In Berthouze, L., Kozima, H., Prince, C. G., Sandini, G., Stojanov, G., Metta, G., and Balkenius, C. (Eds.)

Proceedings of the Fourth International Workshop on Epigenetic Robotics
Lund University Cognitive Studies, 117, ISBN 91-974741-3-4

A Multimodal Hierarchical Approach to Robot
Learning by Imitation

Cornelius Weber, Mark Elshaw, Alex Zochios and Stefan Wermter
Hybrid Intelligent Systems
School of Computing and Technology
University of Sunderland UK
[Cornelius. Weber,Mark.Elshaw,Stefan. Wermter|@sunderland.ac.uk

Abstract

In this paper we propose an approach to
robot learning by imitation that uses the mul-
timodal inputs of language, vision and motor.
In our approach a student robot learns from
a teacher robot how to perform three sepa-
rate behaviours based on these inputs. We
considered two neural architectures for per-
forming this robot learning. First, a one-
step hierarchical architecture trained with two
different learning approaches either based on
Kohonen’s self-organising map or based on
the Helmholtz machine turns out to be inef-
ficient or not capable of performing differen-
tiated behaviour. In response we produced a
hierarchical architecture that combines both
learning approaches to overcome these prob-
lems. In doing so the proposed robot sys-
tem models specific aspects of learning us-
ing concepts of the mirror neuron system
(Rizzolatti and Arbib, 1998) with regards to
demonstration learning.

1. Introduction

Intelligent robots that are easy to use require a learn-
ing approach such as imitation learning which al-
lows the observer to gain skills, by creating an ab-
stract representation of the teacher’s behaviour, un-
derstand the aims of the teacher and produce the
solution (Infantino et al., 2003). There is growing
interest in imitation as it offers a flexible way to
programme robots by having the robot observe and
imitate either another robot or a human.

Multimodal inputs are used in our robot learning
model as it is only through the combination of lan-
guage, vision and motor actions, that robots will be
able to become service robots to benefit humans. By
combining multimodal inputs social robots should
adapt to changes in their environment and improve
their decision-making.

In response to this various multimodal approaches
have been used. For instance, (McGuire et al., 2002)

developed a robot to perform grasping opera-
tions based on language, gestures and vision.
(Roy and Pentland, 2002) develop a language acqui-
sition model that is able to learn words based on raw
multimodal sensory data. A mirror neuron approach
using multimodal inputs devised by (Demiris, 2002)
was applied to behaviour prediction. In this ap-
proach the behaviour model was given information
on the current state and the goal and produces the
required motor commands. The forward model then
created the expected next state based on the output
from the behaviour model. The predicted state was
compared with the actual state of the demonstrator
that produced an error signal to establish confidence
values for particular behaviours. Our approach adds
the language element in the mirror neuron system to
achieve learning by imitation.

A class of the neurons in the F5 motor area
of the monkey cortex not only fire when per-
forming an action but when seeing or hearing
the action performed. The role of these mir-
ror neurons is to represent actions in an abstract
sense so they are understood or can be imitated
(Rizzolatti et al., 2002). Mirror neurons in humans
(Gallese and Goldman, 1998) have been associ-
ated with Broca’s area (Rizzolatti and Arbib, 1998)
which indicates the role played by mirror neurons for
language development.

2. Methods

A robot simulator was produced with a teacher robot
performing ‘go’, ‘pick’” and ‘lift” actions one after an-
other in an environment (Fig. 1).

The student robot observed the teacher robot per-
forming the behaviours and was trained by receiving
multimodal inputs. These multimodal inputs were:

e higher-level visual inputs which were the = and
y coordinates and the rotation angle ¢ of the
teacher robot relative to the front wall,

e the motor directions of the robot (‘forward’,
‘backward’, ‘turn left’ and ‘turn right’) and
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Figure 1: The simulated environment containing the
robot at coordinates x, y and rotation angle ¢. The
upper dashed line indicates where the robot turns away
from the wall in the ‘go’ behaviour. The lower dashed line
indicates where the robot turns in the ‘lift’ behaviour.

e a language description stating the behaviour the
teacher is performing (‘go’, ‘pick’ or ‘lift’).

