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Introduction

This thesis address various aspects of binocular depth perception, and at-
tempts to account for how the information, contained in the left and right
retinal images, is processed and transformed into a useful 3-D surface de-
scription.

The  fundamental principle behind stereoscopic  depth perceptions  is
fairly simple, and rests on the fundamental fact that the lengths of the
sides of a triangle can be computed, given that at least one of the sides,
and two of the angles, are known. Hence, given a distant object on which
the  eyes  converge,  the  convergence  angle,  and  the  (known)  distance
between the eyes, can be used to compute an estimate of the distance to
the object. Moreover, when an object is positioned off the horopter (i.e.
plane of convergence) the projection of the object will not end up on the
exact same relative position in the left and right retinas, due to the differ-
ence in perspective of the eyes, but will be more or less horizontally dis-
placed depending on the objects distance from the horopter. This relative
displacement, or binocular disparity, between corresponding retinal projec-
tions, together with the convergence angle of the eyes, form the basis for
stereoscopic depth perception (stereopsis).

While  the  fundamental  principle  behind  stereopsis  may be  simple,
there are numerous difficulties that the visual system must overcome in
order to effectively, and accurately, process this information. One of the
most central questions, in this respect, is how the visual system manages
to identify corresponding retinal projections in the two eyes. Before the
random-dot stereogram was introduced as a research tool (Julesz, 1960)
this process was not well understood, and it was widely believed that ob-
jects had to be identified/recognized independently in each view before
they could be binocularly matched. The fact that random-dot stereograms
can be binocularly fused, despite the lack of any monocularly identifiable
shapes, or  cues to depth, clearly showed that  stereopsis is  a relatively
early process, which operate on low-level stimuli. Now, most (biologic-
ally oriented) computational theories of stereopsis assume that binocular
correspondence, primarily, is established between simple edge, and bar,
segments, which resemble the stimuli that disparity sensitive neurones in
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area V1(Hubel & Wiesel, 1962) typically respond strongly to. A difficulty
with resolving the correspondence problem at such a low level, is that ba-
sically any stimuli can be broken down into edge,  and line, segments,
which means that  the  ambiguity,  and  likelihood of  false  matches,  in-
crease.  To  overcome this  difficulty,  various  computational  constraints
have been proposed that  are  intended to reduce the solution space in
various ways. In article I, and article III, in this thesis, the computational
basis and the justification for different such constraints are discussed, and
two different computational models are proposed.

A common assumption in virtually all stereo models is that surfaces, in
general, are opaque and relatively smooth; i.e. that nearby points on a
surface have a similar depth/disparity. This assumption have often been
used to justify computational constraints that mutually reinforce potential
matches that lie close to each other in the image plane as well as in depth.
Obviously, this type of constraint is not justified between image primit-
ives that are parts of different surfaces, but should only be applied within
the enclosing boundaries of individual surfaces.  In  article II,  the diffi-
culties  related with the monocular identification of occluding contours
are discussed; and a computational model is proposed that, based on a
few simple heuristics,  enhance image discontinuities whether they are
caused by a change in luminance, texture, or by line-endings, and that re-
spond to “illusory” contours (see for example Kanizsa, 1979).

How occluding edges affect the interpretation of binocular depth is fur-
ther explored in article IV. In this paper, an empirical study is described,
which investigate how different types of (occluding) boundary inducers
affect disparity interpolation in ambiguous image regions, and the per-
ceived completion of sparsely defined surface.

*
In  article  I  (Stereovision:   A model  of  human stereopsis),  a  computational
model of stereopsis is presented. As foundation for the model lies a num-
ber of ideas that has arisen from redefining the correspondence problem.
Instead of establishing potential matches by the detection and matching
of some set of “predefined” features, e.g. edges (zero-crossings) or bars
(peaks/trough), matches are sought by comparing the overall configura-
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tion of contrast within delimited regions of the two images. The main dis-
ambiguating power of the model is provided by combining the results of
the  matchings  from  a  number  of  independent  channels  of  different
coarseness (with respect  to the resolution of the contrast information).
The idea is that the information in the coarser channels can be used to re-
strict the domain of potential matches, to be considered, within the finer
channels. Important for this assumption is the concept of figural continu-
ity. To further reduce the set of potential matches, the model relies on the
constraint  of  uniqueness.  A computer  implementation of the model  is
presented, which from the input consisting of a stereogram, produces a
representation of the binocular disparity present within the stereogram.
A number of results obtained from this  computer  implementation are
also presented and discussed.

*
In article II (Occluding Contours: A computational model of suppressive mech-
anisms  in  human  contour  perception),  the  fundamental  problem  is  ad-
dressed, of how to identify the occluding contours of objects, given the
ambiguity inherent in low-level visual input. A computational model is
proposed for how occluding contours could be identified by making use
of simple heuristics that reduce the ambiguity of individual features. In
the striate cortex, a large majority of cells are selective for both contrast
and orientation; i.e.,  they respond preferentially to simple features like
contrast edges or lines. The proposed heuristics enhance or suppress the
outputs of model striate-cortical cells, depending on the orientation and
spatial distribution of stimuli present outside of the "classical" receptive
field of these cells. In particular, the output of a cell is suppressed if the
cell responds to a feature embedded in a texture, in which the "compon-
ent features" are oriented in accordance with the orientation-selectivity of
the cell. The model has been implemented and tested on natural as well
as artificial grey-scale images. The model produces results that in several
aspects are consistent with human contour perception. For example, it re-
produces a number of known visual phenomena such as illusory con-
tours,  contour masking,  pre-attentive  pop-out (due  to  orientation-con-
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trast), and it enhances contours that human observers often report per-
ceiving as more salient.

*
In article III (The Uniqueness Constraint Revisited: A symmetric Near-Far in-
hibitory  mechanism  producing  ordered  binocular  matches),  psychophysical
studies are reviewed that suggest that image features, under certain con-
ditions, can give rise to multiple visible binocular matches. These findings
are difficult to reconcile with the traditional interpretation of the unique-
ness  constraint.  A  new  interpretation,  a  conditional  uniqueness  con-
straint, is proposed that allows multiple matching of similar primitives
when a one-to-one correspondence does not exist, locally, within corres-
ponding image regions, but prohibits it when a one-to-one correspond-
ence does exist. A cooperative network model and an implementation are
also described, where this constraint is enforced at each network node by
a simple inhibitory (dual)  AND-gate mechanism. The model performs
with high accuracy for a wide range of stimuli, including multiple trans-
parent surfaces, and seems able to account for several aspects of human
binocular matching that previous models have not been able to account
for.

*
Finally, article IV (The Perception of Binocular Depth in Ambiguous Image Re-
gions: Toward a computational theory of surface perception) describes an em-
pirical investigation of the perception of binocular depth in image regions
that lack explicit disparity information. For this purpose, sparse random-
dot stereograms were used. The basic stimuli-design consisted of two dif-
ferent depth planes; a foreground that covered the entire scene, and a
background that covered only half the scene; from the center to either the
left, or the right, end of the display. Despite the fact that the foreground
covered the entire scene, subjects typically reported that the ambiguous
image regions, in between the foreground dots,  belonged to the back-
ground. When, however, a few unpaired dots were added along the cen-
ter, to suggest an occluding opaque surface, subjects tended to perceive
the same ambiguous region as belonging to the foreground, which sug-
gest interaction between the binocularly paired, and unpaired, stimuli. A
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number of variations,  of  this  basic  theme was investigated, including:
changing the density of the dots in the two depth planes; changing the
number, and positioning, of the  unpaired dots along the center; making
the background extend over the entire scene except for a central rectan-
gular region; using other cues, e.g. a 2-D contour, or a pair of “Kaniza”
inducers, to suggest occlusion. Our results can not be accounted for by
any simple disparity interpolation scheme, but seem to require additional
processing within the disparity domain, as well as interaction with pro-
cesses devoted to the identification of occluding boundaries.
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Stereovision: A model of human stereopsis

Abstract � A model of the human stereopsis mechanism is presented. As
foundation for the model lies a number of ideas that has arisen from rede-
fining  the  correspondence  problem.  Instead  of  establishing  potential
matches by the detection and matching of some set of “predefined” fea-
tures,  e.g.  edges  (zero-crossings)  or  bars  (peaks/trough), matches  are
sought by comparing the overall configuration of contrast within delim-
ited regions of the two images. The main disambiguating power of the
model is provided by combining the results of the matchings from a num-
ber of independent channels of different coarseness (in regard to the res-
olution of the contrast information). The idea is that the information in the
coarser channels can be used to restrict the domain of potential matches,
to be considered, within the finer channels. Important for this assumption
is the concept of figural continuity. To further reduce the set of potential
matches, the model relies on the constraint of uniqueness. A computer im-
plementation of the model is presented, which from the input consisting
of  a  stereogram,  produces  a  representation  of  the  binocular  disparity
present within  the stereogram. A number of results obtained from this
computer implementation are also presented and discussed.

1 Introduction
One of the major functions of the human brain is to construct a representation of
the world surrounding us. For a human being, and many other animals, the per-
haps  most  important  sense  for  accomplishing  this  task  is  the  visual  sense.
Without it we would be severely handicapped because it alone allows us to per-
ceive and represent a great number of aspects of our environment. One such as-
pect  that  is  of  fundamental  importance is that  of  spatial  relationships.  Since
space is three-dimensional we have to perceive all three dimensions in order to
acquire a full representation of these relationships. The problem is that the im-
ages that reaches our eyes, considered individually, only reveals the two-dimen-
sional spatial relationships. However, taken together they contain sufficient in-
formation to allow the third dimension to be recovered. Thus, in order for the
brain to reconstruct the 3-D structure of the environment, the information in the
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two separate images must somehow be combined. How then is this transforma-
tion from 2-D images to a 3-D representation of the world achieved? The recov-
ery of the third dimension is really not the result of one process, but of several
more or less independent ones. The conscious awareness of depth that we per-
ceive is therefore a product of the whole mind and can not be ascribed to one
particular system. However, as we shall see there is one outstanding mechanism
in the brain, referred to as stereopsis, that is of crucial importance for our ability
to perceive depth.

Before going into the details of the stereopsis mechanism, I would first like to
present some other cues to depth that are thought to be used by the brain.

Two physiological cues that are important for depth perception are the  con-
vergence of the eyes and the accommodation of the lenses. The degree to which
our eyes converge depends on  where we fixate  our eyes.  If  we fix them on
something near they converge more than they do if we look at something far
away. The accommodation of the lens, in turn, is determined by where we focus.
When focusing on something far away, the muscles around the lens are relaxed
and the lens is therefore relatively thin, but in order to bring a closer scene into
focus the lens has to change shape. The muscles around the lens therefore con-
tracts to form the lens appropriately. These different types of information, about
the degree of muscle contractions, are not by themselves useful to the brain, but
in combination with the visual input they are essential for the ability to perceive
depth.

There are several monocular cues to depth as well. If you have only one eye
open and move your head from side to side, you will experience a sensation of
depth. This phenomenon is called motion parallax. The shading of an object or a
scene can also provide an impression of depth. Usually, we are not even aware
of the existence of such cues, but there are other cues that only makes sense in
combination with higher knowledge or learned relationships. For example, if one
surface/object partially covers another one, it is possible to determine that the
covered surface/object is furthest away. This might seem very obvious but in
fact requires that, at least, a partial identification of the two objects/surfaces has
taken place, so that their spatial extensions can be established. Another such cue
has to do with the size of objects. If the size of an object is priorly known, it will
appear far away if it produces a small image on the retina, and vice versa if it
produces a large image. These are just a few examples of monocular cues, and
there are several others (e.g. perspective, texture gradients, e.t.c.). As mentioned
above, the extent to which higher knowledge is involved in making use of these
cues varies, and sometimes it might be more appropriate to say that we are deal-
ing with pure reasoning rather than cues.

However this might be, the by far richest source of depth-information comes
from combining the information from the two eyes. Due to the fact that our eyes
are horizontally separated, the image that falls on one eye will differ slightly in
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perspective from that of the other. This means that the different features, making
up the images, will not fall on the exact same locations in the two retinas (Fig.1).
The magnitude of this horizontal displacement, or binocular disparity, is decided
by two factors: the convergence of the eyes and the distance to the surfaces, giv-
ing raise to the features on the retinas. Now, signals about the convergence of the
eyes are directly transmitted to the brain, and the binocular disparity can indir-
ectly be measured from the combined information in the retinal images. Thus, all
the necessary information is available for the brain to compute the depth of the
scene. The ability, of the brain, to perform these computations is referred to as
stereopsis.

Figure 1.  Due to the  difference in perspective, the images of the dots will  fall onto
slightly different locations in the two retinas.

The first to appreciate the role binocular disparity has in seeing depth was
Wheatstone, whom in 1838 invented the first stereoscope. The stereoscope be-
came a quite popular gadget in those days, but any deeper analysis of the phe-
nomenon was hindered due to lack of appropriate tools to investigate it with, and
due to an immature general knowledge of how the brain functions. The prevalent
view of stereopsis was that it depended heavily on monocular form recognition.
It was thought that the image from each eye was separately analysed, and all the
components of the images was identified and recognised before they could be
binocularly combined. This belief placed the phenomenon of stereopsis at a rel-
atively high level, in the cognitive chain, since it – according to these conclu-
sions – had to occur after object recognition.

It was not until a century later that it would be proven otherwise, when Bela
Julesz (1960) developed the random-dot stereogram. A random-dot stereogram
(Fig.2) contains no information of monocular form. When viewed separately, all
one can see are black dots spread out over a white surface. Only when the im-
ages are fused in a stereoscope, or by crossing ones eyes, is it possible to per-
ceive the shape and depth of the scene. The only information available to the
brain is the binocular disparity that separates the dots in one image from the cor-
responding dots in the other image. This clearly shows that binocular disparity
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Figure  2. A  random-dot  stereogram  contains  no  monocular  depth-cues.  The  3-D
structure hidden in the stereogram can only be perceived when the images are bin-
ocularly fused in a stereoscope or by crossing the eyes.

alone is sufficient to perceive depth, and that stereopsis therefore does not have
to occur after object recognition. In fact, it is now known that stereopsis occurs
at an early level in the visual pathway. An important neurophysiological finding
showing this was made by Barlowe, Blakemore and Pettigrew (1967) who dis-
covered neurons in area V1 that are selective for horizontal disparity between the
input from the two eyes.

The problem of stereopsis then basically boils down to the matching of corres-
ponding features in the two images that are projected into the eyes. This is often
referred to as the correspondence problem. Conceptually, it can be clarifying to
consider the matching process as being divided into, using Julesz terminology, a
“local” and a “global” matching process. In the local matching process, possible
candidates to which a feature may match are sought. If each feature could be
uniquely described there would be only one possible match in the opposite im-
age, and thus would there be no correspondence problem. Naturally, this demand
for uniqueness is not very realistic (I will return to the reasons for this in the fol-
lowing section). In fact, the result of the local matching is often highly ambigu-
ous. The mechanism that resolves this ambiguity, and sorts the correct matches
from the “ghosts”, is in this framework referred to as the global matching pro-
cess.

I will in this paper present a model of human stereopsis, which in a number of
aspects simulates the behaviour of the human stereopsis mechanism. In the fol-
lowing sections, I will first discuss what primitives could be used as input to
such a mechanism? I will then go on to discuss how different constraints could
be imposed on the matching process in order to dissolve ambiguous matches. Fi-
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nally, will I present the model and the outlines of a computer implementation
that from the input, consisting of a stereogram, reconstructs the 3-D structure of
the scene.

Anyone  trying  to  model  human  stereopsis,  or  any  other  information-pro-
cessing system, has to face a number of decisions about what is to be calculated,
what information and representation is to be used, what transformations should
be performed and why they should be performed. Marr (1982) has thoroughly
analysed which questions, like those above, are relevant to ask for such a task,
and also what has to be known about any information-processing system before
it could be said to be fully understood. His main idea is that any information-
processing system can be explained at different levels of abstraction, and he em-
phasises the importance of understanding each of these levels separately, before
the whole system can be understood. Marr has chosen to divide this analysis into
three different levels: the level of computational theory, the algorithm- and rep-
resentational-level, and the level of implementation. At the first level, one has to
make clear what the goal of the computation is and how this goal can be accom-
plished? What strategy is to be used and what makes it justified? Applied to the
analysis of stereopsis, an important part of this involves finding constraints, im-
posed by the physical world, that can be used to justify the global matching pro-
cesses. At the second level, the type of information and representation has to be
considered. What is the input and output, and what algorithm could perform this
transformation? The final level is concerned with the details of the physical im-
plementation of the algorithm.

One can only agree that this is a most reasonable approach and it has therefore
been somewhat of a guideline to my thoughts during my attempt to model hu-
man stereopsis. I have also had as an aim, with this paper, to cover most of these
different aspects of the stereopsis problem.

2 Matching primitives
From a philosophical or computational point of view, one could say that there is
a trade-off to be made between the representational capacity, and the amount of
processing,  needed to solve  the correspondence problem that  depends  on the
complexity of the features used in the matching process.

On the one extreme, using low-level features (e.g. like the intensity value in
each point of the image) would require little representational capacity, but also
make it quite impossible to establish the correct set of matches simply by com-
paring features, since such a procedure – in the general case – would cause a
large  amount  of  ambiguous  matches.  An  extensive  amount  of  (global)  pro-
cessing would therefore be needed to sort the correct matches from the “ghosts”
– if at all possible.
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On the other extreme, if one could divide the image into a number of more
complex  features  (e.g.  objects  or  sub-regions  containing  a  particular  texture
e.t.c.) that allowed each feature to be “uniquely” described, practically no match-
ing-process would be necessary since the “uniqueness” would assure a one-to-
one correspondence between features. This strategy would however put high de-
mands on the representational capacity, since it would have to be able to repres-
ent, very accurately, an enormous number of different features in order to allow
for discrimination among these. In fact, the later of these strategies is not plaus-
ible, in its extreme form, even if we had an infinite representational capacity.
The reason for this is that the demand for uniqueness is not realistic in the gener-
al case. The answer in turn to why uniqueness is not realistic depends somewhat
on how one chooses to interpret the complexity of a feature and is not straight-
forward to answer completely, but I will give two simple examples that gives a
general idea. The first is simply that two, or several, features that give raise to
the exact same projection on the retina, obviously will have to be represented ex-
actly the same way too. Thus, will they be impossible to discriminate from each
other by comparison alone, no matter how elaborate and exhaustive the repres-
entation of them are. Second, since the disparity we are seeking has the effect of
producing different images in our eyes, the corresponding features will often ap-
pear slightly differently, and this makes the one-to-one correspondence based on
uniqueness impossible.

As seen above, both strategies have their benefits and shortcomings concern-
ing  the  need  for  representational  capacity  and  processing  power.  Neither  of
them, in their extreme form, seems likely to be used by the human brain. Instead,
what one should look for is some kind of compromise in which the best proper-
ties could be combined. I will at the end of this section suggest a way in which
this might be accomplished.

Philosophical  or  computational  considerations  alone  will  not  tell  us  what
matching primitives are used by the brain, but they can guide the search in the
right direction. In order to tie these ideas to reality, one has to know something
about the neuronal machinery and the information it feeds on. In the light of dis-
cussing this next I will present some of the various matching primitives that have
been suggested to be used by the brain, and I will also present some evidence in
favour and against these.

It  was early  proposed  that  a  point-by-point  matching  of  brightness  values
could be conducted, but for various reasons this idea has now little support. In
most types of images the intensity changes smoothly over surfaces and is often
constant within relatively large regions. The probability of establishing a one-to-
one  correspondence between  all  points  in  the  images,  simply  by  comparing
brightness values, would therefore seem to be low due to the large number of po-
tential matches. It would also be difficult to defend such a strategy in the light of
findings made by Julesz (1971), who showed that images with different degree
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of contrast could easily be fused. Another important reason why this seems un-
likely is that the information of the absolute light intensity, measured by the re-
ceptors in the retina, is not directly transmitted to the cortex where fusion occurs.
The information leaving the eye, the output of the retinal ganglion cells, in fact
represents something quite different from the raw light intensity values reaching
the retina.

There are two major kinds of retinal ganglion cells: on-centre and off-centre
cells (Fig. 3). The on-centre cells responds most strongly when light hits the
central part of their receptive field. If diffuse light covers both the excitatory
centre and the inhibitory periphery the response is weakened, and if only the
peripheral parts are exposed the response will be suppressed. The off-centre cells
have a reversed response pattern since their central parts are inhibited by light
and the surround is excited. There are many different sizes of these receptive
fields and they could roughly be said to grow with the distance from the fovea,
but there are large ones in the central parts as well. Also important is that neigh-
bouring cells’ receptive fields overlap almost completely, so that they together
cover the  whole  visual  field  (Hubel  1988).  Considering  the  compositions  of
these receptive fields, it is clear that these cells does not respond to the absolute
amount of light hitting the retina, but rather to the difference between the light
falling on the central and the surrounding parts of their receptive fields. In other
words, the output of the eye basically contains information about the relationship
of contrast within the retinal image.

Figure 3. Receptive field mapping of the retinal ganglion cells.

Still this information is not directly used by the stereopsis mechanism, but as
we shall see it is used by other cortical cells which output, in turn, is used as in-
put to the stereopsis mechanism. Before discussing stereopsis in more detail, I
will therefore first describe some of these “other” cells and explain to what type
of stimuli they react.

Hubel and Wiesel were the first to make successful recordings from cells in
the cortex of cats (Hubel & Wiesel 1959) and later monkeys. They found a num-
ber of cells, which they divided into two major groups, simple and complex cells,
depending on their response to different types of stimuli. Simple cells all have in
common that they respond most strongly when a particular configuration of light
fall within their receptive field. A typical simple cell gives a strong response if a
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rectangularly shaped area of light, with a particular orientation, falls within its
receptive field (Fig. 4a). If the light falls too much outside of the central part of
the receptive field, the response will be low or suppressed. There are many vari-
ations of simple cells and some respond best to a border, between light and dark-
ness, of a certain orientation (Fig. 4b). The sizes and distribution of the simple
cells’ receptive fields coincide fairly well with those of the retinal ganglion cell-
s’.

Figure 4. Receptive fields of two typical simple cells.

Complex cells have slightly larger receptive fields than simple cells.  These
cells also give a strong response for border- and “bar”-shaped stimuli of a certain
orientation, but there are other factors determining their response as well. Some
complex cells respond equally well to a particular stimulus, with the right orient-
ation, no matter where it falls within its receptive field. Others only respond if
the stimulus, except from being of a certain kind and orientation, moves across
the receptive field as well. 

A special group of complex cells, called hypercomplex or  end-stopped cells,
have receptive fields similar to the complex cells’ described above, but for one
exception. For instance, if the stimulus is a bar-shaped light with the right orient-
ation, the cell will respond equally strong no matter where the light falls within
the receptive field, as long as the bar does not extend over a certain border. If it
does the response will be weakened or suppressed (Hubel 1988).

The simple and complex cells above were all described as taking their input
from only one eye, but both simple and complex cells with binocular receptive
fields have been found as well. Even more important considering stereopsis is
that cells have been discovered in area V1 that respond optimally to stimuli with
a certain horizontal disparity between the eyes (Barlowe, Blakemore & Pettigrew
1967). Studies of cells in macaque monkeys, an animal which has a capacity to
perceive depth very similar to that of humans, found that as many as 60–70% of
the cells in striate cortex, and an even larger number in prestriate cortex, were
sensitive to horizontal disparity, and that many of these showed properties like
those of simple and complex cells (Poggio & Poggio 1984). As we can see the
necessary input for the stereopsis mechanism seems to be available, and the in-
teresting  question  therefore  becomes  how  this  information  is  used?  Are  the
simple and complex cells actual “feature-detectors” or is the information they
provide used to produce some more elaborate description?
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Figure 5. (a) Showing an image (128x128 pixels) and the results after having convo-

luted the image with the ∇2G-operator. The space constant  σ has the values of 1, 2
and 4 pixels in (b), (c) and (d) respectively.

Marr and Hildreth (1980) have argued that an important result of early vision
is the construction of a “raw primal sketch”. In short this is a symbolic descrip-
tion of the different primitives making up the image (e.g. edges, bars, and blobs)
that contains information about their size, orientation and position within the im-
age. In order  to discover such primitives in an image a first step is to detect
changes in the light intensity values. A number of different derivatives, or “fil-
ters”, could be used for this purpose. Marr and Hildreth (1980) have for various
computational  reasons  argued  that  the  operator  most  suitable  to  detect  such

changes is the filter  ∇2G, where  ∇2 is the Laplacian operator(δ2/δx2+δ2/δy2)
and G the two-dimensional Gaussian distribution
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with standard deviation σ. The Gaussian part of this function has the effect of
blurring the image by whiping out all details smaller than the space constant σ
(Fig. 5). Since contrast is a relative concept and occurs at different scales within
an image, one must use several different values for the space constant in order to
get a complete description of the light intensity changes. The next step in the
construction of the raw primal sketch is to detect  zero-crossings (a change in
light intensity along a certain dimension will give rise to a peak or through in the
first derivative and to a zero-crossing in the second derivative, Fig. 6)  in the
filtered image from which in turn the different primitives can be detected. What
is interesting in the context of stereopsis is not so much the raw primal sketch it-
self, but the zero-crossings used to construct it. Marr and Poggio (1979) has sug-
gested that zero-crossings are the most important, but not the only, input to the
stereopsis  mechanism.  The idea  of  using zero-crossings  seems to be,  at least
somewhat, supported by the neurophysiological findings described above. The
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output of the retinal ganglion cells is probably quite similar to that of an image

convoluted with a number of  ∇2G-operators with different  σ-values. And the
purpose of the simple and complex cells, responding to borders between brighter
and darker areas, could possibly be to detect such zero-crossings within different
spatial frequencies.

