offset for utterances of the word “modi.” Audio-visual

synchrony in these cases results from the word being

uttered at the same time as the object is moved.

Stimulus A: Object Motion and Speech 
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Figure 2: Stimulus A model estimates of quantitative

degree of audio-visual synchrony. Synchrony estimates

were computed using the connected region method. The

speech onsets and offsets were obtained manually.

4. Stimulus B: Two Males Talking,

Alternating Voice Source
Infant data and background. More difficult than detecting

movement synchronous with single words (abrupt audio

onsets and offsets) is detecting the synchrony between

audio-visual stimuli with continuous speech and motion.

We often are exposed to continuous sound and motion

when observing someone speaking. Despite the potential

perceptual processing difficulty, detecting audio-visual

synchrony in this situation has obvious advantages.

Infants’ abilities to localize sound are poor – sound

sources must be at least 19 degrees apart for infants to

notice the difference (Ashmead, Clifton, & Perris, 1987).

Adults are more accurate and make extensive use of

visual information in localizing talkers (Driver, 1996). If

infants can spatially locate a speaker via visual

information, they would have a powerful method to direct

their attention past purely auditory means.

Dodd (1979) found that 10- to 16-week-old infants

prefer to look at faces synchronized with speech as

opposed to faces that do not match the audio. Infants 10

to 16 weeks of age watched a person in a sound-proof

chamber reciting nursery rhymes. Every 60 seconds the

audio played to the infant switched from being in

synchrony to 400ms out-of-synchrony (there was a

400ms audio delay). Infants (n=12) averaged 14.9%

(2.9%-29.2%) inattention when speech was synchronous

and 34.3% (1%-87%) inattention when out-of-synchrony.

Thus, having the video 400ms out of synchrony incurred

a 19.36% decrement in infants’ attention, implying that a

face synchronized with the auditory stream helped infants

direct their attention to the talker.

Model. Figure 3 shows the model processing results

for Stimulus B, which consisted of two speakers talking

alternately (top panel), one speaker on right (mid-panel),

and one speaker on left (bottom panel). As shown in the

top panel of Figure 3, the model did not successfully

locate the horizontal position of the person talking when

there were two motion sources. That is, the centroid

position, averaged over the 5s intervals, was always on

the left. The bias to the left occurred because the relative

brightness of the left person was higher, and grayscale

processing emphasized brightness in the visual

component. The algorithm’s difficultly in discriminating

amongst two motion sources, and correctly relating the

sound to the motion source, may be due to the relative

coarseness of the audio (or visual) features (i.e., RMS

audio, grayscale pixels at 30fps). Better audio resolution

(e.g., Mel-Frequency Cepstral Coefficients—MFCC’s),

or better temporal visual resolution (e.g., 60 frames per

second) might assist in this discrimination.

Stimulus B: Left and Right Speakers Faces Moving But 
Talking Alternately
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Stimulus B Control1: Single Speaker on Right
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Stimulus B Control2: Single Speaker on Left
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Figure 3: Stimulus B model results using mixelgram

centroid to determine speaker location.
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In both of the control data sets, the averaged centroid

was positioned on the same side as the speaker (see lower

two panels of Figure 3), as expected with detecting peak

synchrony in the region of the speakers face. In these

cases, the model did not have to deal with two motion

sources, and was able to correctly relate the sound and

motion. It is relevant to note that our Stimulus B task

with two motion sources may be more difficult than the

task posed by Dodd (1979) for infants, which had only

one visual motion source and one audio source.

5. Stimulus C: Male, Female Voices

and Face Visual
Thus far in our infant-model comparisons we have only

considered tasks involving one audio source. Another

relevant, and ecologically common, task involves audio

source separation—for example being presented with two

blended speech-audio sources and attending to only one

of them. In the next two tasks, for infants, we are

interested in the use of audio-visual synchrony for audio

source separation. For the models, we focus on

discrimination between the conditions on the basis of

audio-visual synchrony.

Infant data and background. The task of separating

one speech stream from another, using a visual motion

source for assistance, is arguably more complex than

detecting synchronization between speech and a face.

Consider an infant sitting in a room with her family. Her

mother might be speaking while her older sister is

watching television and her two brothers are arguing

nearby.  In order to understand her mother, the infant

must be able to separate her mother’s speech from that of

the other voices in her environment.