The coordinates « and ¢ in the ‘go’ behaviour en-
sure that the robot avoids the wall, irrespective of y.
Coordinates x, y and ¢ are relevant for the ‘pick’ ac-
tion where the robot moves to the coordinate origin
to grasp a target. For the ‘lift’ behaviour, coordi-
nates « and ¢ determine how far to move backward
and in which direction to turn around. These coor-
dinates which are shared by teacher and learner are
chosen such that they could be retrieved once the
imitation system is implemented on a real robot.

The first behaviour, ‘go’, involves the robot mov-
ing forward in the environment until it reaches a wall
and then turns away from it. The second behaviour,
‘pick’; involves the robot moving toward the target
object depicted in Fig. 1 at the top of the arena. This
“docking” procedure is produced by a reinforcement
approach as described in (Weber et al., 2004). The
final behaviour, ‘lift’; involves moving backward to
leave the table and then turning around to face to-
ward the middle of the arena.

The simulated teacher robot performs the three
behaviours one after another in a loop. At the start
of each behaviour the robot is initialised at random
x, y and ¢ co-ordinates. When receiving the multi-
modal inputs corresponding to the teacher’s actions
the student robot was required to learn these be-
haviours so that it could recognise them in the fu-
ture or perform them based on a language instruc-
tion. Two neural architectures were considered for
performing the imitation learning.

2.1 Choice of Architecture

The first architecture depicted in Fig. 2 was
run with two different learning algorithms. In
(Elshaw et al., 2004) we have used a winner-take-
all mechanism on the hidden area. In this self-
organising model, however, any hidden unit must
“explain” all input modalities at once, i.e. if there
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Figure 2: A single-step (3-to-1) architecture.

are differences in the input in only one modality, then
additional hidden units are needed. If one behaviour
would be described by several different words, then
it would have to be represented several times on the
hidden area.

For a more efficient hidden representation, we con-
sidered a distributed code to be chosen for the hidden
area of Fig. 2 which was done by using a Helmholtz
machine learning algorithm rather than the winner-
based self-organising map. Here a small number
of units might account for the word while others
account for the visual-motor representation. This
means that some units specialise to account for just
one input modality.

Our goal, however, is that if certain sensory input
arrives which would lead to different motor output
dependent only on the language input then the lan-
guage input shall deliver the necessary bias to cause
the differential activation pattern. This bias needs to
be situation dependent, since behaviours differ in dif-
ferent situations, by activating different motor units.
But we found that a language unit projects a certain
input pattern onto the hidden units, i.e. it biases
the hidden unit’s activations dependent of the static
connection pattern toward them. This bias is thus
not situation dependent, since the language area does
not receive sensory input.

In response to these identified problems we will
concentrate on the architecture represented in Fig. 3.
It associates the motor and high-level vision in-
puts using the first hidden layer, denoted HM area.
The activations of the first hidden layer are then
associated with the language region input at the
second hidden layer, denoted SOM area. The
first hidden layer uses a Helmholtz machine learn-
ing algorithm (Dayan, 2000) and the second hid-
den layer uses Kohonen’s self-organising map algo-
rithm (Kohonen, 1997). Training of the SOM area
weights was done after the HM area weights learn-
ing was completed. Such an architecture allows the
features created on the Helmholtz machine hidden
layer to relate a specific action for one of the three
behaviours given the particular higher visual infor-
mation to “flexible” associations of pairs/patterns of
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Figure 3: A two-layer hierarchical architecture was used.

activations on the hidden area.

2.2 Training

The multimodal inputs included first the high-level
vision which represents the  and y coordinates and
rotation angle ¢ of the robot. The z, y and ¢ co-
ordinates in the environment were represented by
two arrays of 36 units and one array of 24 units,
respectively. The centre of a broad Gaussian hill
of activation denotes the corresponding coordinate
as a neural population code. The language region
input was based on a representation of phonemes.
This approach used a feature description of 46 En-
glish phonemes, as developed by partners in Cam-
bridge based on the phonemes in the CELEX lexi-
cal databases (http://www.kun.nl/celex/). A region
of 4 rows by 20 columns was used to represent the
words with each row representing a phoneme which
had 20 phonetic features each. The robot motor di-
rectives were presented on the 4 motor units (‘for-
ward’, ‘backward’, ‘turn right’ and ‘turn left’) with
only one active at a time.