Figure 6. A change in light intensity (a) will rise to a peak (b) in its first derivative, and
to a zero-crossing (c) in its second derivative.

However other primitives have been suggested to be important as well. May-
hew and Frisby (1981) showed in an experiment (using stereograms of saw tooth
luminance gratings of the same period but with slightly different shapes) that the
experienced percept could not be satisfactorily explained simply by considering
zero-crossings. They therefore suggested that the “peaks” and “troughs” in the
convoluted images should be matched as well. In this context, peaks and troughs
refers to the maximum and minimum values in the convoluted image (Fig. 6c).

No doubt, the information corresponding to peaks/troughs and zero-crossings
is of essential value to the matching process, but I believe that human stereopsis
might be better described by a rather different framework than in terms of the
detection and isolated matching of such features. I also believe that stating that
the exclusive purposes of the simple and complex cells are to detect such fea-
tures is a somewhat hasty, or at least too narrow, conclusion. To shed some light
on my proposed alternative framework, I will describe two subtly, but yet funda-
mentally, different ways of interpreting the correspondence problem which are
important to the context.

The most common interpretation of the correspondence problem is that the
matching is conducted by first identifying some set of  predefined features (e.g.
bars or edges) in one image, and then finding the corresponding features in the
other image. Theories relying on peaks/troughs, zero-crossings or other similar
measurements for this purpose could therefore be said to be feature-oriented ap-
proaches.

Another way of looking at the correspondence problem is that a sub region (a
delimited area) of one image is compared to other, similarly composed, sub re-
gions in the other image (kind of like laying a jigsaw puzzle). A strategy like this
would not be dependent of any particular set of predefined features, but would
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instead rely on the similarity of the overall configuration of light within different
regions. In contrast to being feature-oriented, this approach could be said to be
region-oriented, since the descriptive element to be matched is a delimited re-
gion of the image.

With this alternative interpretation of the correspondence problem as a found-
ation, I will suggest a strategy in which the matching is conducted by comparing
the configuration of contrast within elements/regions of different but fixed sizes.
That the information of contrast is preferred rather than raw light intensity values
should be evident from the discussion earlier in this section. Now, in order to
fairly well describe an image in terms of contrast (remember that contrast is a re-
lative measure), this information has to be gathered from within a number of dif-
ferent  spatial frequencies. To efficiently make use of this information and to
make the matching meaningful, only elements containing contrast information of
the same spatial resolution should be matched.

Finally, for reasons that I will return to, I suggest that the sizes of these ele-
ments should be proportional to the spatial wavelength from within the informa-
tion of contrast was detected. Thus, the larger elements will contain low-resolu-
tion contrast information and the smaller ones will contain high-resolution in-
formation.

What I  believe is  an advantage of  this  region-oriented strategy is that  the
matching can be carried out on a lower, “non-symbolic”, level that is richer in
information contents, since the matching is performed directly on the contrast
values. In feature-oriented strategies, relying on the matching of a set of pre-
defined features, these features would first have to be extracted from the inform-
ation of contrast, and would thus be of a more symbolic nature since part of the
information has been lost in the process of extracting them. I am therefore con-
vinced that the suggested region-oriented approach would provide the matching
process with a greater power of discrimination (allowing a greater reduction of
false matches), than would any feature-oriented strategy relying on more “sym-
bolic”/predefined features as matching primitives.

Since my ambition is to model the human stereopsis process, the suggested
strategy would be  of little value if  the  neurophysiological findings  described
earlier could not be accounted for by my model. I will therefore try to show, by
interpreting  these  findings  slightly  differently,  how  they  could  be  explained
within the suggested model.

At first reflection the requirement that the matching should be conducted dir-
ectly on the contrast values, corresponding to the output of the retinal ganglion
cells, seems to lack any support in the neurophysiological findings. No cells with
binocular receptive fields have been found that responds to the information at
such a low level. What have been found are the simple and complex cells, which
each responds optimally when a particular configuration of light is present, and
thus only indirectly to “raw” contrast. These cells have therefore often been in-
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terpreted as being “feature-detectors”. However, from the fact that these cells re-
spond optimally to certain configurations of light does not necessarily follow
that their purpose simply are to detect such isolated features in the image. I be-
lieve that the functionality of the simple and complex cells should not be ex-
plained, in isolation from each other, as feature-detectors. Instead I believe that
the combined response from a group of such cells, sharing the same receptive
field, could be seen as just another way of representing the information of con-
trast within their common receptive field.

Figure 7. (a) Schematic organisation of the suggested groups of simple and complex
cells, showing the sizes and compositions of these cells' receptive fields. 7 (b) is sup-
posed to illustrate how the overall configuration of contrast, within the receptive fields,
could be reconstructed from the “superimposed” response of the cells in the group.

To better see why such an interpretation makes sense, it is important to recall
that there is a great variety of simple and complex cells. Both concerning the
sizes of their receptive fields and concerning the configurations of light they are
tuned to detect. Also important is that for any part of the visual field, there is a
great number of such different cells that have common receptive  fields. Now
imagine how these  various types of  cells could be organised into groups, or
columns, so that all cells belonging to a particular group would have the same
receptive field, both in matter of size and location within the visual field (Fig
7a). These groups in turn could then be organised according to the sizes of their
receptive fields into different layers, so that each separate layer only consisted of
groups of cells with similar sized receptive fields. Now suppose that the match-
ing does not rely on the individual responses from these different types of cells,
but on the combined response from all the cells within such a group/column. In
that case a more appropriate description of the purpose of the simple and com-
plex cells might be that they could function as a form of  tuned detectors. By
tuned detectors I mean that these cells on a more continuous scale could meas-
ure, or “sample”, to what degree their tuned configuration of contrast is present
within their receptive field, rather than just detect the presence, or non-presence,
of a particular feature. With this view, the individual responses from these cells
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would  be  of  subordinate  importance  to the  matching process,  and  instead  it
would be the summed, or “superimposed”, response from all the cells within a
group that mattered (as a mathematical metaphor this could be compared to how
different wave functions can be superimposed to form a new wave function that
is different from any of its individual parts but still contains the same informa-
tion). With such an organisation in the back of  the  mind –  not  just  literally
speaking – it is possible to imagine how the various types of simple and complex
cells, each and one, would contribute to register different aspects of the contrast-
relationships, but that they together would represent the overall contrast-config-
uration within their common receptive field (Fig. 7b). Naturally would the resol-
ution of the contrast, measured by any such group, be determined by the size of
the common receptive field, or rather by the exact shapes and spatial extensions
of  the  light  configurations to which  the  individual  cells  are  tuned  to detect.
However, by having several different  layers of  such groups, were each layer
only contains groups of cells with similar sized receptive fields, this problem can
be avoided and the contrast can be measured/“sampled” within several different
spatial frequencies.

I believe this account shows how the activity in the simple and complex cells
possibly could be interpreted as being just another form of representing contrast,
and that this interpretation is as likely, or perhaps even closer to the truth, than
an interpretation where these cells are described as “feature-detectors”. There is
thus a possibility that the human stereopsis mechanism relies on the correspond-
ence of contrast values in the matching process.

Finally,  one  might  wonder  –  if  the  “raw”contrast  information  really  is
matched – why would the brain do it in such an indirect way? One would ima-
gine that the most straightforward way to conduct a matching of contrast values,
would be to perform some kind of cross-correlation of matrices containing these
values. One reason why no evidence of such an organisation is to be found is
probably because such operations would be badly suited for a neural implement-
ation. A point-by-point correlation of contrast values would require a much lar-
ger number of comparisons, that to be effective would demand a very high, al-
most “digital”, precision. It might just be that by implementing this through the
simple and complex cells,  the same thing could be achieved in a more  “ana-
logue” way better adapted to the neural machinery. It is also possible that the in-
formation represented by the simple and complex cells are used by other systems
within the visual pathway, and that this “design” therefore would be a form of
“neural compromise” to simultaneously satisfy different requirements.

3 Constraints
No matter what matching primitives are used, false matches can not completely
be avoided. There will always be ambiguous matches and in most images there
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are areas that are impossible to match because they are visible from one only
eye. Further processing is therefore needed to sort out the correct matches from
the false ones. Exactly what then is this further processing? How can the right
matches be  separated from many possible  “ghosts”?  Without  any knowledge
about how the world behaves, this would be an impossible feat since any match
would be as likely to be the correct one as the next. Fortunately, the world is
bound by the laws of nature which imposes certain constrains on the behaviour
of matter and energy. This makes some aspects of the behaviour of matter and
energy predictable (e.g. solid matter is usually not transparent, a photon follows
a straight line after being emitted, e.t.c.). If some of this knowledge was avail-
able to the brain, or rather the stereopsis mechanism, it could be used to con-
strain the search for the correct matches to certain sub-domains within the total
domain of all possible matches. This would be possible since matches that were
not in congruence with this “knowledge” – and thus not with the laws of nature –
would be less likely to be correct. Of course this knowledge is not of an intellec-
tual or conscious sort, but should rather be seen as built into the visual system by
millions of years of evolution. The problem is to discover which of all potential
physical constraints that could be important for the stereopsis mechanism. Many
such constraints have been suggested and some seems to be more useful than
others. Also, the suggested constraints are not always clear cut so there is room
for  different  interpretations. For these  reasons I  will  only discuss those  con-
straints, which I believe are most important and relevant to my model.

The most important – and maybe most obvious – physical constraint is the
fact that the search for the correct matches roughly can be restricted to a one-di-
mensional horizontal search. This is possible since our eyes are separated only
horizontally, and the difference in perspective will therefore not affect the vertic-
al positions of the features in the left/right images. Naturally, this alignment is
not perfect but in practice correct enough to allow the search problem to be re-
duced from a 2-D one to a 1-D search problem.

Figure 8. Due to the orientation of the surface, and the difference in perspective, the
light from the marked edge will be projected onto regions of different sizes in the two
retinas.

Left view Right view

14

14     LUCS 64

are areas that are impossible to match because they are visible from one only
eye. Further processing is therefore needed to sort out the correct matches from
the false ones. Exactly what then is this further processing? How can the right
matches be  separated from many possible  “ghosts”?  Without  any knowledge
about how the world behaves, this would be an impossible feat since any match
would be as likely to be the correct one as the next. Fortunately, the world is
bound by the laws of nature which imposes certain constrains on the behaviour
of matter and energy. This makes some aspects of the behaviour of matter and
energy predictable (e.g. solid matter is usually not transparent, a photon follows
a straight line after being emitted, e.t.c.). If some of this knowledge was avail-
able to the brain, or rather the stereopsis mechanism, it could be used to con-
strain the search for the correct matches to certain sub-domains within the total
domain of all possible matches. This would be possible since matches that were
not in congruence with this “knowledge” – and thus not with the laws of nature –
would be less likely to be correct. Of course this knowledge is not of an intellec-
tual or conscious sort, but should rather be seen as built into the visual system by
millions of years of evolution. The problem is to discover which of all potential
physical constraints that could be important for the stereopsis mechanism. Many
such constraints have been suggested and some seems to be more useful than
others. Also, the suggested constraints are not always clear cut so there is room
for  different  interpretations. For these  reasons I  will  only discuss those  con-
straints, which I believe are most important and relevant to my model.

The most important – and maybe most obvious – physical constraint is the
fact that the search for the correct matches roughly can be restricted to a one-di-
mensional horizontal search. This is possible since our eyes are separated only
horizontally, and the difference in perspective will therefore not affect the vertic-
al positions of the features in the left/right images. Naturally, this alignment is
not perfect but in practice correct enough to allow the search problem to be re-
duced from a 2-D one to a 1-D search problem.

Figure 8. Due to the orientation of the surface, and the difference in perspective, the
light from the marked edge will be projected onto regions of different sizes in the two
retinas.

Left view Right view

14



Stereovision: A model of human stereopsis     15

Marr and Poggio (1976) have formulated a constraint of  uniqueness, stating
that any given point on a surface can occupy only one location in space at a time.
In a strict mathematical sense this formulation is true, but when applying this
constraint to images caution has to be taken. To interpret this constraint correctly
one must realise that the definition of a point can be ambiguous. In mathematical
terms a point has no extension in space. When referring to a point in an image,
the usual meaning is that of a small area of the image (however tiny the point
might be it is still occupying a certain area). Now since the images that reaches
our eyes are 2-D projections of 3-D structures, and due to the difference in per-
spective, there is no guarantee that any particular surface will be projected onto
areas of equal sizes in the two retinas (Fig. 8). It would therefore be wrong to
state that any particular point in one image should be matched with only one oth-
er point in the other image. I believe this observation is important and it shows
that this constraint should not be implemented in a too strict sense (not in an ex-
clusive/or manner), but in a way that allow for some “overlap”. In fact, Panum’s
limiting case (Fig. 9)  seems to indicate that the human stereopsis mechanism
makes use of a more relaxed form of this constraint. In Panum’s limiting case, a
feature in one image can be matched with either of two identical, horizontally
separated, ones in the other image, and the resulting perception is that of two
identical features hovering at different depths.

Figure 9. Illustrating Panum's limiting case. The bar in the left image can be matched
with either of the two bars in the right image. When fused the experienced percept is
that of two separate bars, hovering at different depths.

The main part of all light that reaches our eyes is reflected from surfaces of
solid matter. Solid matter is per definition continuous. The atoms are closely and
strongly tied together into larger  units (e.g. crystals, rocks, cells,  plants).  The
surfaces of solid matter will therefore be more or less continuous or  smooth.
This physical fact has been exploited in a number of suggested constraints.

Marr and Poggio (1976) has formulated a constraint of continuity stating that
the disparity of  matches should vary smoothly over the  image, except  at  the
boundaries of objects, because the distance to neighbouring points on a surfaces
generally varies continuously.
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Pollard, Mayhew and Frisby (1985) has for similar reasons justified the use of
a  disparity-gradient limit  to  constrain  the  search  for  matches.  The disparity
gradient is a relative measure of the change of disparity between two neighbour-
ing points in an image. In a number of psychophysical studies they found that
the human stereopsis system seems to favour matches that are within a disparity
gradient value of 1.

Mayhew and Frisby (1981) have also suggested a constraint of  figural con-
tinuity, which is a bit more interesting in the context of the model to be presen-
ted. Due to the continuity of matter and the generally smooth changes of depth in
an image, the relative spatial relationships between features will usually be pre-
served in the left/right image. A match will thus more likely be correct if the fea-
tures in its near vicinity are similar to the ones in the image from which the
matching was initiated. This constraint of figural continuity has a central role in
the model I will present, since it is inherent in the choice of matching primitive.

4 Spatial frequency channels
There is a great deal of evidence suggesting that the visual system relies upon a
set of independent  channels, of different coarseness, in the monocular analysis
of the image, probably corresponding to receptive fields of different sizes (Pog-
gio & Poggio, 1984). It therefore seems likely that such channels also could be
important for stereopsis. In fact, there are evidence indicating that the matching,
at least to a certain degree, is conducted independently within such channels. For
instance has it been known since long that images with high frequency noise ad-
ded to them (resulting in rivalry within the higher resolutions) still can be bin-
ocularly fused if the noise leaves the lower frequency information unaffected,
which thus still can be correlated (Julez & Hill, 1978). One assumption about
these channels, supported by psychophysical  observations (Felton,  1972;  Ku-
likowski, 1978; Levinson & Blake, 1979), is that the coarser channels detect
large disparities while the finer channels can match only small disparities.

However, the purpose of, and activity within, these channels should probably
not be described as being completely isolated and independent of each other. Al-
though the initial part of the matching procedure could be performed within in-
dependent channels, there is still the possibility that the output, from this initial
matching, is combined at a later processing level, at the level where ambiguous
and false matches are dissolved. Evidence in this direction has been found by
Mayhew and Frisby (1981) (with the  “missing fundamental”  experiment  and
with spatial frequency filtered stereograms portraying corrugated surfaces). The
important question then is how the information from such independent channels
could be combined to reduce the set of false matches.

Before giving my own account for how I believe this could be done, I will
briefly describe a model of stereopsis devised by Marr and Poggio (1979) that
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has inspired me. The matching primitives used in this algorithm were zero-cross-
ings, derived from different spatial resolutions. The main idea is that within the
lower resolutions the number of zero-crossings will be relatively few, and not
too close, and the matching will therefore result in few false matches. Once the
set of potential matches has been established from the lowest spatial resolution,
this information is written down into a memory buffer. The disparity information
in this buffer is then used as starting point for the matching of zero-crossings of
a higher resolution, within a smaller range of disparity. When this procedure has
been  repeated  for  all  the  successively  finer  resolutions,  the  resulting  set  of
matches can, with a high probability, be considered to be the correct set, since
most of the false matches simply have been avoided (see Marr & Poggio, 1979,
for a mathematical analysis of these conclusions).

Although my model is similar to the Marr-Poggio model, there are still a num-
ber of important differences, and my arguments for how the information from
different spatial channels are used are not directly built upon any mathematical
analysis, but instead closely tied to the concept of figural continuity.

To see how the information, from different spatial channels, could be com-
bined in my suggested model, it is important to understand some of the physical
properties of the proposed matching primitive – or rather matching unit (delim-
ited  regions  containing arbitrary  contrast  configurations).  These  properties in
turn are determined by factors, inherent in the correspondence problem, which
has to do with the fact that the world is made up of 3-D objects, while the images
that hits our eyes are 2-D projections of the surfaces of these objects. The im-
portant thing to realise is that within an image, the larger the considered region
is, the greater is the probability that the different features are projections of sur-
faces at different depths. Now, since the suggested matching procedure relies on
the similarity of the contrast configuration, within different regions of the im-
ages, it becomes evident that the sizes of the regions in consideration will affect
how the within-channel-matching results should be interpreted. And since the
matching is performed independently on elements of different sizes, containing
contrast information of different resolution, the conclusions that can be drawn
from the results of this matching will be quite different from channel to channel.
Roughly speaking, it is a matter of trade-off between the accuracy of the meas-
ured disparity and the probability that a match is correct.

Considering  the  larger  matching  elements,  which  contain lower  frequency
spatial information, each of these cover a relatively large region of the image and
will thus be more likely to contain information from surfaces with larger vari-
ation in depth. This fact has two important implications. First, the slight distor-
tion between the two images, due to the larger variation in disparity, will have
the effect that certain parts within two correctly matched elements might be un-
correlated or even negatively correlated. However, due to the lower resolution,
which has the effect of blurring the contrast information, and the fact that the rel-
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ative spatial relationships almost always are preserved, the total correlation of
two correctly matched elements will be positive. Second, due to the mixture of
the  disparity  information  within  these  elements,  the  result  of  two  correctly
matched elements will only give a rough estimate, or average, of the actual dis-
parity within that region. To resume, the negative aspect of using larger elements
is that the result from the matching will not be very specific, but will instead
give an estimate of a sub-domain in which the correct disparity is to be found.
The positive aspect is, because a larger region of the image is considered, that it
is unlikely that any region outside of this sub-domain will show the same figural
continuity. In other words will the result of the matching not be very precise, but
it will with a high probability indicate within which range, or sub-domain, the
correct disparity lies.

Turning to the smaller elements, by simply inverting the arguments, these will
be shown to display the opposite properties. Since these elements are used to
match the higher resolution information, within smaller regions of the image, the
different features within these elements are more likely to correspond to surfaces
lying at similar depths. Thus will the distortion between two correctly matched
elements be quite low. This means that the disparity measure, for two correctly
matched elements, will be quite specific, and also that the resulting correlation
will be relatively strong. The negative side of the coin is that the high resolution,
and the small sizes of the considered regions, means that there will be a greater
number of regions that exhibit similar configurations of contrast. Thus, due to
the high resolution but lack of reliance on figural continuity, the matching within
the finer channels will result in quite specific disparity measurements, but also
give raise to a considerably higher amount of false matches.

Considering the conclusions above, it would clearly be desirable if one could
combine the best properties of the information provided by these different chan-
nels. Preferably, this would be done by somehow letting the coarser channels,
corresponding to  the larger  elements,  guide  the  matching of  the  smaller  ele-
ments, similar to the idea described earlier in the model of Marr and Poggio. Be-
fore describing the whole of my model and putting the parts together in the next
section, I will close this section by briefly commenting on some of the main dif-
ferences compared to the model of Marr and Poggio.

Apart from the different choices of matching primitives, the major difference
is the reliance of figural continuity in my model, while this is not considered in
the Marr-Poggio model. No matter what mathematical arguments they use to jus-
tify that the false matches simply can be avoided (by considering the channels
one at the time and in order from coarser to finer), this still requires that the
zero-crossing used to initiate the matching is the correct one from the beginning.
In my opinion, this problem (of finding the correct “starting-point”) can not be
solved without considering figural continuity. Further, in Marr and Poggio’s al-
gorithm the  matching is performed in steps of  successively finer  resolutions,
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where at the end of each step the result is written down into a memory buffer,
which then is used as the starting point for the next level. In the model I am sug-
gesting, the matching is performed simultaneously within the different channels,
and the activation in the larger channels are directly affecting the activation in
the finer channels. There will thus be no unnecessary delay caused by the wait-
ing  for  input  from  the  coarser  channels,  nor  is  there  any  need  for  an  extra
memory buffer storing intermediate results.

5 The Model
In the following two sections I will present a model of human stereopsis that is
built upon the different ideas discussed in the earlier sections. For pedagogical
reasons I have chosen to divide this presentation into two levels. In this section I
will give only a general account for how the main ideas could be implemented,
and present an overview of how the different processing levels are structured and
how the information is passed between these different levels. In the following
section a computer implementation of the model is presented which better de-
scribes some of the details.  However, before starting this presentation I would
like to jump ahead for a minute and discuss an exception in the model that de-
serves special attention. This exception concerns a simplification in the imple-
mentation of the matching process.

One aim I have had with this paper is to show that the correspondence prob-
lem can be solved more efficiently if the matching is conducted by a direct com-
parison of contrast values, rather than by comparing a set of more “symbolic”
features. I have also tried to show, by interpreting the functionality of the simple
and complex cells slightly differently, how these cells possibly could represent
the information of contrast. An important assumption for the validity of the mod-
el is therefore that the proposed groups of simple and complex cells actually are
capable of representing the contrast information, with a precision equal to that of
the output of the retinal ganglion cells.  In order to support this assumption it
would be desirable if such a model could simulate the individual responses from
each and one of these cells. Unfortunately, the algorithm in question is not de-
signed to model the stereopsis process in such an elaborate way. In short there
are two major reasons why it would be difficult to implement such a model. First
of all, the physiological knowledge of the visual system is not complete enough
to allow for the construction of such an exact model. Not only is it uncertain ex-
actly to what kind of stimuli many of these cells respond optimally to, nor is it
known exactly how they are distributed over the visual field. The second reason
is of more practical nature and concerns the fact that such an implementation
would require a considerable amount of memory and processing capacity. Un-
fortunately, due to limitations in computer power, such an explicit implementa-
tion has been out of the question, and instead I have been forced to implement a
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somewhat simplified matching process that relies on a form of cross-correlation
of contrast values.

Thus, the validity of this model relies on that the above assumption, about the
functionality of the simple and complex cells, holds. However, to my defence I
would like to say that although my model relies on a critical assumption, I be-
lieve  this assumption is not more  daring than the assumptions of  most other
models, and it should therefore be judged with this in mind. With all this said I
will now return to the presentation of the model.

5.1 Input and convolution
Starting with the input, consisting of the raw intensity values of the two images
(Fig. 10, level A), the first step is to extract the contrast information within the
images. To detect the contrast information within different spatial frequencies,

each image is convoluted with the 2-dimensional operator  ∇2G, with three dif-
ferent values for the space constant σ (Fig. 10, level 1). Apart from computation-

Figure  10. Schematic  overview of  the  different  levels  of  representation  and  pro-
cessing. Representational states are shown as squares/cubes and are labelled with
letters (A–D). Processing stages are displayed as circles and are labelled with num-
bers (1–4). (A) The input stereogram. (1) Each image is convoluted with three differ-

ent  ∇2G-operators. (B) Contrast  representations.  (2) Initial, or “local”, matching. (C)
Disparity-spaces. (3) “Global” matching. The constraints of uniqueness and continuity
are implemented by the inhibition and excitation of nodes/cells  within the disparity-
spaces. (4) Cross-channel combination. (D) Combined disparity-space (“result”).

Levels

A) Input images

1) Convolving

B) Contrast
      representation

2) "Local" matching

C) Disparity-Spaces
3) "Global" Matching

4) Cross-Channel Combination

D) Combined Disparity-Space
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al reasons presented by Marr and Hildreth (1980), I have chosen this operator
because the result of an image convoluted with this filter seems to resemble that
of the output of the retinal ganglion cells. I will save the exact details about the
sizes of these filters for the next section, but here it will be enough to say that the
radius of the central part of the filter is doubled for each successively larger fil-
ter. After the images have been convoluted we thus have six sets, or three pairs,
of separate contrast representations (level B), where the spatial resolution of the
contrast information for  each pair is determined by the size of  the filter  (the
space constant σ) used to produce it.

