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Abstract

We investigate how a robot can be pro-
vided with an architecture that would enable
it to developmentally ‘grow-up’ and accom-
plish complex tasks by building on basic built-
in capabilities. The paper introduces into the
basic principles of AIS and presents exper-
imental results from a real robot. To our
knowledge, this is the first implementation of
an AIS architecture for controlling a real mo-
bile robot.

1. Introduction

Much of current research in learning robots is de-
voted to highly specialized tasks and equally special-
ized solutions for learning the desired tasks. In an
epigenetic approach, however, the focus should be on
much more versatile robots that allow the incremen-
tal construction of robot capabilities with increasing
complexity. The work presented in this paper aims
at developing a process through which complex per-
ceptual structures and control components emerge as
a result of the robot’s interaction with its environ-
ment, see (Ross et al., 2003). The technology chosen
here is inspired by biological immune systems.

2. The AIS approach

The artificial immune system approach used here was
particularly inspired by Jerne’s immune network the-
ory (Jerne, 1973).

In the beginning the robot is driven by basic in-
stincts such as a ‘desire to avoid collisions’ and a
‘desire to seek novelty’. The robot then should
learn through experience, and the learned behaviours
should gradually take over control from the instinct-
driven initial system. The robot therefore needs
to capture some minimal details of its experiences.
This is realised by so called rule like associations
(RLAs). A detailed specification of RLAs can be

found in (Hart et al., 2003). RLAs consist of three
parts: condition, action and expectation.
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Abbreviations in RLA Condition /
Expectation parts

S Open space
SI:  Open space, front looming

521 Open space, left looming

$3:  Open space, right looming

s4: Open space, front + right looming
F: Objectin front

Fl:  Objectin front, right looming

L:  Objectto]left

LR:  Object to left and right

FL:  Object to front and left

R: Objecttoright

Abbreviations in RLA Action part
GF:  Go forward one step

TR:  Tum right 45°

TL:  Tumleftd5®

Figure 1: Flow diagram showing sequences of chosen
RLAs. Taken from (Hart et al., 2003).

In analogy to the immune system metaphor the
RLA corresponds to the antibody and the sensory
data corresponds to the antigen. The condition and
action parts of a specific RLA can be regarded as
paratope and epitope. According to Jerne’s im-
mune network hypothesis the antibodies recognise
each other by the paratope of one antibody and the
epitope of another and in this way stimulate or sup-
press each other.

Figure 1 depicts a typical sequence of RLAs to be
generated in a developmental process of adaptation.
Paths through the network can be interpreted as an
episodic long-term memory. This memory maintains
a record of relationship between sensory conditions,
actions taken, and the consequences of those actions.

The basic learning algorithm works as follows:
the system is presented with environmental features.
The algorithm then selects an RLA whose condi-
tion part is closest to the environmental input sit-
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uation (antigen). The system then takes appropri-
ate action based on the RLA (antibody). The algo-
rithm evaluates whether the RLA correctly predicted
the expected outcome from taking this action. If
the system behavior is in line with the desired out-
come, the RLAs which produced this system behav-
ior receive positive reinforcement. This increases an
RLA’s weight corresponding to concentration in the
immune system analogy. In the case of negative re-
inforcement, the RLA chosen is cloned and mutated
and the concentration is decreased. Also, RLAs that
are connected to the RLA which generated negative
reinforcement receive negative feedback.

3. Experiments

In the experiments reported here, the robot is driven
by the desire to ‘avoid obstacles’ or better ‘try to
avoid obstacles’ and the ‘desire to seek novelty’. By
reinforcement the AIS then learns to perform wall
following. In order to gain more knowledge about the
AIS approach, we take a closer look on the network
at different points in time. Thus, we examine the
RLA network after 4,000 iterations, then after 6,000
and finally after 12,000 and judge how good the robot
learned wall following.

The test bed used for the experiments with the real
robot consists of a circular barrier made from wooden
boards aligned in a way that the ongoing process of
learning wall following can be easily monitored. The
robot used in our experiments is a 6-wheeled KURT2
robot originally designed for sewage pipe inspection.
In our experiments we use its 12 IR and 2 ultrasonic
sensors only.

We performed several tests with KURT2. The aim
of the first series of tests was to investigate the struc-
ture of RLA networks after several iterations and
how long it would take for KURT2 to successfully
perform wall following. To find out, what the re-
quired population size for a stable network would
be, several experiments with different maxima of the
population size have been performed and analyzed.
A typical result is depicted in Figure 2.
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Figure 2: Evolution of the RLA population after 4,000
steps; the population size stays close to 1,200.
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In order to find out a good maximum size for the
RLA population or the smallest size for a function-
ing RLA network, we performed experiments with
different maxima, ranging from 20, 200, 450 to more
than 1,000. The first experiment performed with
20 RLAs and 6,000 iterations took only about 7
minutes. The resulting behaviour was completely
instable and the robot once even turned in circles
for a while. It also bumped against the wooden
barrier several times, even after this 6,000 iterations.
By increasing the number of iterations to 12,000,
the robot performed wall following on the left side
from time to time but, again, no stable behaviour
could be produced. Stability was only achievable
for populations of 1,000 RLAs and more. Although,
that does not mean, that all of the 1,000 RLAs are
being used for simple wall following, only less than
20 have been used on a regular basis, the others
were only needed for the learning-process.

These first results are encouraging in that this is the
first robot implementation of AIS for behaviour gen-
eration which we are aware of. Future work will fo-
cus on more complex behaviours generated using this
AIS principles. Following (Piaget, 1952) it is also
planned to introduce additional levels of abstraction
so as to equip the robot with more stringent concep-
tual knowledge.

Acknowledgements

This research is supported by the EC as IST project
SIGNAL. Partners are University of Bonn, Napier
University, National Research Council Genova, and
the Austrian Research Institute for Artificial Intelli-
gence - also supported by the Austrian Federal Min-
istry for Education, Science, and Culture and the
Austrian Ministry for Transport, Innovation, and
Technology.

References

Hart, E., Ross, P., Webb, A., and Lawson, A.
(2003). A role for immunology in next gen-
eration robot controllers. In Proc. of ICARIS
2003, Edinburgh, UK, volume 2787, pages 46—
56. Springer-Verlag Heidelberg.

Jerne, N. (1973). The immune system. Scientific
American, 229(1):52:60.

Piaget, J. (1952). The Origins of Intelligence in
Children. Norton, N.Y.

Ross, P., Webb, A., Hart, E., Prem, E., Poelz,
P. M., and Morgavi, G. (2003). Requirements
for getting a robot to grow-up. In Lecture Notes
in Computer Science, volume 2801/2003, pages
847-856. Springer-Verlag Heidelberg.