Recent work by Hollich, Newman, and Jusczyk (in

press) found that infants can use the visual

synchronization between a talker’s face and the speech

stream to help them focus on a particular speech stream

and segment words from that stream in a noisy/blended

stimulus. In these experiments, 7.5-month-old infants

were familiarized with a visual display accompanied by

an audio track of a blended stimulus (consisting of a

female voice reciting a target passage and a distracting

male voice). Importantly, the target audio (the female

speaker) was the same average loudness as the distractor

audio (the male speaker). This target stimulus was 5dB

softer than the level at which infants had been shown to

successfully segment speech streams using audio cues

alone (Newman & Jusczyk, 1996).

As in the Gogate and Bahrick (1998) study, the type

of visual familiarization differed across conditions. The

first condition showed a synchronized video of the female

speaker. The second and third conditions were controls

that familiarized infants with a static picture of the female

face or an asynchronous video of the female. While

infants were expected to be unable to segment the speech

in the control conditions, the controls insured that the

effects seen were not the result of increased attention due

to change in the visual stimulus or merely seeing a female

face. Participants were 120 infants (30 in each visual

condition) with a mean age of 7 months, 15 days (range:

7m 2d - 7m 28d).

Infants’ memory for target words presented during

familiarization was tested using the Headturn Preference

Procedure. Results indicated that only with synchronized

video information did the infants succeed in this task.

Infants looked reliably longer with the target words

versus non-target words only when they saw a

synchronized display (t(29) = 4.39, p < .0001). With a

static display, or with asynchronous visual information

infants did not show evidence of being able to complete

the task (t(29) = 1.16,  p = n.s.; t(29) = 1.38, p = n.s.).

That is, they did not look longer with the target words

versus the non-target words. Thus, 7.5-month-old infants

can use synchronized auditory-visual correspondences to

separate and segment two different streams of speech at

signal-to-noise ratios lower than possible by merely

auditory means. Infants did not succeed in this task if

familiarized with a static or asynchronous video display

of that speaker’s face, implying that it was specifically

the synchronized video that produced this effect. These

results suggest that infants gain a significant advantage

by having synchronous visual information complement

the auditory stream, especially in noise.

Model . Table 2 summarizes the results from the

model synchrony analysis of the Stimulus C data (male,

female voices and face visual), using the edge detection

method to quantify synchrony. The mean for the Female-

only condition differed from the Both condition and the

Male-only condition at statistically significant levels (p <

0.0000001; two-tailed unpaired t-tests). The mean for the

Male-only condition differed at a statistically significant

level from the mean for the Both condition (p < 0.009;

two-tailed unpaired t-test). These results are as

expected—the Female-only condition should be the most

synchronized, then the Both condition, followed by the

Male-only (least synchronized). The HM algorithm,

coupled with the edge detection method for quantitative

assessment of synchrony, discriminated between these

three conditions in the manner expected.

Stimulus Female Both Male
Mean 26, 616.8 21, 010.6 19, 495.8

Std Dev 16, 410.8 12, 139.8 13, 176.7

Max 96, 302.4 74, 495.7 84, 144.0

C

(Face)

Min 3, 640.1 3, 189.2 3, 497.6

Mean 8, 747.0 8, 200.8 8, 095.9

Std Dev 3, 518.7 2, 945.9 3, 212.1

Max 31, 107.0 29, 538.0 30, 015.5

D
(Oscilloscope)

Min 2, 621.4 1, 219.5 1, 278.4

Table 2: Stimulus C and D model results. Table entries

are averages of per mixelgram synchrony estimates from

the edge detection method. Female is only the female

voice. Male is only the male voice.

6. Stimulus D: Male, Female Voices

and Oscilloscope Visual
Infant data and background. The results for Stimulus C,

with male and female voices and the synchronized face of

the female, demonstrate that infants can use synchronized

visual information to help them segregate different

streams of speech. The modeling results also demonstrate

that the augmented HM algorithm makes an analogous

discrimination. In retrospect, in a task using a dynamic-
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face image, it should be clear that while infants may use

knowledge specific to faces to perform their version of

the task, the model did not use knowledge of faces. That

is, while it is feasible to program face detection

algorithms (e.g., Viola & Jones, 2001), our model did not

incorporate such techniques.

Notice that while infants may have used knowledge of

faces in the Stimulus C task, it is possible that their

sensitivities to temporal synchrony are so strong that any

synchronized visual stimulus would be sufficient to

produce the benefit in related tasks. That is, perhaps

infants’ successful performance in the tasks reported

above were not a result of their experience matching

facial and vocal information, but were instead the result

of a more general process of auditory-visual integration.

A number of studies point to the idea that such

integration in adults is not limited to feature-specific face

information. For example, Rosenblum and Saldaña

(1996) were able to get an improvement in phoneme

recognition (over auditory alone) in adults by displaying

point-light faces (in which one can only see the

kinematics of movement).