5.2 Matching procedure
The next step is to perform the initial, or “local”, matching procedure (Fig. 10,
level 2) to establish the set of all potential matches. This matching is conducted
independently, and in parallel, on the three pairs of contrast representations, thus
resulting in three different sets of potential matches (Fig. 10, level C). As sug-
gested earlier the general idea is that each contrast representation is divided into
a large number of partly overlapping regions, corresponding to the receptive
fields of the suggested groups/columns of simple and complex cells, and that the
contrast values within these regions are then cross-correlated with the contrast
values within such regions in the other image. An important matter that remains
to be considered is how large these regions should be in relation to the spatial
resolution of the contrast information.

Figure 11. (a & c) Present stimuli within the receptive field of a group of simple and
complex cells. (b & d) Showing the (assumed) “sampled” response.

The problem  is  to  establish some kind  of  relationship  between  these  two
factors, that could reflect the relationship between the resolution of the contrast,
“sampled” by a group of simple and complex cells, and the size of their common
receptive field. Naturally, it is hard to justify any such relationship in a strict
mathematical sense. However, if one considers what type of stimuli these indi-
vidual cells responds optimally to, it is clear that there must be a limit to how

present stimuli

b)

d)

"sampled" response

a)

c)
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high this  resolution, or  to how complex the overall configuration of  contrast
within this receptive field, can be.

As an example, consider two parallel “bar”-like features that are present with-
in the receptive field of such a group (Fig. 11a). If these were too close to each
other, the resulting “sampled” response would probably be more similar to that
of one thicker bar (Fig. 11b). On the other hand if they were further apart (Fig.
11c), they would more likely be detected as two separate bars (Fig. 11d). My
point with this example is to show that the resolution, of the contrast information
that such a group of cells could measure, probably would depend very much on
how close the changes in light-intensity are. In more mathematical terms, if one
considers the second-derivative of the light-intensity values along any dimension
within the receptive field, one could say that there should not be too many such
changes (zero-crossings) of the same sign, and that they should not be too close,
if the present configuration of contrast is to be measured/sampled “correctly”. To
relate this observation to my algorithm and formulate a more concrete relation-
ship, I have decided to restrict the size of the regions, to be cross-correlated, to
the size roughly corresponding with the central part of the filter that was used for
the convolution. It can be shown that within such a region, of a filtered image,
there in the general case (or with randomly produced light-intensity values), with
a high probability, will be only one zero-crossing with a particular sign and ori-
entation along any dimension within the region (see Marr, 1982, for a full math-
ematical analysis).

Having divided each contrast-representation into partly overlapping regions,
of  sizes determined by the  sizes of  the  filters  used for  the convolutions,  the
matching within each “channel” is performed as follows.

To establish the degree of correspondence between two regions, a point-by-
point cross-correlation is performed on the contrast values within these regions.
A problem with performing an “ordinary” correlation is that two (equal) low-
contrast values will result in an as good correlation as will two (equal) high-con-
trast values. Two regions containing no contrast would thus be considered as
perfectly matched. This would go badly with the fact that the individual simple
and complex cells only responds to stimuli where there is change in the light in-
tensity. To reflect this in the matching procedure, each point-by-point correlation
is weighted with a factor that is proportional to the strength of the weakest of the
two contrast values. The result of these correlations are then added up and di-
vided with the total number of correlations within the region in order to receive a
normalised value. These normalised values will then all lie in the range between
–1.0 and 1.0. A high such value indicates that the two regions correspond fairly
well,  and that they contain a high amount of contrast.  A low value  indicates
either low contrast, and will thus be of little interest, or that there within the re-
gion are different  sub-regions that  considered individually are  positively and
negatively correlated, but when taken together will cancel out the value for the
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whole region. Finally, a high negative value simply indicates that the two re-
gions do not match well at all. Now this particular algorithm is only concerned
with the degree of similarity of two regions, and therefore will only the positive
values be of interest. All negative values are therefore set to zero and will con-
sequently be considered as bad matches.

Figure 12 (a) The search for potential matches is restricted to consider only regions,
in  the opposite  image, that  are horizontally  shifted,  and which lies within a certain
range from the same relative position as the region from which the matching was initi-
ated. (b) The result of each of these comparisons are then mapped into the corres-
ponding column in the disparity-space.

Since  the  purpose  of  the  matching  procedure  is  to  establish  the  disparity
between two corresponding regions, each region has to be matched with a num-
ber of different regions in the contrast representation of the opposite image (Fig.
12a). As described earlier this search can basically be restricted to consider only
regions that are horizontally shifted, but since it is (practically) hard to perfectly
align two images, the search is performed within a small vertical range as well.
The area delimiting this search can be seen as the equivalent of Panum’s fusion-
al area. In human stereopsis, Panum’s fusional area refers to the binocular re-
gion in which two features must lie in order to be correctly fused (Poggio &
Poggio, 1984). The results of these individual comparisons are then mapped into
a  3-dimensional,  topologically  ordered,  disparity-space (DS).  A  horizontal
cross-section of such a disparity-space is shown in figure 12b. This structure
consists of a large number of nodes, or “cells”, where the degree of activation in
each cell represents the result of a comparison of two regions. Each column in a
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disparity-space thus corresponds to a particular region of the image, and each
node within these columns represents a particular disparity, with zero-disparity
at the centre node. After each region has been matched and mapped into the dis-
parity-space, the “local” matching procedure is completed and the result is that
of three separate disparity-spaces (schematically portrayed as cubes in fig. 10,
level C), produced from the three different pairs of convolutions. The rest of the
algorithm  is basically concerned  with one problem,  and  that  is to determine
which nodes, of all the active ones, that indicate correct disparity values, and
which have been activated due to false matches.

5.3 Implementation of the constraints
To solve the problem of false matches some of the constraints that were dis-
cussed in the two earlier sections have been incorporated into the algorithm. Of
particular interest are the constraints of uniqueness and continuity, but also how
the information from the different channels can be combined to further reduce
the set of potential matches. The way I have chosen to implement the first two of
these constraints have been greatly inspired by an early cooperative model of
Marr and Poggio (1976), in which these constraints were implemented by the in-
hibition and excitation of interconnected “neurones”, in a structure similar to the
disparity-space described above.

To recapitulate,  the  constraint  of  uniqueness suggests  that  any point  on a
physical surface can have only one 3-D location in space, and thus any feature in
an image should be matched with only one feature in the other image. Apart
from the objections presented earlier this conclusion is fairly correct, and since a
feature per definition is bound to have a 2-D spatial extension in the image, the
same basic argument holds when matching regions. Considering the disparity-
spaces described above, this means that only one of the active nodes, in each
column, can represent the correct disparity.

The constraint of continuity in turn is motivated by the fact that surfaces gen-
erally are smooth and continuous, except at their boundaries, and the measured
disparity should therefore also vary smoothly over the image. For the same reas-
on the relative ordering of the features, in the two images, should also be pre-
served. This latter aspect is often referred to as figural continuity or as the order-
ing constraint. Thus considering the disparity-spaces, active neighbouring cells
representing  similar  disparities  should be  preferred  instead  of  isolated active
cells.

To see how these constraints can be implemented, consider a horizontal cross-
section of the disparity-spaces (Fig. 13). Now the constraint of uniqueness is im-
plemented simply by letting all the cells in a column inhibit the activity of each
other, where the strength of the inhibition is proportional to the total activity of
the cells in the column. Since each cell in the disparity-space is a member of two
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columns, one corresponding to a region in the left image and vice versa, each
cell will be inhibited by the activity in two columns.

Figure 13. Horizontal  cross-section of  a disparity-space.  The constraint  of  unique-
ness is implemented by letting all cells, along the two lines of sight, inhibit each other.

Figure 14. Vertical cross-section of a disparity-space. The constraint of continuity is
implemented by letting all active cells excite the cells, in neighbouring columns, that
representing similar binocular disparity.

The constraint of continuity is implemented in a similar, but opposite way, by
letting the activity in each cell positively influence neighbouring cells in sur-
rounding columns, which represents matched regions of the same binocular dis-
parity (Fig. 14). Each cell is thus exciting their neighbours within a disc-shaped
region of the disparity-space, in the horizontal-vertical plane and with the centre
at the exciting cell.
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5.4 Cross-channel-combination
This mutual inhibition and excitation of cells is performed independently within
each of the three disparity-spaces, thus leading to somewhat different results. As
argued in the previous section the matching process could benefit from combin-
ing these different results by letting the activity in the coarser disparity-spaces
guide the activity in the finer channels. To implement this idea a fourth dispar-
ity-space is introduced (Fig. 10, level D), in which each cell is excited by the
combined activity of the three cells, with the same relative 3-D position within
the three original disparity-spaces. Thus, cells in this  combined disparity-space
(CDS) that are excited by all three channels will be more activated than those
only receiving activation from one or two channels. Now to recall the discussion
in the previous section, the activity in the coarser channels will be more diffuse,
but also more  concentrated to certain sub-regions,  within the  disparity-space,
that are more likely to hold the correct matches. Thus could cells in the CDS that
lie within such sub-regions, and that also are excited by cells from the finer
channels, be considered as more likely to indicate the correct disparity than those
that lie outside of these sub-regions.

Finally, to favour the correctly activated cells in each of  the three original
channels, the activity in the CDS is feed back to the corresponding cells in each
of these, and the process is repeated until the activity of all the cells has been sta-
bilised.

6 Implementation
The program code of this implementation was written in the C-language and is
about 750 lines long. In order to save some space and to make the program
available to readers not familiar with C, I will only present the more important
features of the implementation, and instead of the original C-code I will use a
more general form of notation that hopefully could be understood by a majority
of readers.

Input: Each image is represented as a 128 x 128 byte matrix, where each byte
represents a light intensity value ranging from 0–255 (0 = black, 255 = white). 

Step 1 (Convolution):  To detect the contrast relationship within each image,

the 2-dimensional  ∇2G-operator (described earlier) is used with three different
values for the space constant (σ=1, 2 and 4 pixels). To normalize all contrast val-
ues, (Cx,y) {0<x<128, 0<y<128}, they are divided with the value of the absolute

product of  the light intensity value and the value given by the  ∇2G-operator,
summed over the region covered by the filter centred at (x,y). More formally, the
normalized convoluted value, CN, at point (x,y) are given by the following equa-
tion:
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where r=4σ and I is a matrix containing the light intensity values.
Step 2 (Matching): Each contrast representation is then divided into a number

of regions that is equal to the number of pixels in the original images. Thus, two
neighbouring regions will almost completely overlap each other since they are
shifted by only one pixel. To establish all potential matches and construct the
disparity-spaces, each region is matched with 21 different regions in the other
image. For example, to establish the set of potential matches for a region in the
left image, centred at pixel (xL,yL), the region in question is matched with all re-
gions in the right image that are  centred within a 10 pixel range of the pixel
(xR,yR) in the right image, which has the same relative position as the centre of
the left region (xR=xR, yR=yR). Each such set of comparisons corresponds to one
column in one of the disparity-spaces (see above).

The matching, or cross-correlation, of a region in the left image  centred at
(xR,yR) with a region in the right image centred at (xR,yR) is formally described by
the following equation:
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where r is the radius of the matched region, which is equal to the space constant
(σ) used for the particular convolution. L and R are matrices containing the nor-
malized contrast values for the left region centred around (xL,yL), and the right re-
gion centred around (xR,yR) respectively. The function

W �x ��1�e�c
x
 , c�6

returns a value  between 0.0 and 1.0 that is proportional to the  strength of the
weakest of the two contrast values. As explained earlier, the purpose of this com-
ponent is to avoid high correlation values when there is low, or no, contrast with-
in a region. The result of the whole matching (C) will be in the  interval [–1.0,
1.0], but since only the positive values are of interest all negative values are set
to zero.

Step 3  (Constraints):  After  the matching procedure  have been completed,
every node, “or cell”, in the disparity-spaces will have a value, or activation,
between 0.0 and 1.0. These values are now used as input for the next layer of
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processing. The new value each node will receive is determined by three factors:
the current degree of activation, the strength of inhibiting “cells” lying along the
same two lines of sight, and the strength of exciting neighbouring “cells” repres-
enting similar disparity. The following functions describes how the new activa-
tion value (AN) is computed for a node in a disparity space:

AN �AC ,P ,N ��AC�Excitation�P ��Inhibition�N � ,

where AC is the current activation. P is the positive contribution given from sur-
rounding cells, with similar disparity, that lies within a radius equal to the radius
of the regions that where matched to produce the particular disparity-space. The
contribution each of these cells give is directly proportional to the activity in the
contributing cell, and proportional to the inverse of the squared distance to the
receiving cell. In other words, more distant cells will contribute less to the excit-
ation. The purpose of the function

Excitation �P ��
P

P�c

is to moderate the positive contribution to the cell so that the change from the
current value to the new one will be smooth, and also to avoid that the new value
becomes larger than 1.0. The constant c is used to normalise the value of P and is
equal to the sum of the squared inverse of each of the distances from the receiv-
ing cell to the contributing cells.  N is the negative contribution (the  summed
activity of all cells lying along the same two lines of sight). The purpose of the
function

Inhibition�N ��1 �
1 

�1�N �
c

is (the same as for the function Excitation(P)) to avoid too rapid changes of the
activity in the cell. The c constant (c=0.18) determines the strength of the inhibi-
tion. This value was empirically found to balance the average positive and negat-
ive contributions.

Step 4 (Cross-Channel Combination): The combined disparity-space (CDS)
is produced by simply multiplying the values of all cells, that has the same relat-
ive 3-D location, and then raise the product to one third, so that the new value
will be unchanged if all three values are the same. A reason for multiplying the
values rather than just add them is that by doing so, only matches that are present
within all three channels will survive.
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Step 5 (Feedback): Before repeating the whole sequence from step 3, each
cell in the three original disparity-spaces will receive a new value that is determ-
ined by three factors: the result of the initial matching, the current activity in the
cell and the activity of the cell in the CDS that has the same relative 3-D loca-
tion. These new values are produced in the same manner as in the cross-channel
combination (step 4), by raising the product of these three values to one third.

7 Results
The results presented in the following pages were all produced by the computer
implementation described above. The results show the processing of five differ-
ent stereograms. The first three stereograms are made up of artificially produced
images. These stereograms were partly designed to be as simple as possible, but
also to illustrate some of the different effects imposed by the constraints. The
last two stereograms are made up of natural images, and therefore better shows
how the model behaves with more “natural” input.

Before going into the details of each processing a few words about the form of
the presentations are in place. For each stereogram below the activity within the
CDS will be presented in three different ways. The first type of result shows the
activity within the CDS directly after  the initial matching procedure has been
completed (step 2 in the algorithm above). The activity within the CDS is dis-
played “slice-by-slice” (vertical cross-sections), with increasing depth from left
to right, and from top to bottom. Further, the activity within the “cells” in each
layer is displayed in a gray-scale, where brighter regions indicate high activity
and darker regions indicate low, or no, activity. In the second type of results, the
activity is shown after a number of iterations (corresponding to the loop of step
3, 4 and 5 in the algorithm), after that the activity has stabilised within the net-
work of nodes. Here too the activity is displayed in a “slice-by-slice” manner,
but instead of using a gray-scale, the original (left) image has been mapped onto
the regions that still are active (activity > 0.2 ), so that the reader better can see
to which part of the stereogram the active regions correspond. The last type of
result also shows the activity within the CDS after a number of iterations, but
here the maximally activated nodes (within each column of the CDS) have been
tied together to form a wire-diagram.

7.1 Trial 1
Starting simple, figure 15 shows a stereogram with three groups of thin vertical
lines.  For those  readers not capable  of  fusing stereoimages,  the three groups
form a triangle (in the horizontal-depth plane) where the middle group is closest
and  the  rightmost  group  lays  furthest  away.  Although  simple  this  example
clearly  demonstrates  how  efficiently  the  cross-channel  combination  resolves
false matches. Figure 16 shows the results of the convolutions with the three dif-
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ferent filters. If only the information within the finest channel (fig. 16a) was con-
sidered, it would be difficult to establish the correct set of matches since each
line could be matched with several other lines in the other image. However, due
to the facts that the resolution in the coarser channel is lower, and the size of the
matched regions are larger, there will be no ambiguity in the coarser channels
since the thinner separate lines, within the three groups, will not be present (fig.
16c).

Figure 15. Input stereogram.

Figure 16. Result of the convolutions. If only the information within the finest channel
(a) was considered, each of the thinner lines could be matched with any of the three
thin lines,  in the corresponding group,  in the other image. However, in the coarser
channels (b and particularly c) there is no such ambiguity, and the information within
these channels will therefore “guide” the activity within the finest channel, so that the
false matches can be dissolved.

As the results shows, the correct set of matches is considerably more activated
than the false ones, even directly after the initial matching procedure (fig. 17).
And after only three iterations the false matches have been dissolved almost
completely (fig. 18 and19).

Unfortunately,  the  implementation  of  the  cross-channel  combination  also
seems to cause a few side effects. One of these can be noticed, in figure 18, in
that the established disparity extends a bit outwards from each group of lines.
Largely, this “filling in” (or in this case “floating out”) effect could be ascribed
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Figure 17. Each image above shows the activity within a vertical cross-section of the
CDS. The brighter areas indicate high activity  (potential matches).  Depth increases
from left to right, and from top to bottom.

Figure 18. Activity  within the CDS after 3 iterations. The original (left)  image of the
stereogram has been mapped on top of areas that still are active.
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to how the constraint of continuity has been implemented (by the excitation of
neighbouring nodes in the disparity-spaces), but in part also to the implementa-
tion of the cross-channel combination. Since highly activated nodes in the coars-
er channels spread their activity over relatively larger regions in the finer chan-
nels. And thus might activate nodes in the finer channels that were not active ini-
tially. However, seen from a purely technical view, it is difficult to definitely
state that this behaviour is incorrect, since it is impossible to establish any depth
information about the white background. If the background had some kind of
texture (which often is the case in natural images), its depth could be established
and thus would the correct matches (for the background) “override” the activa-
tion caused by the side effect.

Figure 19. Wire-diagram of the disparity (activity) within the CDS after 3 iterations.7

7.2 Trial 2
The next motif is a bit more complex. Figure 20 shows a random-dot stereogram
with a 25% density of black dots. When fused three different planes can be per-
ceived. The closest plane frames the scene and has a rectangular opening at its
centre. The next plane lies further away and also has a rectangular opening at its
centre. The third plane is located furthest  away and can be  seen through the
“hole” that is formed by the openings of the two other planes.

This example too shows how efficiently the false matches are dissolved, by
combining the information within the three different channels. Again, if only the
information within the finest channel was considered it is easily seen that any dot
could be matched with numerous other dots in the opposite image. However, due
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to the greater reliance on figural continuity, within the coarser channels, it is less
likely that any two incorrectly matched regions within these channels will be
highly correlated. And thus by combining the rough estimate of disparity, from
the coarser channels, with the more precise information within the finer channels
a large amount of false matches can be ruled out.

Figure 20. Random-dot stereogram with a density of 25% black dots.

Figure 21. Activity within the CDS after the initial matching procedure.
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Figure 22. Remaining activity after 5 iterations (with the original left image mapped on
top).

Figure 23. Wire-diagram of disparity (activity) within the CDS after 5 iterations.
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Figure 22. Remaining activity after 5 iterations (with the original left image mapped on
top).

Figure 23. Wire-diagram of disparity (activity) within the CDS after 5 iterations.
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As the results of the initial matching procedure (fig. 21) shows, one can distin-
guish the three different planes even before the constraints of  uniqueness and
continuity has been applied. And after only 5 iterations (fig. 22 and 23), only a
few false matches remain active.

In the previous example (trial 1) I pointed to one of the side effects, caused by
how the cross-channel combination was implemented, that for some motifs can
cause questionable results. In this example however, the same side effect could
be seen to have a positive influence on the result. Since the activity within the
coarser channels is spread over to intermediate regions of nodes in the finer dis-
parity-spaces which were not initially active, the resulting disparity-map will be
more continuous (i.e. the points in each plane will be tied together).

7.3 Trial 3
One strength of the model is that it seems to be quite robust, in the sense that it
performs  satisfiable even if  a substantial  amount  of  “noise” (uncorrelated in-
formation) is added to the stereogram, or if the individual images are slightly
shifted vertically.

Figure 24. Random-dot stereogram where only 75% of the dots are correlated.

An example of the insensitivity to “noise” can be seen above. The stereogram
in figure 24 is the same as in trial 2, except that an additional number of dots
have been introduced so that only a total of 75% of the dots are correlated (i.e.
25% of the dots, in each image, have no corresponding match in the other im-
age).

Due to the added noise the resulting activity after the initial matching (fig. 25)
is much less pronounced than what were the case in the in the two earlier ex-
amples. Nevertheless, after 7 iterations (fig. 26 and 27), roughly the same three
planes have been produced. Naturally there is a larger number of false matches
still active, and the planes are not as distinctly shaped as in the previous ex-
ample, but they can clearly be distinguished (particularly in fig. 27 that shows
the maximally activated node within each column of the CDS).
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Figure 25. Initial matching.

Figure 26. Activity after 7 iterations (left image mapped on top).
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Figure 27. Active nodes after 7 iterations. Although the three planes are somewhat
distorted, due to remaining false matches, they are still clearly distinguishable.

7.4 Trial 4
The input in this and the following trial consists of stereograms of natural im-
ages, and are simply intended to demonstrate how the model performs with “nat-
ural” input. In this example, the stereogram in figure 28 will be fused (it shows a
picture of the author, with some bookshelves and a window in the background).
Apart from the earlier presentations, here the results from some of the intermedi-
ate iterations will be displayed as well. This is to show how the activity within
the CDS gradually changes and eventually becomes stabilised.

Figure 28. The author.
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Figure 29 shows the activity directly after the initial matching procedure. As
can be seen there is a large amount of activity at almost every level of the CDS.
Clearly most of these nodes have been incorrectly activated.

After the first iteration (fig. 30) a large amount of falsely activated nodes have
been extinguished and the surfaces of the face and background have become (re-
latively) stronger activated. As the process continues, for each successive itera-
tion (fig. 31) there are less false matches present and the correctly matched sur-
faces grows more strongly activated. After the 7th iteration (fig. 32 and 33), only
a few false matches remain and most of the active regions have been correctly
matched. For readers capable of fusing the stereogram above (figure 28) this is
easily verified.

Figure 29. Initial matching result.
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Figure 30. Activity after the first iteration.

Figure 31. Third iteration.
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Figure 30. Activity after the first iteration.

Figure 31. Third iteration.
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Figure 32. Activity after 7 iterations (with the original left image mapped on top of the
most active regions).

Figure 33. Disparity-map after 7 iterations.
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7.5 Trial 5
The last stereogram (fig. 34) shows my tutor  holding a white sheet of paper
away from the camera. In the background there is a student, a round table and a
supporting pillar (with increasing depth in that order).

Figure 34. Input (my supervisor).

Figure 35. Activity after the initial matching.

This last stereogram is the technically most complex one and therefore the
most difficult for the model to fuse correctly. At a first glance it might not seem
very different from the one in the previous trial, but at a closer look there are a
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few things about the motif that causes problems for the model. First of all, con-
sidering the higher resolution channels, there are several relatively large regions
where no contrast information can be detected (e.g. the inner part of the paper,
the ceiling, my tutors shirt etc.). Another problem is that there, in several regions
within the image, is relatively little horizontal disparity information. A majority
of the edges in the scene are in fact horizontal, which can be seen from the res-
ults of the initial matching (fig. 35). As the results show the horizontal edges
causes activity in almost every level of the CDS, and are therefore difficult for
the model to extinguish.

Figure 36. Active nodes after 7 iterations.

Due to these difficulties, the resulting disparity-map after seven iterations (fig.
36 and 37) is not as “clean” and continuous as in the previous examples, but it is
still (on a rough scale) correct.

Before turning to the discussion I would like to point out a positive aspect in
the results, which I have not yet mentioned. This positive aspect is the fact that
the results (the stabilised activity within the CDS) are produced rather fast, i.e.
the activity in the disparity-spaces are stabilised after only a few “iterations”. I
believe this “speed” could be considered as a strength of the model (as a model
of the human stereopsis mechanism). The reason for this is that if the human ste-
reopsis mechanism was a slow process, i.e. needed a long time to dissolve the
false matches, there would seemingly have to be a delay in the experienced sen-

42

42     LUCS 64

few things about the motif that causes problems for the model. First of all, con-
sidering the higher resolution channels, there are several relatively large regions
where no contrast information can be detected (e.g. the inner part of the paper,
the ceiling, my tutors shirt etc.). Another problem is that there, in several regions
within the image, is relatively little horizontal disparity information. A majority
of the edges in the scene are in fact horizontal, which can be seen from the res-
ults of the initial matching (fig. 35). As the results show the horizontal edges
causes activity in almost every level of the CDS, and are therefore difficult for
the model to extinguish.

Figure 36. Active nodes after 7 iterations.