The size of the HM hidden layer was 32 by 32 units
and the SOM layer was 24 by 24 units. The number
of training examples was around 500000. The du-
ration of a single behaviour depended on the initial
conditions and may average at around 25 consecu-
tive steps, before the end condition (robot far from
wall or target object reached) was met.

During training the student robot received all the
inputs, however when testing, either the language
area or the motor inputs were not provided. When
the student network had to recognise the behaviour
that was performed, then the language input was
omitted. Recognition was verified by comparing the
units which are activated on the language area via
Wtd (depicted light in Fig. 3) with the activation pat-
tern belonging to the verbal description of the cor-
responding behaviour. When the student robot was
required to perform the learnt behaviours based on a

language instruction, then the motor input was omit-
ted. It then continuously received its own current z,
y and ¢ coordinates and the language instruction
of the behaviour to be performed. Without motor
input it had to produce the appropriate motor acti-
vations via W?'¢ which it had learnt from observing
the teacher to produce the required behaviour.

3. Results

First, we have trained a HM area to perform a single
behaviour, ‘pick’, without a SOM area. The robot
thereby self-imitates a behaviour it has previously
learnt by reinforcement (Weber et al., 2004). Exam-
ple videos of its movements can be seen on-line at:
www.his.sunderland.ac.uk/supplements/NN04/

Finally, the full network was trained and sample
weights are shown in Fig. 4. One can see that a) the
motor units receive input from only small regions in
the HM area while b) the SOM units are connected to
larger regions. These larger input regions of the SOM
units generally comprise one region devoted to one
of the motor units and in addition regions devoted to
x,y, input from high-level vision. The SOM units
thus perform feature binding, or association of visu-
ally perceived input to a motor command.

The circles drawn into Fig. 4 show in b) that as one
progresses along the SOM area along four neurons,
their association toward motor units changes: the
left unit has a RF overlap with that of the ‘turn
left” motor unit, but not with that of the ‘forward’
unit, while the right unit behaves opposite. All of
these four selected SOM units are activated during
the ‘go’ behaviour, thus their differential activation
reflects different phases within that behaviour.

A part of the ‘go’ performance of the learner is

a) forward backward right left
W

Figure 4: a) The four motor units’ receptive fields (RF)
in the HM area. Strong weights are depicted dark. Each
unit receives input from a narrowly confined region in the
HM area. b) Four neighbouring SOM units’ RF's in the
HM area. Circles indicate that the leftmost units’ RFs
have an overlap with those of the ‘left turn’ motor unit
while the rightmost unit’s RF overlaps with the RF of
the ‘forward’ motor unit.
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Figure 5: The ten steps of the learnt ‘go’ behaviour, as
the robot starts to turn away from the wall.

shown in Fig. 5. The robot approaches the wall and
starts to turn away from it.

4. Discussion

It is suggestive to identify the HM area of the model
with area F5 of the primate cortex and the SOM
area with F6. F5 represents motor primitives where
the stimulation of neurons leads to involuntary limb
movements. F6 rather acts as a switch, facilitating
or suppressing the effects of F5 unit activations but
it is itself unable to evoke reliable and fast motor re-
sponses. In our model, the HM area is directly linked
to the motor output and identifiable groups of neu-
rons activate specific motor units while the SOM area
represents the channel through which a verbal com-
mand must pass in order to reach the motor units.

Mirror neurons have so far been reported in F5.
By design, our model uses the HM area for both,
recognition and production, so an overlap in the ac-
tivation patterns as observed in mirror neurons is
expected. This overlap is mainly due to those neu-
rons which receive high-level vision input. This per-
ceptual input is tightly related to the motor action
as it is necessarily present during the performance
of an action and contributes to the “motor affor-
dances” (Gallese and Goldman, 1998). The decisive
influence on the motor action, however, is localised
in our model on smaller regions on the HM area, as
defined by the motor units’ receptive fields (Fig. 4
a)). Units in these regions would correspond to the
canonical motor neurons which do not have mirror
neuron properties and which are also found in F5.

In summary, we have developed a hierarchical ap-
proach to robot learning by imitation that combines
Helmholtz machine and self-organising map learning
algorithms in a hierarchical model. The model offers
multimodal input processing of vision, language and
action, and suggests analogies to the organisation of
motor cortical areas F5 and F6 and to the properties
of mirror neurons found in these areas.
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