For infants, too, auditory-visual integration has been

shown for visual events other than faces. Some results in

this regard were presented above in the section on

Stimulus A, with object motion synchronized with

vowels. Additionally, 4-month-old infants recognize the

correspondence between the sight of a bouncing object

and a sound (Spelke, 1976), and 6-month-old infants

notice correspondences between a flashing picture and a

synchronous pulsing sound (Lewkowicz, 1986). Indeed,

according to Bahrick and Lickliter’s (2000) “intersensory

redundancy hypothesis,” any redundant multi-modal

information (also called amodal information) will attract

significant infant attention. However, there has been no

evidence to date in tasks involving continuous speech that

infants will integrate the auditory speech signal with a

visual signal other than a face. Continuous speech is a

much more complicated acoustic event than are most of

the signals tested in studies of infants’ auditory-visual

integration. Thus, skills in integrating a continuous

speech signal with a visual stimulus may be the result of

part icular  experience with auditory-visual

correspondences.

The final infant experiment attempted to address this

issue by changing the video familiarization to a moving

oscilloscope pattern (Hollich, Newman, & Jusczyk, in

press). The rationale was that the oscilloscope would

preserve dynamic information while removing the visual

shape of the face display, minimizing the chance that any

effect seen would be the result of face-specific effects.

Participants were 27 infants with a mean age of 7

months, 10 days (range: 7m 1d - 7m 28d). The design,

apparatus, and procedure were the same as in the

previous infant experiment (Stimulus C).  However, in

the present experiment, a new display was created for the

video familiarization.  The oscilloscope waveform of the

female passages across a 30ms running window was

displayed on a computer monitor (using Harrier-Soft’s

Amadeus II software), video-recorded (via camcorder)

and subsequently synchronized with the blended audio in

the manner described in the first study (Stimulus C).

Importantly, this resulted in a video in which the

oscilloscope display (a squiggly horizontal line) was

synchronized only with the female voice. If amodal

synchrony was partially responsible for the effects

observed in the previous experiments, then the correlated

motion of the oscilloscope would be expected to cue

infants into the female talker’s audio stream. If the effect

in the previous experiment was the result of infants’

particular experience with faces, however, they would be

expected to fail on this task.

Infants listened significantly longer (1.40 seconds on

average) to words that had occurred in the target passage

than to words that had not, demonstrating successful

segmentation of those words (t(29) = 2.28,  p < .05).

Thus, infants showed evidence of segmentation even

when they were familiarized with a correlated

oscilloscope pattern. In this manner, it appears that even

the presence of such a correlated waveform pattern was

sufficient to allow infants to succeed at this segmentation

task. Without such visual information in this

impoverished signal-to-noise ratio, infants would not be

expected to succeed. This suggests that it was specifically

infant sensitivity to amodal invariants that allowed them

to correlate the patterns of visual change on the

oscilloscope display with patterns of auditory change in

the speech signal, and then to use this cue to help them

separate that speech signal from other sound sources in

their environment. Infant sensitivity to amodal invariants

is enough to allow them to segment the speech stream in

a noisy and often ambiguous acoustic environment.

Model . Table 2 summarizes the results from the

model synchrony analysis of the Stimulus D data (male,

female voices and oscilloscope visual), using the edge

detection method to quantify mixelgrams. The results

were similar to the model results for the Stimulus C data,

except that the statistical comparison of condition Both to

the Male-only condition was not significant (p > 0.5;

two-tailed unpaired t-test). As in the Stimulus C

modeling results, the Female-only condition differed

from the Both and Male-only conditions (p < 0.0006, p <

0.003; two-tailed unpaired t-tests). The comparisons with

the Female-only condition were as expected—this MPEG

video, even with the oscilloscope visual motion, had the

highest estimated degree of synchrony. Additionally, the

numeric value of the Male-only condition was as

expected—it indicated the lowest degree of estimated

synchrony of all three.

Clearly the performance of the model was reduced

from that observed with the face-visual data in the

Stimulus C conditions. Using the oscilloscope visual

representation resulted in a lack of a statistically

significant difference between the Male-only condition

and the condition in which both female and male voices

were present. This may have occurred because there were

smaller overall amounts of visual change (i.e., pixels), or

perhaps because of the type and higher visual frequency

of the changes. The oscilloscope changes were more

discrete and rapid than the face motion. These differences

may also be due to the technique we used for estimating

synchrony. The edge detection method we used may

detect edges better in the face case over the oscilloscope

case.
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7. Discussion
In this paper, we compared infant skills with a model of

synchrony detection. Our goal was to assess the

hypothesis: Can a single general-purpose synchrony

detection mechanism, estimating audio-visual synchrony

from low-level signal features, account for infant

synchrony detection across audio-visual speech

integration tasks of increasing complexity? The model we

used was based on the Hershey and Movellan (2000;

HM) algorithm, which we augmented with methods for

estimating the degree of synchrony.