Due to these difficulties, the resulting disparity-map after seven iterations (fig.
36 and 37) is not as “clean” and continuous as in the previous examples, but it is
still (on a rough scale) correct.

Before turning to the discussion I would like to point out a positive aspect in
the results, which I have not yet mentioned. This positive aspect is the fact that
the results (the stabilised activity within the CDS) are produced rather fast, i.e.
the activity in the disparity-spaces are stabilised after only a few “iterations”. I
believe this “speed” could be considered as a strength of the model (as a model
of the human stereopsis mechanism). The reason for this is that if the human ste-
reopsis mechanism was a slow process, i.e. needed a long time to dissolve the
false matches, there would seemingly have to be a delay in the experienced sen-

42



Stereovision: A model of human stereopsis     43

sation of depth, in comparison to what is monocularly seen, and such a delay
does not seem to exist.

Figure 37. Disparity-map after 7 iterations.

8 Discussion
For natural reasons it is difficult to make any deeper analysis of how well the
results presented above correspond to the “results”, or output, of the human ste-
reopsis mechanism. What makes this difficult is that there is yet no efficient way
of simultaneously measuring the activity in a large number of cells in the human
brain. Even if there were one would still have to know exactly where, in which
region of the brain, the “result” was represented, and such precise knowledge of
the anatomy of the brain still has to be found. Thus, the only way of analysing
the results of the model is to compare them with the conscious perception of
depth we experience when looking at the same pair of images as are feed into the
model. What complicates this further is that our conscious perception of depth is
a result of many contributing processes, which vary in their degree of cognitive
complexity. Apart from the stereopsis mechanism, which can be considered as a
relatively low level or early process, there are many higher cognitive functions
involved in the interpretations of the various monocular cues (e.g. shading, per-
spective and size e.t.c.),  which also affects the way we perceive depth. Even
such high cognitive functions as expectations, reasoning and memory or know-
ledge about objects and the world affects the way we interpret the depth of a
visual scene. Thus, even if the mechanism of stereopsis probably is the most im-
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portant (for most types of visual scenes), the conscious perception of depth is
still biased by all these other processes. For these reasons, it is difficult to draw
any precise conclusions about the behaviour of the model and the following dis-
cussion will therefore be held at a quite general level.

Also important to realise, in order to make a fair judgement of the model, is
that there are a number of cues available to the human stereopsis mechanism,
that for practical reasons have not been possible to incorporate into the computer
implementation of the model. Of particular interest are the information about the
convergence of the eyes, the accommodation of the lenses and possibly even the
information of colour.

Most likely, vergence movements (i.e. the smooth changes of the convergence
of the eyes) have an important role in stereopsis. Human subjects rarely just stare
at one point of visual scene, but instead we often make saccadic eye movements
to bring in different parts of the image to the centre of our visual field. If these
different parts of the image lie at different depths our eyes also initiate a ver-
gence movement, so that the particular detail will fall on the centre part in both
retinas. Thus, for the same visual scene several different representations of the
depth can be constructed, which each and one is initiated from a different point
of focus. Clearly this information could be very useful to the process of eliminat-
ing false matches. Since if these different representations are inconsistent for
some part of the image an eye movement could be made to bring that particular
part into focus, and thus make it possible to better establish the depth of that par-
ticular detail/region.

As explained earlier the accommodation of the lens can be a powerful cue to
depth in combination with the visual input. In order to produce a sharp image on
the retina, the lens has to be shaped differently, depending on the distance to the
feature or surface of attention. The closer a surface is, the thicker the lens must
be. Thus, by finding the optimal resolution of the image, of the surface of atten-
tion, the distance to the particular surface can indirectly be approximated from
the information of the accommodation of the lens. It is quite obvious how this
information could be used by the stereopsis mechanism to further restrict the do-
main of potential matches. Since the further a match are lying from the depth, es-
timated from the accommodation of the lens, the greater is the probability that it
is a false match.

A final cue, or type of information, which possibly could be useful to the ste-
reopsis mechanism is colour. Although the information of colour is not neces-
sary, it clearly could be used to avoid at least some false matches, if the primit-
ives to be matched were restricted to only those that showed similar colour com-
positions.

The main reason why the computer implementation has not been designed to
take advantage of these cues is simply that the necessary “hardware” has not
been available. However, provided that the necessary input could be feed into
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the model, these cues (particularly the last two) could quite easily be incorpor-
ated into the model, with only minor changes to the implementation.

Finally, I would like to discuss some of the more general problems that one
has to face when trying to model something as complicated as the human brain.
Just as a chain is no stronger than its weakest link, the accuracy of any model is
determined by the accuracy of how its smallest building blocks are modelled. In
the case of modelling the brain, or part of it,  the smallest building blocks are
neurones. Now, the problems one has to face when trying to simulate the beha-
viour of neurones on a computer are mostly of practical nature but nevertheless
quite complicated.

One such problem is how to simulate the continuous and parallel exchange of
information between cells, on a computer that can only perform one operation at
a time. The only way to model such continuous processes on computers is to
split time into a number of discrete intervals and then, within each interval, com-
pute  an approximation of  the  behaviour of the processes over that particular
time. Thus, just as when calculating the integral of a function, the accuracy of
the resulting approximation will depend on the number of intervals. Desirably,
the process would be divided into an infinite number of intervals. Unfortunately,
this is where the problem arises since the processing time needed to compute the
approximation for  an interval is constant. Thus, the total time required to ap-
proximate the process grows very rapidly with the number of intervals. In prac-
tice this simply means that in order to receive the results of the process within a
reasonable amount of time, one can not divide the process into too many inter-
vals. This, in turn, means that the approximations of the processes often will be
quite rough, which under poor circumstances can cause the whole model to be-
have strangely. 

Another practical problem (closely related with the one above) with simulat-
ing neurological systems on computers is how to realistically model, with lim-
ited computer resources, the behaviour of the individual cells within the system.
The problem is that such systems are often built up by a very large number of
cells, and therefore, in order to save computer resources, the individual model-
ling of these cells often has to be quite crude. This is very unfortunate since
neurones are far from being just on/off-devices. The response of a neurone is of-
ten not just determined by the current degree of incoming activation from neigh-
bouring cells, but its response is also determined by its earlier activation history.
Thus, could any particular  neuron's threshold potential,  firing and decay rate,
vary from time to time. My point here is that without modelling the individual
behaviour of the cells, in such systems, in a considerably more elaborate way
than is done in most models (including the one presented in this paper), it is dif-
ficult to simulate many of the more dynamic properties of such systems. I also
believe that some phenomena that usually are ascribed to processes or systems at
higher levels, better could be accounted for by such lower level, “within-neur-
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one” processes. As an example of such a phenomenon consider hysterisis. In the
context of stereopsis hysterisis refers to the phenomenon that once the depth of a
visual scene has been perceived (or stabilised), it is hard to break it up even if
the images are slightly distorted or separated horizontally. Marr (1982) has com-
mented on hysterisis as follows: “... It therefore seems unlikely that hysterisis is
a consequence of the matching process, and much more likely that it is due to a
cortical memory that stores the result of the matching process but is distinct from
it”. I believe this is a good example of a “high level” explanation of hysterisis in
the sense that an entire, and separate, memory structure has to be introduced, in
order to account for the phenomenon. As I see it such a high level explanation of
hysterisis is not necessary. If one considers the neurones in the brain that would
correspond to the nodes in the combined disparity-space (of the model presented
in this paper), or possibly the neurones at the next higher level were the absolute
depth is represented. It is possible to imagine how hysterisis could be accounted
for at a “lower” (cellular) level by considering how these cells could be adapted
to be less recipient to change and/or have a relatively sustained response profile,
in order to bridge the gap between changing inputs.

I would like to emphasise that this example should not, at first hand, be seen
as an attempt to explain the phenomenon of hysterisis, but merely to point out
the possibility that some of the phenomena, displayed by the human stereopsis
system, better could be accounted for by processes at a lower, cellular, level.

Considering the various problems described above, I believe there is no short-
cut to building a “truly realistic” model of human stereopsis. I am convinced that
many of the properties of human stereopsis only can be reconstructed if the be-
haviour of the fundamental building blocks, i.e. the neurones, are modelled so
that the more dynamic aspects of their behaviour can be simulated. And to do
this  efficiently the  problem of simulating  continuous processes on computers
must be solved. This might just be a matter of waiting for computers that are
faster and have larger memories, but it might also mean that an entirely new
form of hardware has to be used. A type of hardware better adapted to handle
continuous and parallel processes.

9 Summary
I have in this paper tried to show how the correspondence problem could be
solved more efficiently by a direct comparison of contrast values, within differ-
ent spatial frequencies, rather than by the comparison of some set of more sym-
bolic, or “predefined”, features (e.g. bars, edges, blobs e.t.c.). I have also sugges-
ted how groups of simple and complex cells, with common receptive fields, pos-
sibly could represent the configuration of contrast within their receptive fields,
and thus pointed to the possibility that such a strategy might be used by the hu-
man stereopsis mechanism. Unfortunately, the computer implementation of the
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suggested model was, for practical reasons (mainly due to limitations in com-
puter resources), not designed to support this latter assumption, but merely de-
signed to show that the correspondence problem can be satisfactorily solved by
comparing the “raw” contrast information within a stereogram.

A natural  future  improvement  to the  computer  implementation,  that  better
could support the assumption about the simple and complex cells, would there-
fore be to replace the current initial matching procedure with a procedure where
the individual responses of the simple and complex cells, within the suggested
groups, were more explicitly modelled.

Considering the later processing levels of the implementation, I also believe
that the combination of the disparity-information, from the different channels,
could be modelled in a more sophisticated way. A problem with just multiplying
the disparity-values together is that if there is only contrast within the higher fre-
quencies, even correctly matched regions, within the finer channels, could be
suppressed by the lack of activity within the coarser channels. A possible solu-
tion to this problem could be to let the activity in the coarser channels exclus-
ively amplify the activity in the finer channels. However, without having spe-
cified exactly what the result of this processing step should be, it is difficult to
come up with a  clear  and general  idea  of  what computations should be  per-
formed. Considering the human visual system it is not unlikely that our attention
could shift between these channels or at least have the effect of making one, or
several, of these more dominant than the rest. Clearly, this would affect the res-
ult of the cross-channels combination and also make it very hard to establish a
general rule for how this combination should be performed.

Despite these shortcomings, the computer implementation performs quite sat-
isfactory for both natural and artificially produced stereograms, and in several
aspects the performance also shows signs of being consistent with the perform-
ance of the human stereopsis mechanism. For example: 1) the model seems to be
quite  robust,  i.e.  it  is  not  very  sensitive  to  distortions  such  as  uncorrelated
“noise” or slight vertical shifts in the relative positions of the two images, 2) it is
relatively fast, only a few iterations are required to stabilise the activity in the
disparity-spaces, 3) the combination of disparity-information from three differ-
ent channels makes it possible to rapidly established the correct match even if
several false matches are present within the finer channels.

However, even though these results are encouraging, computer implementa-
tions such as this one are still rather primitive, and can only model some of the
most fundamental aspects of the human stereopsis mechanism. In order to con-
struct  a more “complete” model of  this system, that better could account for
some of the more dynamic properties of the human stereopsis mechanism (such
as hysterisis and the establishment of depth by vergence movements), I believe it
is necessary to more explicitly model the individual behaviour of the cells within
such a system. Without a correct model of the dynamic behaviour, at the cellular
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level, it is hard to see how such a model, realistically, could simulate the dynam-
ic behaviour at a macro-level. Unfortunately, such an explicit model would re-
quire far more computer power than is commonly available today, but if the de-
velopment of computers continue at the same rate as in the past, it will hopefully
not be too long before such a model will see the light of day.
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Occluding Contours
A Computational Model of Suppressive Mechanisms in

Human Contour Perception

Abstract — A fundamental problem in vision is how to identify the oc-
cluding contours of objects and surfaces, given the ambiguity inherent in
low-level visual input. A computational model is proposed for how oc-
cluding contours could be identified by making use of simple  heuristics
that  reduce the ambiguity of individual features. In the striate cortex, a
large majority of cells are selective for both contrast and orientation; i.e.,
they respond preferentially to simple features like contrast edges or lines.
The heuristics we propose enhance or suppress the outputs of model stri-
ate-cortical cells, depending on the orientation and spatial distribution of
stimuli present outside of the "classical" receptive field of these cells. In
particular, the output of a cell is suppressed if the cell responds to a fea-
ture embedded in a texture, in which the "component features" are ori-
ented in accordance with the orientation-selectivity of the cell. The model
has been implemented and tested on natural as well as artificial grey-scale
images. The model produces results that in several aspects are consistent
with human contour/form perception. For example, it reproduces a num-
ber of known visual phenomena such as illusory contours, contour mask-
ing,  pre-attentive  pop-out (due to orientation-contrast), and it  enhances
contours that human observers often report perceiving as more salient.

1 Introduction
This paper addresses various questions related to human form perception, with a
particular emphasis on how occluding contours might be processed in the visual
cortex. An occluding contour can technically be defined as a contour that marks
a discontinuity in depth (Marr, 1982). That is, if traced back to its source in the
physical world, an occluding contour corresponds to the line on a surface where
the  view-line  touches  both the  object  and the  background;  or  more  formally
where the view-line is tangent to the  surface (fig. 1). Also considered here are
contours that arise due to sharp changes in the orientation, or slant, of a surface;
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such as along edges/ridges. Although not always occluding, these contours are
similar in that they define, or mark, abrupt changes in depth.

Figure 1.  (A) A cube, partly  occluded, by a sphere. (B) Occluding "outlines" (whole
lines) and non-occluding edges (dashed). (C) Along an occluding contour, the view-
line is orthogonal to the normal of the (occluding) surface.

Occluding contours are interesting entities of early vision for a very simple
reason: they mediate fundamentally important information about the 3-D struc-
ture of the physical environment. If accurately identified they can provide in-
formation on the position, orientation and extension of object and surface bound-
aries. This information in turn is crucial for a number of our visual abilities such
as determining foreground-background relationships, segmenting the visual in-
put into meaningful entities (objects), and recognising objects from shape, etc.
Given how dependent we are on these abilities for solving even the simplest
task, it is evident that accurate identification of occluding contours is an import-
ant key to effective and reliable visual scene analysis. Surely, the ability to
identify (and the capability to use the information on) occluding contours gave
our early ancestors an advantage over species who did not have it. And surely
this ability will be an important component in the perceptual system of any arti-
ficial agent that is to interact with a "real world" environment.

In general, there is some kind of visual contrast along a depth-discontinuity;
e.g. a contrast in luminance or colour, a difference in motion or binocular-dispar-
ity, or a discontinuity of pattern. Hence, the human visual system could poten-
tially use a variety of different cues to identify occluding contours. Given that
binocular-disparity and (relative) motion are  particularly powerful cues to
depth, our visual system most likely relies heavily on such information when
available. However, even in the absence of such direct cues to depth (-discon-
tinuities), we are often remarkably good at identifying occluding boundaries in a
visual scene. Given, for example, a black and white photograph, we can usually
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such as along edges/ridges. Although not always occluding, these contours are
similar in that they define, or mark, abrupt changes in depth.

Figure 1.  (A) A cube, partly  occluded, by a sphere. (B) Occluding "outlines" (whole
lines) and non-occluding edges (dashed). (C) Along an occluding contour, the view-
line is orthogonal to the normal of the (occluding) surface.
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rapidly identify the occluding contours of objects and surfaces, even if the scene
or the objects in it have not been encountered before.

An interesting aspect of this ability is that we are usually not aware of the un-
derlying process, or the computational difficulties that this process deals with.
This suggests that the neural mechanism responsible for the identification of oc-
cluding contours mainly is a pre-attentive one, i.e. that it operates relatively
autonomously from conscious influence. A growing body of neurophysiological,
psychophysical and anatomical studies, described below, supports this view.

The main question this paper addresses is what operations these early low-
level mechanisms perform on the visual input in order to produce useful repres-
entations of occluding contours; i.e. useful in the sense of assisting movement in,
and manipulation of, the physical environment. In this paper, the discussion of
possible mechanisms will be limited to visual input that is monocular, static and
monochromatic. Of particular interest is the effect the local visual surround has
in modulating how we perceive occluding contours. More precisely, how the ar-
rangement and orientation of various low-level contrast features (e.g. edge and
line segments) in the nearby surround could determine whether we perceive a
visual structure as an occluding contour, or as a part of a surface texture/pattern.

2 Computational Considerations
In a static monochromatic (2-D) image, the only information that may reveal an
occluding contour is the presence of some kind of luminance contrast along the
contour; e.g. a contrast edge, a line or a pattern discontinuity. However, in im-
ages of natural scenes, contrast information may not only be found along the oc-
cluding boundaries of  surfaces, but  may also be found  in the surfaces them-
selves, due to, for example, textures, patterns, shadow-lines and reflections (fig.
2). Hence, a major problem with identifying occluding contours is to discrimin-
ate contrast features that are caused by occluding contours from features that are
produced by other physical structures and phenomena.

Figure 2.  Surfaces often contain a variety  of different contrast markings; due to for
example  texture (changes) and shadows.
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Several factors make this discrimination difficult. First, the type of visual trace
that exists along an occluding contour often changes from one point to another.
That is, the type of feature, or local luminance pattern, that visually defines dif-
ferent parts of a contour,  may change from, for example, a pattern discontinuity
at one point,  to a contrast edge or  a line at some other  point (fig. 3a). Such
changes are caused by a wide variety of factors, such as variations along a con-
tour in the texturing or reflection properties of a surface; or changes in the ori-
entation of a surface, causing different amounts of light to be reflected into the
eye. In other situations, the only physical evidence of an occluding contour may
be a small disruption in a texture density, or a misalignment of the component
features in a texture (fig 3b). From a computational perspective, this large vari-
ation in the type of feature/visual trace that can define a contour poses a delicate
discrimination-problem to any visual system. That is, any useful discrimination
strategy must not only "tolerate", or generalise over, many different features that
may be present along an occluding contour, but must also be sensitive to features
that are not caused by occluding structures, and discard the latter.

Further, there may be no visual trace at all along parts of an occluding con-
tour. Such situations arise when, for example, there is no difference in the reflec-
ted luminance from (between) the  occluded  and the  occluding surfaces,  and
there are no visible surface markings (see the middle left section of the sphere in
fig. 3a). In such situations, the problem of identifying occluding contours is not
so much a matter discrimination, but rather one of "filling-in", or reconstruction.

Figure 3.  (A) Following the contour of the sphere around, the type (and polarity) of
the contrast  markings changes from point to point.  (B) Rectangle defined only by a
small pattern discontinuity.

Finally, problems may arise due to the loss of explicit depth information that
occurs when a visual scene is projected onto a 2-D surface. Because the 3-D
structure of a scene is compressed in the retinal projection, some contour (parts)
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may, for example, end up closer to contours that are caused by other objects than
to contours originating from the same object. For the same reason, contour parts
originating from different objects may also overlap each other in the retinal im-
age. Hence, even if the individual parts of a number of contours have been cor-
rectly identified and/or filled-in, it  may still be difficult to bind, or integrate,
these parts appropriately into meaningful structures (objects etc.).

Considering these computational difficulties, it is remarkable how easily and
rapidly we are able to pick out the occluding contours in a 2-D image, and how
biased we are to perceive these structures as coherent entities, even if the visual
information along them has a complex composition and/or is partly missing. Be-
fore turning to the question of how the human visual system handles these per-
ceptual difficulties, it is first appropriate (in order to pose the proper questions)
to briefly consider how visual input is represented at the cortical level.

3 Representation of Visual Input in the Striate-Cortex
In the primary visual cortex (area V1) a large majority of cells are highly sensit-
ive to visual stimuli that contain some oriented contrast. Depending on their re-
sponse-properties to basic visual stimuli/features, these cells can be divided into
three broad categories: simple, complex or hypercomplex (or end-stopped) cells
(Hubel & Wiesel, 1962; Hubel, 1988). The receptive field of a typical simple
cell is divided into two, three or more alternately excitatory and inhibitory sub
regions, arranged in parallel bands along a common axis of orientation. Due to
this receptive-field mapping, these cells respond strongly to stimuli such as con-
trast  edges  or  lines  of  a  particular  orientation  and  polarity  (i.e.  contrast
direction). Complex cells have slightly larger receptive fields and are not sensit-
ive to the exact positioning of a stimulus/feature within their receptive field, but
otherwise respond to similar stimuli as simple cells. The third category of cells,
the hypercomplex or  end-stopped cells,  are  also sensitive to oriented contrast
patterns, but differ in one major aspect from the simple and complex cells. As
the name suggests, the end-stopped cells only respond to features that terminate
within their receptive fields (e.g. line- endings, corners). If the stimulus extends
over their whole receptive field, the response is weakened or totally suppressed.

Another interesting but more global feature of the cortical organisation is that
the topography of the retinal image, in general, is preserved in the striate-cortical
representation (Kandel, 1991). That is, stimuli that are close together in the retin-
al image, will in general be represented by cells in area V1 that are situated near
each other in the cortical tissue.
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4 Inherent Ambiguities
How does our visual system identify occluding contours given 1) the computa-
tional difficulties discussed above, 2) the response properties of the cells in area
V1, and 3) the fact that the retinal image is retinotopichally represented over the
cortical surface? Because the receptive fields of the various simple and complex
cells are relatively small compared to the whole visual field, it is evident that no
individual cell can represent the presence of an occluding contour that spans a
larger region of the visual field. Consequently, our visual system must, at some
level of processing, integrate the responses from a potentially large number of
simple/complex cells that may be firing along a contour line. However, in order
for this integration mechanism to produce meaningful results, it should avoid in-
tegrating the responses from cells that fire due to causes other than occluding
contours. That is, it should avoid integrating the responses from cells that fire to
features caused by, for example, surface textures or shadow lines etc. But this
situation creates somewhat of a paradox. Before it has identified an occluding
contour, how can our visual system "know" which cells fire due to occluding
contours, and which cells fire due to other causes? The problem is that, in gener-
al, the reason why any individual cell fires can not be unambiguously established
by only considering the type of stimuli a cell is sensitive to. Consider, for ex-
ample, a simple cell that  responds optimally when a contrast edge is present
within its receptive field. This cell will fire with equal strength whether the con-
trast edge is caused by an occluding contour, a shadow line, a reflection or some
detail in a texture pattern. How then could this ambiguity be resolved?

One conceivable solution to this problem would be that some central higher-
level process, which could integrate information from all over the visual field,
simply tried out every possible combination of grouping the responses from the
cells in V1 into contours, and then somehow determine the solution that seemed
most plausible. This could involve comparing the results to stored representa-
tions of objects and scenes, consulting higher-level knowledge and experiences,
and considering the context in which the stimuli was perceived.

Occasionally, such high-level processing might be needed to resolve certain
perceptual ambiguities, but in general the perceptual process seems to be much
faster and less accessible for conscious manipulation than such a scheme would
suggest. Nor would it explain how we are able to identify occluding contours of
unknown, or partly hidden, objects in unfamiliar contexts where no high-level
knowledge or experience is relevant.

Moreover, leaving the disambiguation of low-level stimuli to such a late stage
of processing leads to a combinatorial explosion in the number of ways there are
to combine the responses from the cells in area V1 into different contour paths,
even when the visual input is modestly complex. In other words, in its pure form
the above scheme does not seem to account for how we identify occluding con-
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tours, but instead suggests that some of the response-ambiguity must be resolved
at a much earlier  stage, before or  at the  level where spatial integration takes
place.

5 Neurophysiology and Psychophysics
A growing body of empirical evidence supports the view that important aspects
of contour, or form, processing is carried out at a relatively early stage in the
visual pathway. For example, Peterhans and von der  Heydt  (1993) described
"contour neurones" in area V2 that respond not only to contrast edges or lines of
a particular orientation, but also to pattern discontinuities (i.e. when the discon-
tinuity is orientated in accordance with the cells orientation selectivity) and even
to broken edges and lines (i.e. illusory contours). The fact that these cells seem
to respond to discontinuities, invariant to the exact composition of the luminance
pattern within their receptive field, strongly suggests that these cells are import-
ant for identifying occluding contours.

However, a number of other recent studies have shown that some form-related
processing which could serve to facilitate the identification of  occluding con-
tours may be done as early as in area V1. Single cell recordings (Gilbert & Wies-
el, 1990; Knierim & van Essen, 1992; Kapadia et al., 1995), and real-time optic-
al imaging (Grinvald et al., 1994), have demonstrated that the firing rate of indi-
vidual  cells in area V1 is not exclusively determined by the stimulus present
within a cells receptive field, but can be modulated (i.e. enhanced or suppressed)
by stimuli located outside the receptive field.

More specifically, Kapadia et al. (1995) have shown that the firing rate of an
individual complex cell, which in isolation responds to a bar of a certain orienta-
tion, can be enhanced if one or  several other similarly oriented bars are posi-
tioned along the cell's axis of orientation, but outside its receptive field. They
further showed that the enhancement effect decreased as the bars were i) separ-
ated along the common axis of orientation, ii) separated from co-linearity, or iii)
separated in orientation (fig 4).

A related but suppressive effect has also been reported by Knierim and van
Essen (1992), who have demonstrated that the firing rate of an individual cell
can be significantly reduced if a number of bars that are oriented similarly to the
preferred orientation of the cell are placed outside the receptive field (fig. 5). If
the surrounding bars are oriented orthogonal to the central bar, the suppressive
effect is reduced but still present.

Further, Kapadia et al. (1995) demonstrated that the suppression observed in a
cell's response when a large number of randomly oriented bars are placed out-
side its receptive field can be considerably reduced, or even eliminated, if some
of the surrounding bars are positioned along the cell's axis of orientation and are
oriented in the same direction as the central bar (fig. 6).
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Figure 4. According to the study of Kapadia et al. (1995), the response of a cell was
(A) enhanced when a bar, co-aligned with the cell's axis of orientation selectivity, was
placed outside its receptive field (dashed circle). Further, the enhancement decreased
if the bars were (B) separated along the common axis of orientation, (C) separated
from co-linearity or (D) separated in orientation.

Figure 5. The response of a cell is suppressed more when (A) surrounded by simil-
arly oriented features, than when (B) surronded by differently oriented ones (Knierim
& van Essen, 1992).

Figure 6. Kapadia et al. (1995) also observed a reduction in the suppression (caused
by randomly oriented bars; A) in a cells response, if some of the bars were co-aligned
with the orientation selectivity of the cell (B).
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Similar findings have been reported in a number of psychophysical studies.
The contrast detection threshold of a central low-contrast Gabor-patch can be in-
creased or decreased depending on the position and orientation of surrounding
Gabor-patches (Polat & Sagi, 1993, 1994) or gratings (Cannon & Fullenkamp,
1991). It has also been shown that a path of Gabor-patches, presented against a
background of evenly distributed and randomly oriented patches, can be more
easily detected when the relative angle between the adjacent elements in the path
is less than +/-60° (Field et al., 1993), or the elements form a closed rather than
open path (Kovacs & Julesz, 1993).

An interesting parallel,  in this context, is how closely several of the above
findings coincide with the  Gestalt laws (Wertheimer, 1923; see also Rock &
Palmer 1990) that were formulated to account for how we group low-level stim-
uli.  Of particular  note  are  the  laws  which  postulate  that  we are  perceptually
biased to group together features that are arranged into smooth paths (good con-
tinuation), form closed curves (closure), and are close to each other (proximity);
see fig. 7.

Figure 7. Illustration of the Gestalt (grouping) laws of (A) good continuation, (B) clos-
ure and (C) proximity.

It is not yet clear whether the effects (described above) arise within the striate
cortex, or are produced by feedback connections from higher visual areas. Kapa-
dia  et  al.  (1995)  have  suggested  that  the  long-range  horizontal  connections
formed by pyramidal cells in the striate cortex could constitute the physiological
substrate allowing spatial integration of information over several hypercolumns.
These  long-range connections enable  the  target cells to  integrate information
over regions well beyond the classical receptive field, but preferentially from
cells having similar orientation tuning that are positioned along the target cells
axis of orientation. However this may be, feedback connections from area V2
and other visual areas can not, of course, be ruled out. Nor can it be ruled out
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biased to group together features that are arranged into smooth paths (good con-
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see fig. 7.

Figure 7. Illustration of the Gestalt (grouping) laws of (A) good continuation, (B) clos-
ure and (C) proximity.

It is not yet clear whether the effects (described above) arise within the striate
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dia  et  al.  (1995)  have  suggested  that  the  long-range  horizontal  connections
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These  long-range connections enable  the  target cells to  integrate information
over regions well beyond the classical receptive field, but preferentially from
cells having similar orientation tuning that are positioned along the target cells
axis of orientation. However this may be, feedback connections from area V2
and other visual areas can not, of course, be ruled out. Nor can it be ruled out
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that different mechanisms may be responsible for different modulatory effects.
Knierim and van Essen (1992) reported a time delay between the onset of the
general (orientation independent) [~7 ms] suppressive effect, and the orientation-
dependent [~18-20 ms] suppressive effect, which may indicate different origins.

6 Possible Functional Significance
Kapadia et al. (1995) have suggested that the purpose of the selective enhance-
ment in the firing rate of certain cells may be to make contours more salient, par-
ticularly when perceived against noisy and textured backgrounds. Given that the
enhancement effect seems to be stronger for stimuli-configurations that consist
of smoothly aligned features, and that occluding contours in general tend to pro-
duce such constellations in the retinal image, this interpretation seems highly
plausible. The idea is appealing also because it is consistent with the computa-
tionally recognised need for mechanisms that can reduce the response-ambiguity
of the simple/complex cells at an early stage of visual processing. Another inter-
esting aspect of this interpretation is that, if correct, it might not only provide an
explanation as to why we experience the  Gestalt laws of  good continuation,
closure and proximity (i.e. to aid the identification of occluding contours), but it
may also place the origin of these phenomena at a much earlier stage of visual
processing than previously thought.

Regarding the suppressive effect, Knierim and van Essen (1992) have sugges-
ted that the observed difference in the suppression of a cell's response depending
on the difference in orientation between the central and the surrounding stimuli
may be important for texture segregation; and that it may be responsible for cer-
tain  orientation-dependent  pop-out  phenomena such as our ability to quickly
spot a single "V" embedded in a 2-D array of "T´s"; see for example Treisman
and Gelade (1980). While basically agreeing that the suppression could be in-
volved in both texture segregation and pop-out, a slightly different interpretation
is here made on what the main functional significance of the suppression is. That
is, we rather emphasise the possibility that the primary purpose of the orienta-
tion-dependent suppression -like possibly the corresponding enhancement effect-
may be to aid the identification of occluding contours.

From the earlier discussion on the combinatorial explosion in the number of
possible ways there are of grouping the responses from the simple/complex cells
into contour paths, it is evident that our visual system somehow must constrain
the  grouping process.  The observed enhancement  in certain  cells  firing  rates
could be seen as such a constraint,  as a way to guide higher-level integration
processes. Letting a simple  heuristic which prefers smoothly aligned features
control the enhancement, seems a reasonable first approach to narrowing down
the number of potential visual structures that may correspond to occluding con-
tours. 
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However,  because  any  heuristic  by  definition  occasionally  will  be  wrong,
there needs to be an opposing, or complementary, mechanism that can balance
or even override the effect of the enhancement. In many visual contexts, select-
ive enhancement of co-aligned stimuli will not be a helpful strategy for identify-
ing important occluding boundaries. Consider, for example, the fact that most
surfaces in nature are heavily textured (e.g. fur, feathers, grass, leaves, rocks)
and may produce regions with periodic or quasi-periodic patterns in the retinal
image.  Often,  the  components  of  such  patterns  consists  of  locally  smoothly
aligned features. Because such stimuli "fit the description" of co-alignment they
would inappropriately be integrated into contours, unless some opposing system
could counteract, or suppress, the integration mechanism.

Consider also a visual scene such as, a hungry lion lurking behind some high
but possible-to-see-through grass; in such a context, a visual system would not
serve its owner well if it enhanced every single straw of grass, but not the par-
tially hidden outline of the lion. Clearly, not all occluding contours are equally
important to us, but some deserves more attention than others. Preferably those
that mark the peripheral boundaries of regions, objects and surfaces.

For these reasons, it seems that a more reliable representation of occluding
boundaries, less "polluted" with nonsense contours, would be obtained if the in-
tegration of low-level stimuli into contours was suppressed within densely tex-
tured regions of the visual field; particularly if the features within such regions
are periodically or quasi-periodically arranged, and are oriented in accordance
with the axis along which the contour-integration is carried out.

Apart  from  computational  considerations,  ecological  speculations,  and  the
earlier reviewed physiological and psychophysical observations of suppressive
effects, there is a rather compelling phenomenon referred to as contour masking
(Kanizsa, 1979) which indicates that such a suppressive mechanism may control
contour-integration in the human visual system. When the rectangle in figure 8a
is viewed on its own, the vertical lines are clearly perceived as contours of the
rectangle. However, when embedded into a texture such as in figure 8b, the ver-
tical lines are no longer perceived as contours, but rather appear as if they are
parts of a surface that seems to lie in front of the rectangle. What is perhaps the
most interesting aspect of this phenomenon is that the experienced difference
between the two viewing conditions seems to be entirely qualitative. That is, in
fig 8b there seems to be no quantitative reduction in the perceived contrast of the
lines, at least not large enough to cause the contours to vanish, but only a reduc-
tion in our inclination to perceive them as contours. This suggests that a higher-
level representation of contours, or the process that integrates low-level stimuli
into contours,  is  suppressed rather  than  the  early representation of  low-level
stimuli per se. If this is the case, then the observed orientation-dependent sup-
pression of V1 cells may be due to feedback connection from these higher visual
areas where the contours are integrated/suppressed. This idea is consistent with
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the observed time delay between the onset of the general suppression and the
orientation-dependent suppression in area V1 cells reported by Knierim and van
Essen (1992).

Figure 8. Example of contour "masking" (Modified after Kanizsa, 1979).

In the next section, a computational model based on these ideas is presented in
which a layer of model contour neurones integrate oriented low-level stimuli ac-
cording to a simple heuristic of co-alignment. To prevent "non-occluding" stim-
uli from being integrated into contours (i.e., being represented as contours), the
model contour cells are suppressed depending on the magnitude and orientation
of the stimuli in the near surrounds of their receptive fields. Although not inten-
ded as a quantitative description of the human visual system, the model is never-
theless consistent with several of the above described properties of both cell re-
sponses and psychophysical observations. Simulations with a computer imple-
mentation of the model do, for example, produce contour completion (e.g. illus-
ory  contours;  Kanizsa,  1979),  contour  enhancement  (i.e.  increased  saliency;
Kapadia et al., 1995; Field et al., 1993), contour masking (Kanizsa, 1979) and
orientation dependent pop-out (Treisman and Gelade, 1980), and it identifies oc-
cluding boundaries in natural images.

7 A Computational Model
The model presented below is first and foremost a hypothetical functional model
of how contours might be processed in the early stages of the human visual path-
way.  However,  although  function has been  the  main  constraint,  most  design
choices in the model architecture have been influenced by known response prop-
erties of various cell types and their inter-connections.
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Figure 9. Model overview. (I) Spatial and (II) orientation short-range competition com-
petition between similarly tuned simple cells. (III) Pooling of simple cell responses (by
the complex cells). (IV) Mutual Long-range complex cell suppression (orientation in-
dependent). (V) "Texture" detection. (VI) Complex cell output weightied inversely pro-
portional to the amount of texture-surround. (VII) Spatial integration of the complex
cells'  outputs along the common  axis of  orientation;  and short-range (contour  cell)
competition.
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Figure 9 gives an overview of the model. On a coarse scale the model can be
divided into two major levels of processing, roughly corresponding to the pro-
cessing carried out by the simple and complex cells (Hubel & Wiesel, 1962) in
area V1, and by the contour neurones/cells (Peterhans and von der Heydt 1993)
in area V2.

At the first level, oriented contrast features in an input image are detected by a
layer of model simple cells with anti-symmetric receptive fields (fig. 10a). To in-
crease the spatial and orientation selectivity of these cells, all nearby simple cells
(i.e. near in both the spatial and orientation domain) laterally inhibit each other.
The responses from the simple cells are then fed into a layer of complex cells.
Any given model complex cell pools the information from two simple cells that
are separated by π rad (180°) in orientation tuning, and that are positioned at the
same location in the visual/image field. Like the model simple cells, the model
complex cells mutually suppress one another. However, the complex cells do so
over a much larger distance than the simple cells (approximately 6 compared to
1 times the radius of a cell's receptive field) and they do so independently of ori-
entation selectivity.

At the second level, a layer of model contour cells sum the outputs from the
level 1 complex cells. The contour cells are also orientation selective, and any
given cell only sums the outputs from complex cells with a particular orientation
tuning. The receptive fields of these cells are (approximately 6 times) larger than
the simple/complex cells,  and are divided into two drop-shaped sub-receptive
fields (fig 11). Only when there is sufficient activity from complex cells within
both of a contour cells two half-fields does it become activated. To prevent stim-
uli within densely textured regions from being integrated into contours, all com-
plex cells that respond to such stimuli are given a lesser weighting than those
that  respond to stimuli not embedded into textures. Finally, all nearby model
contour cells with the same orientation selectivity inhibit each other along an
axis orthogonal to the axis of their orientation selectivity.

In the following sub-sections,  a more  thorough presentation of  the various
processing steps and their functional motivation is given. For technical and im-
plementation details, the reader is directed to appendix A.

7.1  Level 1
7.1.1 Model Simple Cells

The receptive fields of the simple cells are modelled with anti-symmetric Gabor-
functions (i.e. the product of a sine and a Gaussian function). Symmetrical and
anti-symmetrical elementary Gabor-signals (fig. 10) have been shown to corres-
pond  well  with  the  receptive  field-mappings  of  real  simple  cells  (Marcelja,
1980). In order to capture contrast stimuli of different polarity and at all different
orientations, 12 model cells each differing π/6 in orientation from the next are
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used to sample the image structure at each given position. The receptive field re-
sponse is then half-rectified (i.e. negative values are ignored) and normalised for
contrast by a divisive gain mechanism.

Figure 10. (A) Anti-symmetrical Gabor-filters used to detect oriented contrast features
in the input image. (B) Symmetrical Gabor-filters. Not drawn to scale.

While cells with symmetrical and anti-symmetrical receptive fields respond
optimally to different stimuli (i.e. a bar and edge respectively), each type of cell
also responds to the optimal stimuli of the other type, although less so and at a
slightly shifted position. From a computational point of view, using either kind
of receptive field mapping is therefore sufficient to detect oriented contrast stim-
uli. In the computer implementation of the model, only one type of mapping was
chosen to hold the computational cost down. The choice  of  anti-symmetrical
ones was arbitrary, except for the observation that some kind of contour comple-
tion phenomena seems to be stronger when the inducers are solid edges rather
than thin lines (Kanizsa, 1979). However, in the human and primate brain, both
cell types most likely contribute to the processing of form.

7.1.2 Lateral Inhibition

Because the model simple cells have partially overlapping receptive fields and
because  they  are  quite  broadly tuned  to  orientation,  any  given stimulus  will
evoke activity in a number of cells nearby in both the spatial and orientation do-
main. Hence, the representation of an image will initially be somewhat blurred.
In order to obtain a higher spatial and orientation acuity in the array of simple
cells all near cells (i.e. near in either the spatial or the orientation domain, or
both) laterally inhibit each other. Apart from sharpening the spatial and orienta-
tion selectivity of the model cells, this operation also has the effect of creating a
relative activity enhancement in cells that respond to line-ends and corners, com-
pared to those that respond to the interior parts of such stimuli (this mechanism
is similar to the "end-cut" mechanism of Grossberg & Mingolla, 1985). In gener-
al, these "end-points" are the ones of interest for a contour completion mechan-
ism (see also von der Heydt, 1995).
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7.1.3 Model Complex Cells

While complex cells, like simple cells, are sensitive to stimuli having a particular
orientation, many complex cells, unlike simple cells, fire independently of the
polarity of a contrast stimulus (Livingstone et al., 1987). The intuitive observa-
tion that we easily can complete and integrate fragments differing in contrast
into contours (see fig. 3a) suggests that the complex cells rather than the simple
cells provide the main input to the neural mechanism responsible for form ana-
lysis.

In  the  current  model,  the  responses  of  the  complex  cells are  obtained by
simply taking the absolute value of the difference between each two simple cells
that share the same position and are separated in orientation selectivity by π rad
(for a more sophisticated model of complex cell responses, see for example Hee-
ger, 1991).

7.1.4 Orientation-Independent Long-Range Suppression

Apart from what is present within its classical, or primary, receptive field, the re-
sponse of  a model complex cell  is also determined by the  degree of general
activity within a larger region surrounding its receptive field. More precisely, the
activity of the cell is suppressed proportionally to the squared and weighted sum
over all orientations of the complex cell activity within a Gaussian envelope of
approximately 6 times the radius of the complex cell.

The functional motivation for this suppression is two-fold. First, it further en-
hances the activity of cells that are responding to edge- and line-ends, which are
important  for  identifying texture borders and points were contours should be
completed, or  filled-in.  Second,  it  creates an initial  relative  difference in the
strength of activity in cells that respond to stimuli positioned at the periphery of
textured, or otherwise crowded, regions, compared to those cells that are posi-
tioned at the interior of a texture-field. In general,  such peripheral stimuli are
statistically more likely to correspond to parts of surface/object borders.

Long-range suppression of a striate complex cells, induced by stimuli posi-
tioned outside the classical receptive field, have been observed in several studies
(Knierim & van Essen, 1992; Kapadia et al., 1995; Grinvald et al., 1994).

7.2 Level 2
7.2.1 Model Contour Cells

At the second level of processing, the suppressed outputs from the complex cells
are integrated by a layer of model contour cells. Like the model simple and com-
plex cells, the contour cells are selective to stimuli of a particular orientation.
The contour cells, however, have considerably larger receptive fields, which al-
low them to integrate information from several complex cells along their axis of
orientation. Another important feature of the model contour cells is that they are
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heavily suppressed by stimuli within textured regions, if the stimuli making up
the texture are oriented similarly to the axis of orientation to which the cell is
tuned.

Figure 11. Receptive field of a model contour cell. Not drawn to scale.

7.2.2 Spatial Integration and Texture Suppression

The receptive field of each model contour cell is divided into two drop-shaped
half-fields (fig. 11). Each half-field "hangs" down, along the axis of orientation-
selectivity, from the centre of the receptive field, and reaches out to a distance of
about  6 times  that  of  the  radius  of  the  (primary) receptive field of  a  model
simple/complex cell. Further, each sub-field separately sums the weighted out-
puts from all complex cells within its range that are selective to the same orienta-
tion as the contour cell.  How the  output  from any particular complex cell  is
weighted is determined by two factors. First, the response is weighted by a factor
that is determined by the spatial respectively angular distance from the contour
cell's centre, respectively, axis of orientation. The effect of this weighting is that
only relatively co-aligned stimuli will become integrated. Second, the response
of a complex cell is also weighted by an iso-orientation-measure, τθ

iso ,(see Ap-
pendix A for details) that is inversely proportional to the degree of activity of all
other complex cells tuned to the same orientation within a larger region around
the complex cell (6 times the diameter of a model complex cell's primary recept-
ive field). In other words, a model complex cell that  responds to an isolated
stimulus will be more heavily weighted than one that responds to a stimulus sur-
rounded by other similarly oriented stimuli. Further, to prevent the contour-cells
from becoming active at points in the image where there are no contours to fill-
in or complete such as outside of corners and line-terminators, sufficient activity
in both sub-receptive-fields is needed to make it respond. The contribution from
each half-field is therefore integrated in a multiplicative fashion. The result of
the integration is then passed through a threshold-function (an inverted Gaussi-
an) that particularly compresses the higher response-interval,  but also reduces
the amount of noise in the lowest response-interval.
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7.2.3 Lateral Inhibition

Because the contour-integration is performed on a relatively coarse scale (i.e.
with relatively wide receptive fields), the positioning of the boundaries within
the resulting representation will not be precise. Therefore, in order to better loc-
ate the spatial positions of the boundaries, all contour cells that are sensitive to
the same orientation and lie near each other along an axis orthogonal to their axis
of orientation-selectivity inhibit each others output.

8 Simulation Results
The model presented in the previous section has been implemented as a com-
puter program, and simulations have been run with images of both artificial and
natural scenes. For all simulations presented here, the model parameters were set
as described in appendix A, and all input-images were 128×128 pixels.

Apart from producing results that are consistent with humanly observed phe-
nomena such as illusory contours (Kanizsa, 1979) and the Gestalt laws of good
continuity, proximity and closure (Wertheimer, 1923; Rock & Palmer 1990), the
model also reproduces various contour masking (Kanizsa, 1979) and orientation-
dependent pop-out (Treisman and Gelade, 1980) phenomena. Further, some ca-
pacity for texture segregation has been observed, provided that the major com-
ponents of the textures differ  in their orientation by more than approximately
60°, or the textures have significantly different periodicities (densities).

In each of the examples below, the input image is depicted to the left, the ini-
tial model simple cell response in the middle and the model output to the right.
High intensity in the middle and rightmost images corresponds to high activity in
the model simple and model contour cells respectively. The intensity value at
each point in these representations was obtained by pooling the activity in all
orientation-channels (see appendix A, section 4). The simple cell representation
is shown only for comparison. All images presented below are also available at:
www.lucs.lu.se/people/jens.mansson/contours/index.html

8.1 Artificial Images
8.1.1 Contour Masking and Pop-Out

Figure 12-14 shows examples of the contour masking effect, caused by the sup-
pression of the contour-integration mechanism within regions containing densely
positioned parallel lines, or  other iso-oriented stimuli.  Note also that in all of
these three artificial images, illusory contours are formed at the ends of the lines,
and the contour cell activity at these points is significantly higher (i.e. the illus-
ory contours are more salient) than the activity along some of the actual intensity
lines.
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Figure 12. Example of contour "masking". Redrawn from Kanizsa (1979). a) Input im-
age. b) Initial "simple" cell activity. c) Output, i.e. "contour" cell activity.

Figure 13. Partly "masked" and partly "illusory" triangle. Modified from von der Heydt
(1995) who modified it from Galli and Zama (1931).

Figure 14. An illusory white bar in front of parallel horizontal lines.
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The  suppressive  mechanism  that  produces  the  above  masking  effect  also
makes a single oriented feature relatively more enhanced than the features in a
surrounding array, if these are differently oriented (see figure 15). This could ex-
plain why attention is drawn to such parts of an image, and why the search for
such stimuli is considerably faster than for stimuli that differ less, or in more
than one of several possible aspects (orientation, colour, motion etc.) compared
to surrounding features (see for example Treisman and Gelade, 1980).

Figure 15. "Pop-out" of a single oriented line in an array of orthogonaly oriented lines.
a) Attention is automatically drawn to the vertical bar. c) the output activity is stronger
at the position of the vertical bar.

8.1.2 Illusory Contours

As figure 16 and 17 show the model produces both straight and smoothly curved
illusory contours at positions were human observers generally report perceiving
these. These results are produced because a model contour cell integrates the in-
formation from the orientation-selective complex cells over relatively large re-
gion of the image; and hence can be activated even if there is no stimulus at the
centre of its receptive field.

Figure 16. Kanizsa triangle. Modified from Kanizsa (1979). Note the illusory lines that
have been formed between the black discs.
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Figure 17. Illusory white disc covering the black radial lines.

8.2 Natural Images

The remaining examples demonstrate the model's performance on natural input.
Figure 18-21 show how periodic textures are suppressed while leaving the ma-
jority of "real", or object, contours intact. Particularly note how the horizontal
lines in figure 19c become relatively enhanced in the output representation, even
though they are barely present in the initial simple cell representation (19b); and
in figure 20, note how most of the contours of the fruit are left intact while the
background table cloth pattern is suppressed. Also note in figure 22 and 23 how
not only periodic iso-oriented textures are suppressed, but also random textures,
or otherwise busy regions if there is sufficient activity in all orientation channels
to drive the suppression mechanism.

Figure 18. Shadow on a wall of a cat. The contour of the cat is both filled-in and en-
hanced, while the horizontal lines, on the wall in the background, are suppressed.
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Figure 19. Coin on a table. Note how the outline of the coin, and some of the hori-
zontal lines, which barely  are present in the simple cell representation, are strongly
enhanced in the output.

Figure 20. Compared to the simple cell representation (b), the contour representation
(c) is much sparser, and almost entirely confined along the occluding contours of the
fruit.

Figure 21. Pop-out of a pair of scissors on a carpet.
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Figure 19. Coin on a table. Note how the outline of the coin, and some of the hori-
zontal lines, which barely  are present in the simple cell representation, are strongly
enhanced in the output.

Figure 20. Compared to the simple cell representation (b), the contour representation
(c) is much sparser, and almost entirely confined along the occluding contours of the
fruit.

Figure 21. Pop-out of a pair of scissors on a carpet.
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Figure 22.  A lion resting in the shadow of a tree. In regions where there is model
simple/complex cell activity  in all different  orientation channels (e.g. a lot of noise),
most stimuli are suppressed.

Figure 23.  The skyline of a building behind some trees.  Stimuli within  crowded re-
gions, such as the tree tops and bushes in front of the house, are suppressed in the
output representation.

Figure 24. A rooster. Note how the majority of "false" contours in (b), caused by the
feathers and grass, have been reduced in the final output representation (c).
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9 Discussion
9.1 Related Work

The model presented in this paper shares several features with the models on
contour  perception  suggested  by  Ullman  (1976),  Grossberg  and  Mingolla
(1985), Gove et al.  (1995),  Heitger  and von der  Heydt (1993) and Yen and
Finkel (1998). Although these models differ in various assumptions, for example
in the proposed contour inducing elements, they all share the assumption that oc-
cluding contours, in general, produce relatively smoothly aligned features in an
image. Hence, all the models locally constrain the spatial integration to features
that are similarly oriented and relatively co-aligned. Due to this common feature,
most of the models produce results that are more or less consistent with each
other, and could account for why we perceive illusory contours and why we ex-
perience the Gestalt grouping laws of good continuity, closure and proximity.