In this comparison we found some good results from

the model and some notable exceptions. First, when faced

with audio-visual stimuli comprised of a word spoken

when an object was moved (Stimulus A), our model

accurately generated estimates of synchrony (see Figure

2). Seven-month-old infants have been found to need

such speech-object synchrony to learn speech-object

relations (Gogate & Bahrick, 1998). Second, when faced

with two motion sources, and one audio source (two

people talking, and the audio source alternating), the

model was unable to correctly indicate the location of the

individual who was talking. In contrast to this, infants 10

to 16 weeks of age are better able to locate the sound of a

person talking when the person’s voice is synchronized

with the person’s facial motion. It should be noted,

however, that in Dodd (1979), infants were only faced

with a single audio and single motion source so their

localization skills are still at issue. (Ongoing empirical

studies are addressing this question.) Third, with one

visual motion source and two speech audio sources (two

people talking, but the dynamic face representation of

only one voice), the model was well able, using a

quantitative synchrony estimate, to distinguish between

the three conditions—two voices, the voice of the person

seen, and the noise (background voice). This parallels the

results with infants—they perform better in learning

words spoken by the person with a face-synchronized

visual representation (Hollich, et al., in press). Fourth, in

a variation of the previous work, the model was tested

with a dynamic visual oscilloscope representation of one

speakers’ voice, still with two people talking. In this case

the infants still learned the words from the oscilloscope-

synchronized voice, but the model, while generally

discriminating, had more difficulty.

In summary, we have shown that a model that directly

estimates audio-visual synchrony from low-level features

(i.e., RMS audio, and grayscale visual) across 0.5s

intervals of time, but that does not utilize higher-level

features or objects, detects audio-visual synchrony at

levels in some cases similar to those of infants. We are

not fully convinced that this model is a reasonable

approximation of infant audio-visual synchrony

detection, however, as there are cases in our own results

where the model is not paralleling the infant results.

We see two main avenues for further exploration in

modeling infant synchrony detection. First, there are a

number of changes we can make to our present model

based on the HM algorithm. For example, we can alter

the kinds of audio and visual features used to compute the

synchrony relation. Using MFCC’s as audio features, or

using visual features based on pixel intensity changes

(e.g., Nock et al., 2003) might improve the infant-model

comparisons. Second, our models can start to take into

account developmental changes in synchrony detection.

For example, adults are more sensitive to audio-visual

temporal asynchrony than infants (Lewkowicz, 1996). In

addition, infants’ audio-visual synchrony detection

abilities get better with age and experience. For example,

infants who are born deaf and given cochlear implants

(CI) detect audio-visual synchrony better depending on

the age at which the CI was initiated (Bergeson, et al.,

2004). At present our synchrony detection model does

not learn or develop. Some current algorithms for audio-

visual synchrony detection incorporate training or

learning (e.g., Slaney & Covell, 2001), and these methods

deserve exploration in the present context. Other

strategies include incorporating neuroscience findings

(e.g., Calvert et al., 2000), and also performing synchrony

detection in terms of higher-level features (e.g., faces).

Potentially, once humans learn that faces (and other

classes of objects) are distinctive parts of the

environment, they may perform synchrony detection in

terms of these higher-level entities and not just in terms

of low-level sensory information (e.g., in the model,

pixels and RMS audio). Just because infants can perform

speech-based synchrony detection without using faces

(e.g., Stimulus D above), doesn’t mean that they don’t

use their knowledge about faces when faces are available.

Modeling the developmental trajectory for synchrony

detection may enable closer approximations of the infant

results, and this should also take us one step closer to

utilizing synchrony detection methods in epigenetic

robotic systems. An exciting robotic application for

synchrony detection is self-other  discrimination.

Proprioceptive and visual inputs may be useful to help a

robot in distinguishing between self-motion and motion

in the world (e.g., Memon & Pollak, in progress).

Learning or development integrated with synchrony

detection in this context could enable robotic modeling of

self-other issues such as infants’ development from a

preference for perfect contingency to a preference for

imperfect contingency (e.g., Gergely & Watson, 1999;

variations in this development also appear to relate to

autism— Magyar & Gergely, 1998).
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