However, in none of these models is the integration of low-level stimuli mod-
ulated by the contextual information available in the local surroundings, in the
sense described in this paper. Therefore it seems unlikely that any of these mod-
els can account for phenomena like contour masking and orientation-dependent
pop-out, considering that these phenomena seem to be highly context dependent.
Further, given that textures often produce locally co-aligned visual stimuli, it is
likely that these models will be  relatively poor at discriminating such stimuli
from actual occluding contours.

9.2 Texture Discrimination

Because the model presented here is only intended as a  functional model of how
contour information might be processed early on in the human visual pathway,
the  individual  processing  steps  described  in  the  model  can  be  only  loosely
mapped onto particular neurological structures. A particularly loose mapping is
the one between the proposed contour-suppression-mechanism and a possible
neural substrate that  could implement  it.  In the current  model, "textures" are
crudely sensed by simply integrating the responses from a large number of mod-
el complex cells. From a computational point of view, this is most likely not the
best procedure for detecting and discriminating between textures. An interesting
question that therefore arises is what neural substrates other than the complex
cells could provide information about texture.

One type, or category, of cells that seem particularly fit for this job are the
"grating-cells" (von Heydt et al., 1992). These cells not only respond vigorously
to gratings, but often fail altogether to respond to isolated bars or edges. Further,
they are narrowly tuned to both orientation and spatial frequency, and have low
contrast thresholds. According to von der Heydt et al. (1992), about 4% of all
cell in area V1 and 1.6% of the cells in area V2 are of this type. An interesting
property of these cells is that they not only respond to gratings of a particular
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frequency and orientation, but also to a number of other periodic, or quasi-peri-
odic, patterns such as checkerboard patterns (when the diagonal rows are aligned
with the preferred orientation of the cell), or patterns with "jittered" periodicity
(e.g. lines separated by alternately small and large distances). von der Heydt et
al. concluded that these cells do not perform a spatial-frequency analysis of the
stimulus, but instead seem to be specialised for detecting periodic patterns. Con-
sidering the narrow tuning for both orientation and spatial frequency, as well as
the low contrast-detection threshold, it clearly seems these cells are better fit
than complex cells for performing discriminative texture detection. And hence,
could provide more detailed/sophisticated information to a contour suppression
mechanism. Whether this is the case will of course have to be shown in empiric-
al studies.

9.3 Possible Role of Spatial Frequency

A final consideration, not yet either discussed nor modelled is the possible role
the spatial frequency of the stimuli have on our perception of contours. Intuit-
ively, it seems that the phenomena of  contour masking (Kanizsa, 1975) can be
reduced, or even eliminated, if the lines of the rectangle in figure 8 are made
considerably thicker than the row of parallel lines (see fig. 25). This suggests
that not only the periodicity and orientation of stimuli in the surround control
contour-integration in the human visual system, but that the spatial frequency of
the stimuli also control it. The output of the complex cells are maybe more sup-
pressed (or less weighted by an integration mechanism) when the spatial fre-
quency of surrounding stimuli is similar to the frequency that to which a cell is
tuned.

Figure 25. The "contour masking" effect is lost if the lines of the rectangle are made
thicker .
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10 Summary
A computational model is proposed for how information on occluding contours
might be processed in the early cortical visual areas (roughly V1 and V1). A
central subsystem in the model is a mechanism which suppresses the integration
of oriented low-level stimuli into contours, if these stimuli are embedded into a
texture composed of similarly oriented stimuli/features. This operation is motiv-
ated by the fact that features in natural scenes which are situated inside patterned
regions are more likely (from a statistical point of view) to have been produced
by surface textures, than they are likely to have arisen due to occluding struc-
tures. A computer implementation of the model demonstrates results consistent
with the percepts that are reported by human observers. The model does, for ex-
ample, fill-in missing segments of contours (i.e., produce illusory contours; Kan-
izsa,  1979) and enhances weak ones (i.e.,  increase  the  saliency;  Field et  al.,
1993). Further it reproduces the phenomena of contour masking (Kanizsa, 1979)
and certain orientation-dependent pop-out effects (Treisman and Gelade, 1980).
It also works well on natural images where noise and, particularly, ambiguous
stimuli may present problems to models that do not consider the contextual in-
formation available in the local surround.

Appendix – Technical Specification

A. Simple Cells
A.1 Receptive Fields

The receptive fields of the simple cells were modelled with 12 rotated copies
each separated π/6 rad from the next [�=n�/6 ; n=1...12], of the following anti-
symmetric Gabor-function:
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where f is the frequency, R is the radius (3.5 pixels in the implementation) of the
cells receptive field, σx1  and σy1 are space constants and xc the centre of the re-
ceptive field. 

A.2 Normalisation and Half-Rectification

The response from any given simple cell S�(x,y), at position (x,y), and tuned to
orientation, θ, is obtained by convolving the raw image, I, with the correspond-
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ing (Gabor) mask Gedge
θ. The result is then normalised for contrast and half-recti-

fied (denoted by floor brackets).
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Here,  κ is a threshold constant, which is determined by R (same as above) and
the maximum possible intensity value, Imax , in the image representation (e.g. 256
for an 8 bit grey-scale coding). The floor-brackets denotes half-rectification.

A.3 Lateral Inhibition

The inhibited output of a model simple cell, Sθ
I , tuned to orientation θ and posi-

tioned at (x,y), is given by:
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  The terms A() and B() provide the contribution from the orientation- and spa-
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ing (Gabor) mask Gedge
θ. The result is then normalised for contrast and half-recti-

fied (denoted by floor brackets).
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Here,  κ is a threshold constant, which is determined by R (same as above) and
the maximum possible intensity value, Imax , in the image representation (e.g. 256
for an 8 bit grey-scale coding). The floor-brackets denotes half-rectification.
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function G1(r,σ),  which determine how much neighbouring cells contribute to
the inhibition:

 B�S�,x ,y �� 

i , j��R
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G1��i2


 j2,	s���S��x ,y ��S��x
i,y
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  Again, σs is a space constant that determines how fast the Gaussian envelope
(eq. A.3.3) falls off.

B. Complex Cells
B.1 Pooling

The initial complex cell response, Cθ(x,y), for a cell tuned to orientation θ:
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�
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B.2 Orientation-Independent Long-Range Suppression

The activity in a model complex cell after long-range suppression, C�
LS(), is giv-

en by:
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Complex cells beyond the distance  W do not contribute to the suppression.
The rightmost summation in equation B.2.3 is summation over all orientations.
The purpose of the squaring is to preferentially let high-contrast stimuli contrib-
ute to the suppression. The weight function,  G2, is the difference between two
Gaussians with space constants σ1 and σ2. The latter creates an inner region ap-
proximately the size of the receptive field of a model complex cell, with near
zero values so that a given cell does not suppress itself. σC is a saturation para-
meter for the threshold-function �() (eq. B.2.2).

C. Contour Cells
C.1 Sub-Receptive Fields

Depending on the distance, r, (respectively, the angular deviation, α−θ) from a
contour cell's  receptive-field centre (respectively axis of  orientation), the two

sub-receptive-fields  ( F
�

�
and F

�

�
)  of  a  contour  cell  (tuned  to  orientation  θ)

weights the outputs from all complex cells tuned to orientation  θ according to
(borrowed from Heitger and von der Heydt, 1993):

 
F
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C.2 Iso-Orientated Stimuli Density

The function �iso
� �CLS

� ,x ,y�  is a measure of the amount of stimuli (with orienta-

tion θ) present within a region of radius W, centred at (x,y):
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  The purpose of letting the the complex cell response, C LS
� �x,y � , first pass

through the (inner) threshold function, �, (in eq. C.2.1) with the low saturation
constant 	c2, is to enhance weak responses and thereby emphasise the orientation
of the stimuli and not the contrast-intensity. The function  G2() (see e.q B2.4)
with  the  space  constants  	w1 and  	2w, determines  how a  stimuli  at  distance

�i2
 j2  from point (x,y) is weighted. 	c2 and 	iso are saturation constants for the
threshold-function � (eq. C.2.1).

C.3 Spatial Integration and Texture Suppression

The summed activity, K
�

� , within a contour cell's sub-receptive field, F
�

� , is giv-

en by:
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� � x
i,y
 j �
,  

 if ���4 �arctan� j
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�
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 L�5R , k�2.2 , 	 f�3R  

Note in eq. C.3.1 how both the sub-receptive field ( F
�

� ) and the stimuli-dens-

ity measure ( �iso
� ) together determine how any given complex cell is weighted.

The combined responses, K C
� , from the half-fields K

�

�  and K
�

�  is:

 KC
� �x,y �� ���K

�

��x,y ��K
�

��x,y �, 	K � , 	K�
1 
3

 (C.3.2)

� is the threshold-function (eq. B.2.2), and  	K is a constant that determines
how early the threshold-function saturates (i.e. reaches its maximum value).

C.4 Lateral Inhibition

The final contour representation K� for orientation � is obtained by convolving
the combined representation K�

C with a symmetric Gabor-function G�
bar(x,y) fol-

lowed by half-rectification and filtering through the threshold-function  � (eq.
B.2.2):
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Gbar �x ,y �� cos�2� f 2 �x�xc ���e
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D. Simulation Output-Representation

All output images, IO , presented in section 8 were obtained by pooling the activ-
ity in all 6 orientation channels [� = n�/6 ; n = 0 ... 5] as shown below. χ�(x,y) is
here, either, the initial simple cell activity, or the final contour cell activity, at
image position (x,y).

 IO ��,x ,y �� 1�e
�


n�0

5

�
n��6�x ,y �  (D.1.1)
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The Uniqueness Constraint Revisited
A symmetric Near-Far inhibitory mechanism producing

ordered binocular matches

Abstract — Psychophysical studies have shown that image features, un-
der certain conditions, can give rise to multiple visible binocular matches.
These findings are difficult to reconcile with the traditional interpretation
of the uniqueness constraint. A new interpretation, a conditional unique-
ness  constraint,  is  proposed  that  allows  multiple  matching  of  similar
primitives when a one-to-one correspondence does not exist locally with-
in corresponding image regions, but prohibits it when a one-to-one corres-
pondence does exist. A cooperative network model and an implementa-
tion are also described, where this constraint is enforced at each network
node by a simple inhibitory (dual) AND-gate mechanism. The model per-
forms with high accuracy for a wide range of stimuli, including multiple
transparent surfaces, and seems able to account for several aspects of hu-
man binocular matching that previous models have not been able to ac-
count for.

1 Introduction
Due to a frontally directed binocular visual system, humans and many other an-
imals are able to perceive the 3-D structure of the environment, even when no
monocular cues (e.g. motion-parallax, perspective, size etc) are available. Be-
cause  our  eyes  are  horizontally  separated,  and   hence view the  world  from
slightly different perspectives, the two different images that fall onto the left and
right retinas will, in general, not be identical. With increasing distance from the
plane of fixation, the relative binocular disparity between corresponding visual
features in the left and right images will increase. If this binocular disparity, and
the degree of convergence of the eyes, can be measured or somehow estimated,
so can the distance to a visible feature. The problem of finding corresponding
image features in the left and right images is basically a matching problem, and
is referred to as the correspondence problem. A fundamental difficulty with the
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correspondence problem is that it is ill-posed; i.e. the image arrays do not in gen-
eral contain sufficient information to determine with certainty which solution (of
multiple possible) is the correct. Thus, given the total solution space, or the set of
all possible matches, the best any visual system can do is to choose the solution
that seems most reasonable in the context encountered. What is reasonable in
any particular context should preferably be determined with some kind of heur-
istic that is based on experience (learned or “built-in”) of how the physical world
behaves. With such knowledge it is possible to constrain the matching process,
so that solutions that are in agreement with this knowledge are favored to solu-
tions that are unrealistic, or  “off the wall”. However, if the constraints chosen
are not flexible enough, or too strictly applied, there is a risk, when faced with
unusual scenes, that a visual system will not deliver accurate descriptions of the
environment because it will be too hard “locked into” interpreting all scenes in a
certain way. Thus, an important factor in the design of both artificial and natural
stereo systems should be to find an acceptable balance between the effectiveness
and the flexibility of any particular constraint. A balance that may change from
species to species depending on the accuracy needed, or that may change from
situation to situation depending on the visual and physical context.

Over the years, a variety of different matching constraints have been sugges-
ted: The uniqueness constraint (Marr & Poggio, 1976) states that any given im-
age primitive should be matched with one, and only one, other primitive in the
opposite image, because (surfaces in general are opaque) any given point on a
surface must have a unique position in space.

The cohesitivity (or continuity) constraint (Marr & Poggio, 1976) states that,
because  surfaces in general  changes smoothly in depth,  nearby image points
should have similar binocular disparities.

The constraint of figural continuity (Mayhew & Frisby, 1981), or edge con-
nectivity (Baker & Binford, 1981), is based on a similar motivation, but is con-
cerned with edge information. This constraint basically says that an edge seg-
ment that is part of a longer continuous edge in one image, should be matched
with an edge segment in the opposite image that is a part of a similar continuous
edge, so that the figural continuity is preserved binocularly.

The ordering constraint (Baker & Binford, 1981) is motivated by the fact that
under normal viewing conditions the relative ordering of image features, in the
left and right images, is rarely broken; hence the ordering constraint imposes that
binocular matches that preserve the relative ordering should be favoured to un-
ordered ones.

Partly motivated by the same observation as that underlying the ordering con-
straint,  and partly motivated by psychophysical  observations  (Burt  & Julesz,
1980), Pollard, Mayhew and Frisby (1985) have suggested that a disparity gradi-
ent  limit  of  1 could be  used to  select correct  matches.  Given two binocular
matches, the disparity gradient is defined as the difference in disparity, between
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the  matches,  divided  by  their  cyclopean  separation  (Burt  &  Julesz,  1980).
Simply put, given a number of neighbouring image features, this constraint can
be said to favour (groups of) matches that have relatively similar disparity values
, i.e.  lie on a smoothly changing (but not necessarily fronto-parallel)  surface,
over (isolated) matches that have deviating disparity values.

Except for the disparity gradient limit, it seems as if the motivation and justi-
fication for these constraints have mainly come from computational considera-
tions, and not so much from psychophysical observation of how the human visu-
al system actually behaves. Naturally, from this it does not necessarily follow
that these constraints are wrong, or that they may not account for how the human
visual system operates. The ordering constraint, for example, seems rarely - per-
haps never - to be broken by the human visual system (see below). Nor does it
necessarily follow that a disparity gradient limit is actually used in human vision.
In fact, it is unclear both from a computational and a psychophysical perspective
why this limit should be fixed to 1, since (as shown below) this does not always
seem to hold in human vision. However, the main point here is that although
computational considerations can be a highly valuable source of inspiration, and
suggest simple and elegant solutions, one must not be blind to when these solu-
tions fail to correspond with the performance of the human visual system.

Of all the constraints above the perhaps most influential and most often en-
countered in other models of human stereopsis, and other algorithms proposed
for solving the correspondence problem, is the uniqueness constraint proposed
by Marr and Poggio (1976). It seems as if their particular interpretation has been
the prevailing, and only accepted, one. This is surprising considering its obvious
shortcomings, when it comes to explaining transparency, and in accounting for
known instances of multiple matching in human vision; e.g. Panum's limiting
case, the “double-nail” illusion (Krol & van de Grind, 1980), Weinshall (1991,
1993).

This article will start out by taking a closer look at the computational and eco-
logical justification for the uniqueness constraint, and show that the particular in-
terpretation, and implementation, proposed by Marr and Poggio (1976) may be
unnecessarily restrictive in which matches it allows, and therefore unable to ac-
count for certain aspects of human perception. An alternative interpretation, a
conditional uniqueness constraint, is then proposed. In brief, this constraint op-
erates in a similar manner (to the one proposed by Marr and Poggio) when there
locally is an even number of similar matching primitives within corresponding
binocular regions, but allows multiple matches when there is an uneven number
of similar matching primitives within the same regions; when a one-to-one cor-
respondence does not hold. A simple computational mechanism that enforces
this constraint is then presented along with a cooperative network implementa-
tion, and some simulation results. Finally, the model's relationship to previous
models, and its plausibility as a model of human depth perception, is discussed.
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2 The  uniqueness constraint revisited
The motivation for the uniqueness constraint (Marr & Poggio, 1976) is based on
the observation that any given point on a surface must have a unique position in
space. In their model, this observation was translated into a matching rule that
requires any given image feature to be matched with only one feature in the op-
posite image. Although this particular  interpretation has proved to be a highly
effective constraint for a wide range of binocular stimuli - and seemingly undis-
puted - there are several reasons to question its general validity. The motivation
for this comes from both computational and ecological considerations, but the
main reason  - which from the perspective of wanting to understand human ste-
reopsis is more important -  comes from the inability of this constraint to account
for transparency and known instances of multiple matching in human vision; e.g.
Panum's limiting case, the “double-nail” illusion (Krol & van de Grind), and
Weinshall's random-dot stereograms (Weinshall, 1991,1993) discussed below.

First of all, it should be pointed out that although multiple matches violate the
uniqueness constraint, it does not strictly speaking violate the principle on which
the uniqueness constraint is based. That is, allowing multiple matches may not
always be sensible, or facilitate the correspondence problem, but it is not in itself
contradictory to the fact that any given surface point has a unique position in
space; since even if a feature in one image were matched to two or more features
in the opposite image, each individual match would still correspond to a unique
position in space.

More important in this context is the fact that the uniqueness constraint is not
always  justified (a fact that Marr and Poggio, of course, were fully aware of).
Although it is true that any given point on a surface must have a unique position
in space, it is  not always true  that a given image point  will correspond to a
unique position space, nor that a given surface point will always be represented
in both images. For example,  when two overlapping transparent  surfaces are
seen, there is not one, but two “true” disparity values associated with each image
point, one for each surface. Further, due to surface slant (and the difference in
perspective between the eyes) some features, or surface regions, may appear dif-
ferently sized, or shaped, on the two retinas. Finally, because  the images in our
eyes  are  decompositions of  a 3-D world it  is  unavoidable  that  some surface
points become occluded to one eye but not the other (half occlusion).

In order for the uniqueness constraint to be meaningful there need to exists a
one-to-one  correspondence  between  matching  primitives.  When  surfaces  are
opaque and smoothly curved in depth, and all surface points are visible from
both eyes, such a relationship does exists, and the uniqueness constraint can then
be an important key to solving the correspondence problem. However, when sur-
faces do not have these “nice” properties, but for instance there are many occur-
rences of half-occlusion, there is no guarantee that a one-to-one relationship ex-
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ists between the left and right image features. A given image feature may have
one, none or many potential matches in the opposite image half.  In situations
like  these,  when  there  locally  is  an  uneven  number  of  identical,  or  similar,
matching  primitives  in  the  two  images  halves,  there  simply  is  no  way  of
uniquely  matching  the  primitives  without  leaving some  primitives  out.  Why
some image primitives should be ignored altogether is not easily motivated. One
could argue that, while it is true (and indisputable) that any given surface point
must have a  unique position in space, it is equally true that any given surface
point must have  some position in space. And therefore, in situations when the
one-to-one correspondence condition does not hold, the price to pay for ignoring
some features might sometimes be higher than the  price  for  allowing certain
multiple matches (see discussion below).

In  previous  models  of  stereopsis  (Marr  & Poggio,  1976;  Marr  & Poggio,
1979; Pollard, Mayhew & Frisby, 1985) this problem seems to have been basic-
ally ignored, or avoided by assuming that surfaces in general are opaque and
smooth. However, if 3-D surface reconstruction is one of the important goals of
early vision (Marr, 1982), this is a strange approach to take since any cues of
transparency, and particularly half-occlusion would be highly valuable informa-
tion to such a process.

Figure 1. Schematic (top) view of the 3-D layout in cases where unpaired monocular
regions may be visible. (a and b) S=occluding foreground surface, B=binocularly vis-
ible regions, O=occluded region, L=visible to left eye only, R=visible to right eye only.
Left eye monocular regions can only be seen to left of an occluding surface; and right
eye monocular regions can only be seen to the right of an occluding surface.(c) Given
a binocular fusible surface edge, E, the (minimum) depth of the monocular (right eye)
feature,  F, depends on the monocular separation,  α,  between the edge, E, and the
feature, F. (Modified after Nakayama & Shimojo, 1990).

Because half-occlusion, in one way or another, is the only fundamental reason
why a one-to-one correspondence may not exist between image features, it is in-
teresting to consider in some detail the possible variations of 3-D surface layouts
in these cases. Regarding an unpaired monocular feature (or region), Nakayama
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and Shimojo (1990) have pointed out that there are only two ecologically valid
situations where such stimuli can arise (figure 1a,b). If a monocular feature is
seen by the left eye only, the feature must be behind an occluding surface that is
located to the right of the feature; or vice versa, if seen by the right eye only, the
feature must be behind a surface that is located to the left of it. They further
pointed out that the depth ambiguity a monocular feature presents, to some ex-
tent is constrained if a nearby binocularly fusible edge is present. In figure 1c for
example, the region of  space from where the monocular feature F could have
arisen is delimited by the line RF and the line LSE (which tangents the fusible
right edge, E, of the surface, S). That is, the feature F must have arisen from
some point along the line RF that is located to the left of the line LSE, otherwise
it would be visible to both eyes. Thus, the minimum depth corresponding with F
is were LSE and RF intersect. Moreover, this minimum depth depends on the an-
gular separation (α) between the binocularly fusible edge (E) and the monocular
feature (F). Hence, the greater the angular separation (α), the greater the minim-
um depth. Interestingly, Nakayama and Shimojo showed in one of their experi-
ments that subjects did seem to use this information in their depth judgements.
When subjects were asked to estimate the depth of an unpaired monocular stim-
uli their estimates varied quantitatively with the angle of monocular separation
from a nearby fusible edge. The larger the angle of separation, the further away
the monocular target was perceived.

The case when there is an uneven number of identical, or similar, features in
the two images halves (and multiple matching is an option) is highly similar to
the case with a single monocular feature described by Nakayama and Shimojo,
and it is interesting to consider the problems posed to a binocular matching sys-
tem when faced with such stimuli.

Consider for example the simple and well known Panum's limiting case (fig-
ure 2a) where the left eye sees only one vertical bar, but the right eye sees two.
Basically, there are three possible 3-D layouts (figure 2b,c,d) that could give rise
to such an image pair: In the simplest case, 2b, the two right eye features (R1 and
R2) are exactly aligned along the left eye's line-of-sight from L1. In 2c the single
visible left eye feature (L1) corresponds to the leftmost right eye feature (R1), and
is located on (or in front of) an opaque surface (S) that terminates somewhere
between the two features R1 and R2. The rightmost feature (R2) is here occluded
to the left eye by the surface (S). Note that this surface is not directly visible in
itself, but only indirectly due to the half-occlusion. Finally, in 2d the single left
eye feature (L1) corresponds to the rightmost, right eye, feature (R2), and is loc-
ated further away than an opaque (invisible) surface that terminates somewhere
to the left of L1 and R1. The leftmost right eye feature (R1) is also further away
than the occluding surface, but is only visible to the right eye.

Now, from a computational perspective, given no direct visual evidence of the
occluding surface (S) in case 2c and d, all three of these 3-D layouts are equally
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likely to have produced the visible stimuli.  According to the uniqueness con-
straint, however, only one of the matches M1,1 and M1,2 can be allowed. In case
2b, whichever match was chosen, this would never result in a true representation
of the situation. And in case 2c and 2d there would be a 50% chance of getting
one of the matches right. Worse yet, which is true in all three cases, is that the
gist of the scene, the important fact that there exists a disparity jump, would be
lost. If on the other hand, both matches were allowed to co-exist in this type of
situation, this important fact would not be lost. And not only would it correctly
represent the situation in case 2b, but it would also correspond to a fairly good
approximation of the true layout in case 2c and 2d. Moreover, as Nakayama and
Shimojo (1990) pointed out in their analysis of the strictly monocular case, this
approximation would not only be qualitative, but to some extent also quantitative
since the correct match (whichever it is) will delimit the possible locations of the
other match.

Figure 2. Panum's limiting case (a), and the only three plausible (ecologically valid) 3-
D layouts that could have produced it (b, c and d). The filled circles mark the actual
positions of the visible features L1, R1 and R2 (filled squares). The thick dashed line is
an occluding surface, S, that is not in itself visible. (b) Both match M1,1, and M1,2, cor-
respond to the actual position of R1, and R2, respectively. (c) The true position of R1 is
on, or in front of, the surface S, and R2 is behind S. Match M1,1 is correct, but M1,2 is
false. (d) Both R1 and R2 correspond to points/regions behind the “invisible” occluding
surface, S. Match M1,1 is false, but M1,2 is correct.

In case 2b it is obvious that matching L1 with both R1 and R2 would corres-
pond to the actual positions (M1,1 and M1,2) of the two features. In case 2c, match
M1,1 would be a correct match and although M1,2 may not correspond to the actu-
al position of R2 we know (from the analysis of Nakayama and Shimojo) that it
must be somewhere along the line-of-sight from R2, but also to the left of the
line L1X. Therefore match M1,2 at least conveys an approximation of the actual
layout, to the degree that it corresponds closely to the minimum depth of R2.
Strictly speaking the minimum depth would correspond to where line ESE inter-
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sect with R2Y, but since neither the surface (S), nor the edge (E), are visible this
information is not available. However, if the edge where too far to the right of L1

it would occlude feature R2 as well, and therefore the difference should not be
very large. Case 2d is perhaps the most interesting because here it is obvious that
M1,1 is neither the correct position of L1 and R1, nor a very good approximation
of it.  However, using the reverse argument from Nakayama and Shimojo (re-
garding the location of an unpaired monocular feature), one can say that if M1,2 is
a correct match (true in this case) and there exists an occluding surface that is not
directly visible (as is the case in 2b); the position of this surface edge will be de-
limited by the angular separation between match M1,2 and the monocular feature
R1. That is, this surface (edge) must lie to the left of both line L1X (otherwise
none of the features would be visible to the left eye), and line R1Z (otherwise R1

would be occluded to the right eye); but we also know that it can not lie too far
to the left of L1 and R1, since otherwise R1 would be visible to the left eye as
well. In case 2d, one can therefore say that although M1,1 is an incorrect match of
the visible features, it does represent the 3-D layout in the sense that it approx-
imates the position of the edge in the same manner as M1,2, in case 2c approxim-
ates the position of feature R2.

To rephrase this in different words, because the only three ecologically valid
surface layouts that could generate the stimuli in Panums's limiting case, all in-
volve an occluding surface that terminates in the near vicinity to the left of the
occluded feature (and also immediately to the right in the border case 2b); it does
not really matter which match is actually the correct when it comes to capturing
the essence of the scene; i.e. that there exists a disparity discontinuity near L.
Thus the best any visual system could do in such cases seems to be to accept
both matches and, given the available (lack of) evidence, or cues, treat them as
the best possible interpretation of the 3-D layout. Contrasting this approach with
the traditional version of the uniqueness constraint will at any rate result in a less
grave error in the interpretation of the scene, and a smaller loss of potentially
valuable information.

Given the strong similarity between Panum's limiting case, discussed above,
and the strictly monocular  case discussed by Nakayama and Shimojo (1990),
two things are worth pointing out  about their study. First,  in the  experiment
where subjects experienced the depth of the unpaired stimulus to depend on the
monocular separation from the matchable surface edge,  it is quite possible that
the binocularly visible edge was matched twice. The stimuli used for both the
binocularly fusible surface, and the monocular target, were white rectangular re-
gions. If the surface edge were matched twice, this would explain why the un-
paired bar appeared further away with increasing separation from the binocularly
fusible edge. Second, in  another of their experiments where unpaired vertical
bars had been inserted (in an ecologically valid manner) to simulate an occluding
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(but in itself invisible) surface, subjects did perceive illusory, or subjective, con-
tours at the appropriate side of the unpaired (half-occluded) features.

3 Psychophysical evidence for multiple matching
There are several examples where the human visual system, when faced with an
uneven number  of  similar  features,  seems to make multiple  matches.  In the
Panum's limiting case (figure  3a)  it  has been known since long that,  given a
small separation between the bars, the fused percept is not that of a single bar,
but instead one sees two bars (one in front of the other). In the trivial case where
both eyes sees two bars (figure 3b), it is interesting to note that the fused result is
not that of two bars superimposed on two bars that lie further away (schematic-
ally depicted to the right in figure 3b) even though this is a possible interpreta-
tion, but instead that of two stable bars in the same depth plane. In this trivial
case it seems as if the two redundant (unordered) matches indeed are suppressed.
This shows that the visual system clearly separates between situations, and treats
stimuli different, depending on if there is an even or uneven number of matching
primitives; and it seems to indicate that the visual system chooses the least com-
plicated interpretation, given the available information.

Figure  3.  a)  Panum's  limiting  case,  and  b)  the  “trivial”  case  where  only  the  two
ordered matches (filled circles) are seen.

Another example where multiple stable matches have been demonstrated is in
the “double-nail” illusion (Krol & van de Grind, 1980). In the basic version of
this illusion (figure 4a) two nails of the same length are placed, with their heads
vertically aligned, on a lath, which is aligned with the midsaggital plane. When
the setup is viewed with both eyes, one does not see the nails at their actual posi-
tions, but instead at the positions corresponding to the false, or ghost, matches
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(figure 4b). In a variation of this experiment (which also can be seen as a vari-
ation of Panum's limiting case), Krol and van de Grind added a third nail that
was placed behind the  other  two and aligned with the  left  eye's line-of-sight
through the middle nail so that it was only visible to the right eye (figure 4c).
With this setup their subjects reported that there were two stable vergence condi-
tions (4d). In both cases the two matches M1,1 and M2,3 were seen, but depending
on if fixation was on either M1,1, M2,2  was also seen, or if on M2,3, M1,2 was seen.

Figure 4. a) Basic setup of the double-nail illusion. b) Schematic view of the possible
matches. c) The variation of the double-nail illusion, where a third (most distant) nail
is placed so it is occluded to the left eye only. d) Possible matches in the latter setup.
(Modifed after Krol & van de Grind; 1980).

A more massive form of multiple matching has been demonstrated by Wein-
shall (1991, 1993). In a series of experiments, using ambiguous random-dot ste-
reograms (RDS), which consisted of multiple copies of the (basic) double-nail il-
lusion stimuli, Weinshall reported that subjects saw up to four different transpar-
ent depth planes. These ambiguous RDS were constructed by making a single
random-dot image which was copied twice into each half of the stereogram with
an inter-dot separation that was GL in the left image, and GR in the right image.
When the dot separation was the same (GL = GR), subjects saw only one opaque
surface, the one corresponding to the ordered matches - as would be expected
from the single pair case. In contrast to the single pair case, however, when the
inter-dot separation was different (GL �GR ) their subjects often reported of see-
ing, not only the two planes corresponding to the ordered matches, but also one
or both of the ('ghost') planes corresponding to the unordered matches. Wein-
shall also reported of an unpublished study by Braddick (see Weinshall, 1993) in
which similar RDS stimuli where used, with the difference that the RDS pattern
was only copied once in one of the stereo pair images. Like in the single pair
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case  (Panum's), the dots in the single-copy image were matched twice and two
depth planes was perceived.

As a final example, MaKee, Bravo, Smallman and Legge (1995) have found,
measuring the  contrast-increment  threshold  for  high-frequency  targets,  that  a
single target in the left eye can mask both of two identical targets in the right
eye, when arranged in a configuration like the Panum's limiting case; and that
this binocular masking was nearly the same as when only one target was visible
to the right eye. To confirm that the left target actually had been matched twice,
they further conducted a depth-judgement test where subjects (over 200 trials)
had to determine if a test target in the right eye where in front of, or behind, a
reference target. The stimuli presentation time (200ms) was too short to allow
for voluntary vergence movements. The results of these depth judgements where
essentially the same as when only a single target was present in the right eye,
and hence supported the idea that the left target was matched with both targets in
the right eye. MaKee et al. (1995) concluded that “uniqueness is not an absolute
constraint on human matching”.

Taken together the above examples strongly suggest that when there locally
exists an uneven number of similar features in the left and right retinal images,
and  there  consequently does  not  exist  a  one-to-one correspondence between
matching primitives, the human visual system does allow multiple matches to
co-exist. If so, this clearly speaks against a strict enforcement of the uniqueness
constraint; i.e. one that ignores or suppresses other potential matches under such
conditions, and consequently it also speaks against models of human stereopsis
that blindly rely on this constraint, since they are not flexible enough to account
for the above results. What instead seems to be called for is a more sensitive us-
age, or enforcement, of the uniqueness constraint that, given a feature for which
a match is sought, not only takes into consideration the similarity to features in
the opposite eye, but also to the presence (and/or absence) of similar features in
the eye-of-origin.

Returning briefly to the double-nail illusion, this is interesting not only be-
cause it demonstrates multiple matching, but also because it shows how strongly
the human visual system seems to prefer matches that preserve the relative or-
dering of image features. In the basic version of this illusion, subjects consist-
ently perceived the targets at their ghost positions instead of at their actual posi-
tion. Perhaps counter intuitively this percept survived despite remarkably large
changes  in  the  nails dimension/appearance such  as when  the  distal  nail  was
longer than the other and both heads could be seen at different heights; one nail
was twice  the diameter  of  the other; or  the  proximal nail was rotated 5 deg
around an horizontal axis through its centre. Despite the many, both monocular
and binocular, cues that could have been used by the visual system to choose the
correct matches the ghosts were consistently preferred.  To explain this phenom-
ena, Krol and van de Grind suggested a (somewhat vague) rule which stated that
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the perceived pair was always the pair of matches closest to the fixation point. A
simpler (and in their case equivalent) explanation is that our visual system al-
ways chooses matches that preserve the relative (left-right) ordering of features
in the two retinal images. It should be noted that Panum's limiting case does not,
strictly speaking, break this principle but can in fact be considered as a border
case.

4 A revised uniqueness constraint
The  alternative  interpretation  of  the  uniqueness  constraint,  proposed  below,
arose from an attempt to reconcile and explain the three following properties of,
or rather assumptions about, human binocular matching:  i) When a one-to-one
correspondence does exists between matching primitives, any given primitive is
matched only once. ii) When a one-to-one correspondence does not exists locally
between  similar matching  primitives, any given primitive is matched at  least
once. iii) Binocular matches that preserve the relative ordering of image features
are always preferred to unordered matches.

Figure 5. Schematic view of a horizontal layer in the network, showing the mapping
of the left and right x-axis. Positive disparities correspond to further depths, and neg-
ative disparities correspond to positions closer to the plane of fixation.

At a first glance, these three conditions on the matching mechanism may seem
unrelated and therefore not easily integrated, but in fact they can be implemented
by a quite simple (dual) mechanism. The basic architecture of the model consist
of a network of interconnected nodes that each represent a particular point in dis-
parity space. Figure  5 shows a  horizontal  layer  of  this network.  Initially the
activity at each node M(xL,xR,y) in the network is proportional to the similarity,
between the stimulus at position (xL,y) in the left image and position (xR,y) in the
right image. In this default mode, or rather without any additional modifications,
no particular constraint would be enforced (except that matches are sought only
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of the left and right x-axis. Positive disparities correspond to further depths, and neg-
ative disparities correspond to positions closer to the plane of fixation.
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along  corresponding  epipolar  lines),  and  given,  for  example,  the  stimuli  in
Panum's limiting case, both of the nodes that represent the two possible matches
(figure 3a) would remain active. Although such a simple model could account
for the percept in Panums's limiting case, it obviously can not account for why
we only see the two ordered matches in the trivial case (figure 3b); or why we,
for example, only see the five ordered matches with stimuli like that depicted in
figure 6, although there are 25 possible combinations between the left (L1...L5)
and right (R1...R5) features. For the model to handle such stimuli, some kind of
inhibition must be introduced. Hence, to prevent multiple matching from occur-
ring in the model when a one-to-one correspondence  does exists, between the
left and right image features, a conditional uniqueness constraint is introduced.
Like in the model proposed by Marr & Poggio (1976), the uniqueness constraint
is enforced by mutual suppression between matches that lie along the same lines-
of-sight, but unlike their model this suppression is dependent upon that two con-
ditions must hold for the binocular stimuli. The first of these two conditions is
required assure property (i) above, and the second condition is needed to assure
property (iii). However, although the two conditions have different motivations,
they are not independent of each other but on the contrary tightly coupled. In
fact, without the second condition the first would be meaningless.

Figure  6.  Example  of  the  basic  difficulty  with  the  correspondence  problem.  Five
identical stimuli (L1...L5 and R1...R5) are visible to both the left and right eye, and 25
different matches (M1,1...M5,5) are possible. In general however, only the five ordered
matches are perceived (filled circles). The match M1,1 (of L1 with R1) has no compet-
ing matches to the left of it. Neither its Near, nor Far, AND-gate (see fig. 7) will there-
fore be activated, and the node M1,1 will not be suppressed. Match M1,5, on the other
hand, will be strongly suppressed, because its Near AND-gate have input from both
sides (multiple competing matches along both the left, and right, line-of-sight).
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Given a target match MT(xL,xR,y) the first condition is that other matches, lying
along  one  of  the  two  lines-of-sight  (e.g.  M([0....n],xR,y)),  may  suppress  MT

(xL,xR,y) only if there also exists potential matches along the opposite line-of-
sight (e.g.  M(xL,[0....n],y)). Or differently put, if a feature in, for example, the
left eye can be matched with more than one feature in the right eye, the corres-
ponding matches compete for dominance only if there also exists other (similar)
features in the left eye that also can be matched with the same set of features in
the right eye.

The second condition on the suppression, given the target match MT(xL,xR,y), is
that only combinations of matches  that have the same sign of the disparity relat-
ive to MT(xL,xR,y) contribute to the suppression (e.g. M([(xL+1)...n],xR,y) in com-
bination  with  M(xL,[(xR+1)...n],y),  and/or  M([0...(xL-1)],xR,y) in  combination
with  M(xL,[0...(xR-1)],y)  ).  Or in other  words, matches along one line-of-sight
that lie further away than the target MT, are allowed to suppress it only if there
are also matches along the opposite line-of-sight (through  MT)  that lie further
away; And, vice versa, matches along the line-of-sight that are closer than MT,
are allowed to suppress  MT   only if there are also matches along the opposite
line-of-sight that are closer.

One simple mechanism that enforces both of these conditions is depicted in
figure 7, and consists of a pair of inhibitory AND-gates: a Near AND-gate  (or
Near-gate) and a Far AND-gate (Far-gate). Consider that each node, in the basic
network described above, has such a dual mechanism connected to it (as shown
for only one node in figure 7). Now, the Near-gate separately sums the activity,
along the left and right line-of-sight, of all nodes that lie in front of MT. Only if
both the (left and right) sums are larger than zero does the Near-gate produce an
output  that  suppresses node  MT.  The Far-gate  is identical  in operation to the
Near-gate, but receives its input from matches that correspond to depths further
away than the target node MT.

If one considers the dynamic interactions between the nodes in the network
and their  associated inhibitory mechanisms, it  should become clear  why this
model will produce a unique and ordered set of matches for the stimuli in figure
6, i.e. the matches in the middle horizontal row (this solution set would be pre-
dicted by any known stereo constraint).

Consider for example the two features L1 and R1 (figure 6), from either view
these two are the leftmost feature, and should therefore be matched with each
other. Any other solution would be incongruent with the ordering constraint. Be-
cause both the Near-gate and the Far-gate associated with node  M1,1 only re-
ceives input from matches along one of the line-of-sights, the net output of both
of these AND-gates will be zero, and consequently node M1,1 will not be sup-
pressed. For any other node along the line-of-sights from L1 or R1 this is not the
case. At all these other positions there is some input (either in front of, or behind,
the node) from both the left and right line-of-sight, and they will consequently
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Figure 7. Depiction of the proposed dual mechanism consisting of a Near, and a  Far,
inhibitory AND-gate. Each AND-gate separately sums the activity  along the left, and
right, lines-of-sight (through the target node MT), and multiplies the two sums. If both
the left, and right, side input to an AND-gate is greater than zero, the target node, MT,
will be suppressed.

all be inhibited to some degree. Consider particularly the node M1,5 , correspond-
ing to the match of feature L1 with R5. From the left view, L1 is the leftmost fea-
ture, but from the right view R5 is the rightmost. Clearly, matching these two
features would severely violate the ordering principle, and it is therefore an un-
acceptable solution. In this case the Near-gate connected with M1,5 will receive a
strong input from both the left and right line-of-sight, and the node will therefore
be strongly suppressed. This latter situation quite nicely illustrates the motivation
for the second condition above. That is,  except  for  cases when the binocular
stimuli consists of highly repetitive patterns (such as in the Wallpaper-illusion), a
high number of competing matches on both the left and right side of the target
match (MT) indicates that the target is not an ordered match. The output of the
(multiplicative) AND-gate can therefore been seen as a measure (although not
the  only)  of  how  well  the  match  is  ordered  in  relation  to  its  neighbours.
However, even if the stimuli is (finitely) repetitive as in figure 6, the proposed
mechanism will produce an ordered set of matches. Consider, for example, the
“correct” match M3,3 in figure 6, which has competing matches with crossed and
uncrossed disparities (relative to it) along both the left and right line-of-sight.
Initially, this node will be suppressed. However, because node M1,1 is not sup-
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pressed but all other nodes along its lines-of-sight are, both of node M2,2's AND-
gates will eventually loose their input from one side and consequently node M2,2

will be “disinhibited”. Once  M2,2 has been disinhibited, it in turn will suppress
the nodes that input to the AND-gates connected to node M3,3, leading to its re-
vival. As this disinhibitory process propagates further in to the network eventu-
ally only nodes that preserve the ordering will remain.

5 An Implementation
A computer implementation of the proposed model have been realised and tested
on a variety of different stimuli. The model consists of two major levels: a pre-
liminary matching stage (I), and a secondary relaxation stage (II) where the con-
ditional  uniqueness constraints is enforced. At the  preliminary stage, suitable
matching primitives are identified independently in each image array, and sub-
sequently binocularly matched  for similarity. The result (i.e. the set of all poten-
tial matches for the stereogram in question) is then fed forward to the secondary
stage. At the secondary stage, all potential matches are allowed to inhibit (disin-
hibit) each other, over a number of iterations (according to the principles de-
scribed above), until a stable state is reached. To balance the inhibition in the
network and avoid that a “dead” state is reached, there is a small continuous ex-
citatory feed from the preliminary matching stage into the secondary stage.

Because the purpose of the current implementation is mainly to show that the
principles enforced in the secondary stage are sound (i.e. that the correspondence
problem can be effectively solved for a wide range of stimuli), the preliminary
stage has been kept as simple as possible. In the current implementation, the pre-
liminary matching stage simply uses the intensity values at each image point as
“matching primitives”, and a binary function for the similarity evaluation. That
is, if the image intensity at a given point in the left image array (xL,y), and at
some point (xR,y) in the right image array, are both greater than zero, then the
node MI(xL,xR,y) in the preliminary (and initially also the secondary) network will
represent a potential match and be assigned a value of 1. If there is no image in-
tensity at one, or both, of these points, the node MI(xL,xR,y) will not represent a
match and will hold a value of 0.

Because the ordering constraint is a key principle in the model, it should be
obvious that the current (preliminary) matching strategy is not well suited for
natural images that contain large surfaces regions with  homogeneous intensity
values;  since  surface  points  within  such  regions  can  not  be  meaningfully
ordered. However, for sake of demonstrating the proposed mechanism the cur-
rent preliminary stage is sufficient, since all examples below are either random-
dot,  or  simple  (vertical)  line,  stereograms  with  binary  intensity  values
(black/white). The advantages with using artificial, over natural, stereograms as
performance probes are that the stimuli can be precisely controlled and arranged
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as desired, and more importantly, an accurate disparity map is available for val-
idation, which is usually difficult to obtain for natural image stereograms.

Assuming the preliminary stage has matched each image point, with all points
in the opposite image that lie within a horizontal disparity range of +/-D pixels
(in the examples below D=12); and the result have been loaded into the second-
ary network, the value of any node in the (secondary) network is given by the
semi-saturation function:

 f S �x ,� ��K�
x2 

x2 
��

2  (5.1)

which reaches half K when x=σ. Here, x and σ are compound terms representing
the total excitatory respectively inhibitory input to the node. More specifically
(with K=1), given a particular node MII( �p ) in the secondary network, where �p
= (xL,xR,y) is the triplet, or vector, that defines the position in the network, its
value at iteration t+1 is given by:

 M t�1
II ��p � � f S� M t

II ��p ��M I ��p ��A�e
	B�S t ��p�

, �s�C�S t ��p ��  (5.1)

where  MI( �p ) is the node in the preliminary network holding the result of the
initial  matching. A, B, C are constant weight factors, and σs is the semi-satura-
tion constant. Finally, the term St( �p ) is the sum of, the inhibitory input, from
the Near AND-gate, Nt  ( �p ), and the Far AND-gate, Ft  ( �p ), connected to node
MII( �p ):

 S t ��p��N t ��p��F t ��p �  (5.3)
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6 Simulation results
For  all  the  examples  presented  below  the  same  parameter  set  was  used
(A=σs=0.5, B=8 and C=4). As of yet, no proper formal analysis of the paramet-
er space has been carried out, but the above values were empirically found to be
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a  good  trade-off  between  speed-of-convergence  and  the  number  of  correct
matches. In each stereo triplet, the left and middle images can be free-fused with
uncrossed-crossed eyes, and the middle and right images with crossed eyes.

6.1 Example 1: Vertical lines

The first example (figure 8) contains several of the simple cases described in
previous  sections,  and  illustrates  the  basic  implications  of  the  conditional
uniqueness constraint both in cases when there is an even number of similar fea-
tures in the two halves of the stereogram, and in cases where there is an uneven
number of similar features. From top to bottom, the first and second row are ex-
amples of  the Panum's limiting case, and the corresponding “trivial” case, re-
spectively, from figure 3. The third row contains the variation of the “double-
nail” illusion illustrated in figure 4c. In each of the last three rows, there is an

Figure 8.  The left and middle images can be free fused with un-crossed eyes, and
the middle and right images with crossed eyes. Row: 1. Panum's limiting case; 2. Its
“trivial”  case;  3.  Variation of  the  double-nail  illusion;  4.  Plane  at  zero  disparity;  5.
Peak/Pyramid; 6. Peak and through.

Figure 9. Horizontal cross-sections of the network, after it has converged (with the in-
put in figure 8) into a stable state. The right horizontal line marks zero disparity.
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even number of features in the two image-halves. In row four, all lines lie in a
plane at zero disparity (the example from figure 6). In row five, they form a peak
with the middle bar on top, and in row six, they form a peak and a trough (from
left  to right).  The output  is displayed in figure  9 as horizontal  cross-sections
where  the rightmost  horizontal  line  mark zero-disparity.  As can be seen, the
model allows both of the two matches (fig 9-1) in the Panum's limiting case, but
only the two ordered matches (fig. 9-2) in its corresponding “trivial” case. Case
three corresponds to the variation of the double-nail illusion (figure 4c). As ex-
plained above (in the context of figure 4d), when subjects were presented with
this stimuli they reported of seeing both of the matches M1,1 and M2,3 (the two
visible ones in figure 9-3), but also either M2,2 if fixation was on M1,1, or M1,2 if
the fixation was on M2,2. This seem to suggests that human stereopsis to some
degree is biased towards matches that lie in the plane of fixation. However, in
the current implementation no such bias has been introduced, and therefore the
two matches (in fig 9-3), that correspond to the matches M1,2 and M2,2  in figure
4d, are equally suppressed (not visible in fig 9-3). The final three cases are quite
straight forward, and as the output shows (figure 9-4, 9-5 and 9-6) there are no
instances of multiple matching since there exists a one-to-one correspondence
between the features.

6.2 Example 2: RDS - Occluding square

The random-dot stereogram in figure 10 contains two opaque surfaces: a back-
ground plane at zero disparity, and an occluding square in the foreground. The
dot-density  in  this  particular  example  is  10%,  and  the  disparity  difference
between the two planes is 4 pixels. Figure 11 shows a 3-D plot of the model out-
put. The amount of correct, and false, matches were 93.3%, and 10.5%, respect-
ively. 6.7% of the dots were unmatched (see table 1 for results with different
dot-densities).

Figure 10. Random-dot stereogram displaying a smaller occluding square, in front of
a background surface at zero disparity.

103

The Uniqueness Constraint Revisited     19

even number of features in the two image-halves. In row four, all lines lie in a
plane at zero disparity (the example from figure 6). In row five, they form a peak
with the middle bar on top, and in row six, they form a peak and a trough (from
left  to right).  The output  is displayed in figure  9 as horizontal  cross-sections
where  the rightmost  horizontal  line  mark zero-disparity.  As can be seen, the
model allows both of the two matches (fig 9-1) in the Panum's limiting case, but
only the two ordered matches (fig. 9-2) in its corresponding “trivial” case. Case
three corresponds to the variation of the double-nail illusion (figure 4c). As ex-
plained above (in the context of figure 4d), when subjects were presented with
this stimuli they reported of seeing both of the matches M1,1 and M2,3 (the two
visible ones in figure 9-3), but also either M2,2 if fixation was on M1,1, or M1,2 if
the fixation was on M2,2. This seem to suggests that human stereopsis to some
degree is biased towards matches that lie in the plane of fixation. However, in
the current implementation no such bias has been introduced, and therefore the
two matches (in fig 9-3), that correspond to the matches M1,2 and M2,2  in figure
4d, are equally suppressed (not visible in fig 9-3). The final three cases are quite
straight forward, and as the output shows (figure 9-4, 9-5 and 9-6) there are no
instances of multiple matching since there exists a one-to-one correspondence
between the features.

6.2 Example 2: RDS - Occluding square

The random-dot stereogram in figure 10 contains two opaque surfaces: a back-
ground plane at zero disparity, and an occluding square in the foreground. The
dot-density  in  this  particular  example  is  10%,  and  the  disparity  difference
between the two planes is 4 pixels. Figure 11 shows a 3-D plot of the model out-
put. The amount of correct, and false, matches were 93.3%, and 10.5%, respect-
ively. 6.7% of the dots were unmatched (see table 1 for results with different
dot-densities).

Figure 10. Random-dot stereogram displaying a smaller occluding square, in front of
a background surface at zero disparity.

103



20     LUCS 95

Figure 11. 3-D plot of the model output for the stereogram in figure 10. Each dot rep-
resents an active node in the network. The horizontal lines (to the left) mark the sep-
aration between different disparity layers.

6.3 Example 3: RDS - Gaussian “needle”

In the third example (figure 12), the disparity (dXm) in the middle image, relative
to the left (right), image was generated by the following Gaussian-like distribu-
tion:

 
dX m�	10e

	
� I	x �2 

��I	y �2 

�
2  (6.3.1)

where I is half the image width (I = 64 pixels) and σ = 12. When fused, a sharp
peak is  perceived  pointing  out  from a  flat  background.  At  the  steepest  part
(between the background and the peak), the disparity-gradient is approximately
0.7. Figure 13 shows a 3-D plot of the model output (see also table 1). This ex-
ample is an interesting test because it should pose a problem for models that as-
sume smooth (particularly fronto-parallel)  surfaces, and rely on some kind of
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Figure 12. RDS of a flat opaque surface with a sharp narrow peak coming out in the
middle. Dot-density 20%.

Figure 13. 3-D plot of the model output for the stereogram in figure 12.

spatial  summation  (i.e.  mutual  support  between   neighbouring  matches  with
equal or similar disparities) to solve the correspondence problem. What should
pose a problem for such models is that, at the top of the peak, there are only a
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very few dots. The support that the correct matches give each other could easily
be “drowned” by the more massive support that the background could give to
potential false matches with disparities closer to the background (see also discus-
sion).

Stimuli /
density (%)

Matches

Correct
(%)

False
(%)

Unmatched
(%)

Iterations

Square
5%

10%
15%
20%

98.0
93.3
91.6
88.6

4.6
10.5
12.3
12.6

2.0
6.7
8.4
11.4

24
51
72

162

“Needle”
5%

10%
15%
20%

100.0
99.3
98.9
98.0

0.0
0.8
1.1
1.3

0.0
0.7
1.1
2.0

31
65
85

126

Transp.
5%

10%
15%
20%

93.4
82.3
72.9
65.5

5.8
16.0
25.4
33.0

6.6
17.7
27.1
34.5

23
42
60

121

Needle+Transp.
5%

10%
15%
20%

96.6
89.7
80.4
72.8

3.0
9.5

18.3
24.6

3.4
10.3
19.6
27.2

21
44
71

116

RDRDS
5%

10%
15%
20%

95.3
84.8
80.0
68.3

3.8
14.5
19.6
30.9

4.7
15.2
20.0
31.7

16
34
72
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Table  1.  Performance  results  of  the  implementation  when tested  on example 2-6
above, with different dot-densities. The rightmost column shows the number of itera-
tions required for the network to settle down to a stable state; i.e. when there was no,
or very small (<0.001%), change in the activity between successive iterations.
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Table  1.  Performance  results  of  the  implementation  when tested  on example 2-6
above, with different dot-densities. The rightmost column shows the number of itera-
tions required for the network to settle down to a stable state; i.e. when there was no,
or very small (<0.001%), change in the activity between successive iterations.
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6.4 Example 4: RDS - Transparent layers

Because uniqueness is not an absolute constraint in the model, multiple transpar-
ent surfaces do not pose as serious a problem as it does to other models that al-
low only a single disparity value at any image point. However, as the number of
planes, or the dot-density, rises, naturally, the chance increases that the relative
ordering of adjacent features within the two image halves will be jumbled. The
fact that the model is cooperative does to some extent counteract such mismatch-
ing, if there are strong unambiguous matches in the near vicinity. In example 4
(fig. 14) there are two transparent planes with a disparity separation of 4 pixels.
Note in table 1 how the performance deteriorates with increasing dot-density.
Such a deterioration, with increasing dot-density, has also been described  in hu-
man vision (see Akerstrom & Todd, 1988).

Figure 14. RDS containing two transparent planes, separated by a 4 pixel disparity.
Dot density 10%.

6.5 Example 5: RDS - Gaussian “needle” with one transparent plane

In example 5 (fig. 15) a transparent layer have been added to the needle in ex-
ample 3. The needle constitutes an opaque background, while the transparent
layer cuts through the peak half way up.

Figure 15.  RDS of  an opaque background surface that  has a peak in the middle,
which sticks through an additional flat transparent surface. Dot-density 10%.
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6.6 Example 6: Random-Disparity Random-Dot Stereogram (RDRDS)

In the random-dot stereogram in figure 16, the disparity between each pair of
corresponding dots was randomly set, and lies in the interval from -3 to 3 pixels
around zero disparity. This type of stereogram is clearly a challenge to models
that rely on assumptions about surface smoothness, since there is no correlation
whatsoever between the disparity values of any two neighbouring dots. Surpris-
ingly, this type of stimuli seem quite easily fused as long as the dot-density is re-
latively low, and the disparity interval is not too large (according to a highly in-
formal study where two members at our department participated as subjects).

Figure 16.  Random-dot stereogram with  random disparities between corresponding
dot-pairs. Dot-density 5%.

6.7 Example 7: RDS - Weinshall stimuli

Figure 17 shows an example of the  basic stimuli used in Weinshall's  studies
(1991, 1993). What is particularly interesting with this stimuli is that it shows
that the human visual system treats the same stimuli different when it is seen in
isolation from when it is seen en masse. Recalling that in the (single) case of the
double-nail illusion, subjects saw only the two ordered matches. In the “Wein-
shall-stimuli”, on the other hand, where the same stimuli has been copied mul-
tiple times into the same stereogram, subjects saw up to four planes (correspond-
ing to the disparities of both the ordered and the ghost matches). A number of
variations of this stimuli were tested on the model (see Table 2), where the dot-
density was the same as in the Weinshall study (9% x 2 = 18% total), and the
inter-dot separation (GL and GR) was varied. Each column/example in table 2
shows the averaged result of three different stereograms with the same values of
GL and GR. Interestingly, but unanticipated, the model produced results that had
the same basic characteristics as that of human vision in this respect. When the
inter-dot separation in one image was zero, but greater than zero in the other im-
age (i.e. multiple copies of Panum's limiting case), the great majority of matches
was concentrated at zero disparity, and the disparity corresponding with the non-
zero inter-dot separation. The remaining matches were fairly evenly distributed
over all other disparities. When the inter-dot separation was the same (GL=GR) in
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the two image halves, the output was concentrated to one single plane at zero
disparity. When GL and GR was different from each other (and both greater than
zero), again the majority of activity/matches was in the two planes correspond-
ing to the ordered matches, but there was also some activity at several other dis-
parities  with  clear  peaks  at  the  two  planes  corresponding  to  the  two  ghost
matches.

Figure 17.  Example of the stimuli used by Weinshall (1991, 1993),  with GL=4, and
GR=8. Dot-density 18%.

In Weinshall's study (1991) subjects saw between two and four planes with
stimuli like this. Seeing to the absolute number of matches only (in the model
output), there were relatively few matches in the two planes corresponding to the
two  ghost  matches,  and  even fewer than  in  some  of  the  other  layers  which
should not produce a perception of a plane. However, first of all, it only takes a
dot-density as low as 0.001 (Weinshall, 1991) to produce a sensation of a plane
in these stimuli, which in the examples above corresponds to about 10 dots. So
clearly, the number of dots in the ghost planes are above that value in both of the
examples, in table 2, of this type (GL=4, GR=7 and GL=6, GR=3). Further, it is not
clear whether it is the absolute number of matches, or some relative measure that
creates the sensation of a plane in human perception. In the example below with
GL=4 and GR=7, there are for example only 16 matches in the “ghost” layer (at
disparity 7), but more than that in several of the other layers (4, 2, 1, -1) which
should not produce the perception of a plane. On the other hand, of all the planes
that contain more than 10 matches in them, only in the layers -4, 0, 3 and 7 does
the number of matches reach local peak values. Whether or not this may explain
the psychophysical observations for this type of stimuli remains to be seen.

In the final two examples (last two columns in table 2), all accidental matches
were  removed from  the  stereograms.  In  Weinshall's  study (1991),  accidental
matches were avoided by spacing the dots so that the disparities of possible acci-
dental matches were larger in absolute values than the possible disparities for
each corresponding (left-right) dot-pair. With the  same procedure for removing
accidental matches the model output  was concentrated exclusively to the two
planes  corresponding  to  the  ordered  matches  of  each  dot-pair,  which  is  in
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GL=0
GR=3
(0,3)

It: 105

GL=2
GR=2

(-2 0,2)

It: 93

GL=4
GR=7

(-4,0,3,7)

It: 135

GL=6
GR=3

(-6,-3,0,3)

It: 139

GL=6
GR=3

(-6,-3,0,3)
No accid.

It: 63

GL=2
GR=4

(-2,0,2,4)
No accid.

It: 67

Disparity
(pixels)

Number of active matches

12
11
10
9
8
7
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12

17
18
25
25
20
25
28
32
31
468
52
48
512
32
36
33
32
25
23
18
21
19
12
14
10

0
0
0
0
0
0
0
0
0
0
0
0

1567
0
0
0
0
0
0
0
0
0
0
0
0

2
1
2
2
2

16
9

10
28

593
107
107
625
32
11
10
26
2
1
2
1
1
0
1
1

0
1
1
3
1
1
1
3
3

29
15
18
617
108
113
564
16
15
31
5
3
3
4
2
1

0
0
0
0
0
0
0
0
0
0
0
0

694
0
0

647
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

729
0

747
0
0
0
0
0
0
0
0
0
0
0
0

Table 2.  Model  output  with  different  values  for the left (GL), and right (GR),  image
inter-dot separation,  in stereograms of the same type as used by Weinshall  (1991,
1993).  The  number  of  active  matches,  and  the number  of  iterations (It.)  required,
shown in each column are the average results  for three different stereograms (with
the same values of GL and GR in each trial). The numbers within parenthesis (second
top row) mark at  what  disparities matches are possible,  if  only corresponding (left-
right) dot-pairs are considered; i.e. all possible matches between the dots in a left im-
age dot-pair, and the dots in the corresponding right image dot-pair (the copy). The
numbers in bold correspond to disparities where Weinshall's subjects reported of see-
ing depth planes. No accid. stands for no accidental matches.
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Table 2.  Model  output  with  different  values  for the left (GL), and right (GR),  image
inter-dot separation,  in stereograms of the same type as used by Weinshall  (1991,
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top row) mark at  what  disparities matches are possible,  if  only corresponding (left-
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age dot-pair, and the dots in the corresponding right image dot-pair (the copy). The
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accordance with the results obtained by Weinshall. However, not surprisingly -
considering that the ordering principle is the key constraint in the model - the
model produced the same output as long as the separation between any two (fol-
lowing) dot-pairs was at least one pixel larger that the value of max(GR,GL). This
spacing preserves the relative ordering of the dots, but it does not guarantee that
the possible disparities (in absolute values) between the dots within each (left-
right) dot-pair is smaller than that between possible accidental matches.

7 Discussion

7.1 Relation to other models

The one major feature of the proposed model that separates it from, possibly all,
previous models of stereopsis (and other algorithms devoted to the correspond-
ence problem) is its more relaxed version, or interpretation, of the uniqueness
constraint.  Because multiple matches are not penalised when a one-to-one cor-
respondence does not hold between the left and right image halves, the model
naturally explains why humans perceive double (e.g. Panum's limiting case) or
multiple (e.g. “Weinshall-stimuli”) instances of the same stimuli in the examples
reviewed above. This feature of the model and the fact that no direct assumption
is made about surface smoothness (only indirectly via the ordering constraint)
also means that the model handles transparency fairly well (possibly in line with
human performance), as long as the relative ordering of the stimuli is not broken
up too much.

Due  to  the  basic  difference  in  interpretation,  and  implementation,  of  the
uniqueness constraint compared to the traditional interpretation (Marr & Poggio,
1976), which has been the prevailing one, it is somewhat difficult to make a dir-
ect comparison to any previously described model. Apart from the uniqueness
constraint, two key features of the model is that it 1) relies on the ordering con-
straint, and 2) is cooperative.

The ordering constraint has been explicitly used in previous models by for ex-
ample Baker and Binford (1981) and Ohta and Kanade (1985). Although these
models differ in detail, both models find a solution to the correspondence prob-
lem by matching the edges (Baker & Binford, 1981) or the intervals between
edges (Ohta & Kanade, 1985), in the input stereogram, according to the ordering
principle. And moreover, they also share the central idea of utilising edges that
run vertically across each image half to guide this process. Neither of these mod-
els however address the phenomena of multiple matching, since they were not
designed to explain human perception, but designed on rather strict computation-
al grounds. Moreover, Ohta and Kanade use interpolation to determine the dis-
parity at positions where there are no edges available. Consequently, it is un-
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likely that their model can handle stereograms that contain transparency. It is un-
clear how the “Baker -Binford” model would handle transparency.

Three other models that share at least some traits with the one proposed here
are the ones suggested by: Marr and Poggio (1976), Pollard et al.  (1981) and
Prazdny (1985). What all of these models share is that they i) are cooperative, ii)
are  mainly concerned with the correspondence problem as such, and not the
nature (or composition) of the matching primitives, and iii) were all designed - at
least in part - to explain human stereopsis, or aspects thereof. Each of these will
be briefly discussed below.

The model of Marr and Poggio (1976), while not being the first cooperative
one, is probably one of the most well known. The basic idea, or assumption, in
their model is that surfaces in general are opaque and cohesive, i.e.  smoothly
changing in depth. This assumption led to the formulation of the uniqueness con-
straint, and the cohesitivity (or continuity) constraint; which in their implementa-
tion, in turn, were translated into rules stating that matches representing different
disparities lying along the same lines-of-sight should inhibit each other (unique-
ness), while matches that were close to each other (within some radius) and had
the same disparity should support each other (cohesitivity). Their implementa-
tion could successfully solve certain types of  random-dot stereograms (prefer-
ably consisting of smooth opaque surfaces), but it had significant shortcomings.
First, their particular interpretation, and implementation, of the cohesitivity con-
straint  (i.e.  support  between  neighbouring  matches  with  the  same disparity),
makes the model biased towards fronto-parallel surfaces. Consequently, it is not
well suited for resolving stereograms of, for example, tilted or jagged surfaces.
Another aspect of this shortcoming (discussed earlier in the context of example
3; the Gaussian “needle”), which the authors also pointed out, is that  “the width
of the minimal resolvable area increases with disparity”. This simply means that,
for example, a small surface patch in front of a background surface, becomes in-
creasingly difficult to resolve (from the background) as the disparity difference
between the surfaces increase.

Finally, as already discussed, their strict formulation of the uniqueness con-
straint does not allow the model to account for, neither, the phenomena of mul-
tiple matching in human perception, nor transparency, since the model can not
resolve multiple overlapping surfaces or even represent them.

The PMF model proposed by Pollard et al.(1985) is highly similar to the mod-
el of Marr and Poggio (1976) in the interpretation of the uniqueness constraint,
and in that neighbouring matches (representing similar disparity values) support
each other. However, a major difference is that while the support region, in the
latter model, is basically a 2-D disc centred around each match, it is a 3-D space
in the former. More specifically, in the PMF model, the width (in disparity) of
the support region grows with the distance from a match, and is bounded by the
surface  were  the  disparity  gradient  is  equal  to  1.  The  disparity  gradient  is
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defined, given two binocularly visible points in space, as the difference in dis-
parity (between the points) divided by their cyclopean separation (Burt & Julesz,
1980). The choice of using a disparity-gradient limit of 1 was made partly due to
the computational argument that binocularly corresponding features in most nat-
ural scenes seldom exceed a disparity-gradient of 1, and partly due to the argu-
ment that the human visual system seems to have such a limit (Pollard et al.,
1985). A major advantage, over using a “flat” support region, is that the PMF
model is not biased towards fronto-parallel surfaces, but handles e.g. slanted and
jagged surfaces (within the disparity limit of 1) well. However, regarding mul-
tiple matching and transparency, the PMF algorithm too falls short; since at any
given image point,  only the strongest match is kept and all others discarded.
Thus, multiple matches and transparent surfaces can not be represented simultan-
eously. It is unclear if, or how, the PMF model could be modified to handle mul-
tiple matching and transparency as well, and at the same time keep its disambig-
uating power since, for example, in the Panum's limiting case the disparity gradi-
ent between the two bars is exactly 2, and hence well beyond the imposed limit.
See also Weinshall (1993) for why the PMF model fails to account for her res-
ults.

Prazdny's (1985) model does handle transparency and can (if modified), to
some extent, also account for the results in Weinshall's studies (see Weinshall,
1993). The disambiguating power of Prazdny's model has the same basic motiv-
ation as the previously two described models, i.e. that the disparity difference
between neighbouring points on a surface, in general, will be small. In his mod-
el, matches support each other according to a Gaussian measure that essentially
decreases  with  increasing  distance  and/or  disparity-difference  between  the
matches. The major difference from the previous two models, however, lies in
that Prazdny does not assume opaque surfaces, and therefore there is no (expli-
cit) penalty, or inhibition, in his model between matches that represent different
disparities.  This allows the model  to represent,  and resolve,  stereograms that
contain transparent  surfaces, since  each surface  can be  said to support  itself
without any interference from possible others. On the other hand, the model does
not allow multiple matches at any single image point. If there are still ambiguous
matches left at any image point,  after the matches with the strongest support
have been selected, these are simply merged into one and the disparity is determ-
ined by interpolation. Thus, in its original form, the model can not account for
multiple matching.

Also worth mention is that although there are no explicit inhibitory connec-
tions in Prazdny's model, there are indeed such at the effective level (or level of
implementation); both in the process of choosing the supporting matches (i.e.
given any match, i, only the best supporting match, j, contributes to the activity
increment of i), and in the final selection of the matches that have the highest
activity.  From  a  computational  perspective  it  changes  nothing  whether  you
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choose to call an operation “selection” or “inhibition” as long as it performs the
same function, but the point here is that, from a biological perspective, it does
matter how such a selection processes could be implemented in neural circuitry.
What perhaps is particularly questionable (from this perspective) is why only the
best supporting match should contribute to any given match's activity level, and
how this could be neurally implemented. Considering any possible match in a
dense random-dot stereogram, it is difficult (but of course not impossible) to see
how a  neural mechanism could be so finely balanced as to, from a set of many
possible matches with similar support values, let through only the support from
the strongest, and at the same time block the support from all others. However,
this critique may not be serious to Prazdy's model, and it certainly does not di-
minish the elegance of it, but it certainly would be interesting to see if a more
biologically oriented implementation could perform equivalently.

From the perspective of human stereopsis, a more general critique can be dir-
ected, not only to the three models discussed above, but to all models that rely
on surface smoothness for disambiguating power. While it is true that surfaces in
general are smoothly changing in depth, and that this clearly can be a powerful
constraint; it is not necessarily the case that the human visual system make use of
this constraint, at least not at the level where stereopsis is achieved. Surface per-
ception (reconstruction) does not necessarily have to be as tightly coupled, or in-
tegrated, with stereopsis as these  models suggest,  but it is quite possible that
these are fairly separate processes. The type of stimuli used in example 6 (figure
14), the random-disparity random-dot stereogram (RDRDS), should be a good
probe for testing whether human stereopsis is actually biased towards producing
matches that appear as cohesive surfaces, even when no obvious surface cues are
available. If we are not so biased then there is no reason to believe that it is an
important constraint in human stereopsis.

7.2 Possible neural mechanisms

In the current model and implementation, a number of important simplifications
have been made, particularly regarding the preliminary matching stage, which
makes it difficult to say to what degree it can be considered a model of human
stereopsis. Needless to say, however one chooses to look at it, the model lacks
too many of the known features of human stereopsis to be called a complete
model of human stereopsis. On the other hand, despite the many simplifications
made, the close agreement between the model output and the reviewed psycho-
physical data does seem to suggest that - while the model as a whole may not
map onto human stereopsis - the proposed mechanism (i.e. the dual inhibitory
near-far AND-gates) may very well have some correlate in human depth percep-
tion.

Exactly what this correlate might consist of, or correspond to in human vision,
is of course more difficult to specify. It is however tempting- perhaps danger-
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ously so - to make the association from the Near and Far AND-gates proposed
above, to the Near and Far cells described by Poggio and Fisher (1977). Could
these  two  mechanisms  have  anything  in  common  other  than  parts  of  their
names?

By measuring the impulse activity of cells in foveal striate (A17) and prestri-
ate  (A18) cortex of  the Rhesus monkey, Poggio and Fisher (1977) classified
neurones, depending on their response to binocular stimuli, into four different
categories: Tuned Excitatory, Tuned Inhibitory, Near or Far. The Tuned Excitat-
ory cells were ocularly balanced and gave an excitatory response over a narrow
range near the fixation distance. The Tuned Inhibitory cells were ocularly unbal-
anced and responded to stimuli from the dominant eye over a wide range of dis-
parities except near the fixation distance. The Near cells were also (predomin-
antly) ocularly unbalanced and responded to stimuli, over a broad range, in front
of the fixation distance, but not at, or beyond it. Finally, the Far cells mirrored
the Near cells, in that they were ocularly unbalanced and responded to stimuli
over a broad range, but differed in that they only responded to stimuli beyond
the plane of fixation.

Figure 18. Schematic view of how two Near, and two Far cells, could be arranged to
subserve inhibitory cells with possible AND-gate properties.
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The Near and Far cells have two properties that, in combination, makes them
seem particularly fit as components in a neural implementation of the proposed
Near/Far AND-gate  mechanism.  First,  they  only  respond  to  stimuli  that  lies
either in front of (Near cells), or behind (Far cells) the plane of fixation. Second,
they respond to stimuli over a broad range of disparities, which may suggests
that they receive their response properties by summation of a number of subunits
sensitive to different disparities. Given these two properties it is not difficult to
imagine how a group of two Near, and two Far, cells could subserve one AND-
gate each, as depicted in figure 18. What is missing in the data from Poggio and
Fisher's study is any direct evidence of cells with response properties like the
proposed AND-gates themselves. However, this is not surprising since they did
not use ambiguous stimuli in their study. Using only a single bar, or some simil-
ar stimuli, there will never be any ambiguity and hence never any simultaneous
activation of either two near, or two far, neurones that could drive the postulated
AND-gates. If any direct evidence of these AND-gates is to be found, some am-
biguous, preferably repetitive, stimuli will have to be used.

Finally, regarding the fact that the great majority of the Near and Far cells
were ocularly unbalanced; it seems that such a distinguishing feature should re-
flect some major functionality of the cells. Unfortunately, the study of Poggio
and Fisher did not reveal sufficient details about the nature of this property to al-
low for any (here) meaningful speculation of how it could fit with the proposed
model, but it is nevertheless worth mentioning that several different reconcilable
interpretations are possible.
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Paper IV

The Perception of Binocular Depth in
Ambiguous Image Regions

Toward a Computational Theory of Surface
Perception

Jens Månsson                Christian Balkenius 

Lund University Cognitive Science 
Kungshuset, Lundagård 
S-222 22 LUND, Sweden

Abstract — The perception of binocular depth in image regions
that  lack  explicit  disparity  information  was  investigated  using
sparse random-dot stereograms. The basic design consisted of two
different depth planes; a foreground that covered the entire scene,
and a background that covered only half the scene; from the centre
to either the left, or the right, end of the display. Despite the fact
that the foreground covered the entire scene, subjects typically re-
ported that  the  ambiguous image  regions,  in between the fore-
ground dots, belonged to the background. When, however, a few
unpaired dots were added along the centre, to suggest an occlud-
ing opaque surface, subjects tended to perceive the same ambigu-
ous region as belonging to the foreground, which suggest interac-
tion  between  the  binocularly  paired,  and  unpaired,  stimuli.  A
number of variations, of this basic theme was investigated, includ-
ing: changing the density of the dots in the two depth planes; chan-
ging the number, and positioning, of the unpaired dots along the
centre; using other cues, e.g. a 2-D contour, or a pair of “Kanizsa”

119

Paper IV

The Perception of Binocular Depth in
Ambiguous Image Regions

Toward a Computational Theory of Surface
Perception

Jens Månsson                Christian Balkenius 

Lund University Cognitive Science 
Kungshuset, Lundagård 
S-222 22 LUND, Sweden

Abstract — The perception of binocular depth in image regions
that  lack  explicit  disparity  information  was  investigated  using
sparse random-dot stereograms. The basic design consisted of two
different depth planes; a foreground that covered the entire scene,
and a background that covered only half the scene; from the centre
to either the left, or the right, end of the display. Despite the fact
that the foreground covered the entire scene, subjects typically re-
ported that  the  ambiguous image  regions,  in between the fore-
ground dots, belonged to the background. When, however, a few
unpaired dots were added along the centre, to suggest an occlud-
ing opaque surface, subjects tended to perceive the same ambigu-
ous region as belonging to the foreground, which suggest interac-
tion  between  the  binocularly  paired,  and  unpaired,  stimuli.  A
number of variations, of this basic theme was investigated, includ-
ing: changing the density of the dots in the two depth planes; chan-
ging the number, and positioning, of the unpaired dots along the
centre; using other cues, e.g. a 2-D contour, or a pair of “Kanizsa”

119



2     LUCS 128

inducers, to suggest occlusion. Our results can not be accounted for
by any simple disparity interpolation scheme, but seem to require
additional processing within the disparity domain, as well as inter-
action with processes  devoted to  the identification of  occluding
boundaries.

1 Introduction
Neurones in the primary visual cortex are typically tuned to stimuli of a
particular frequency, orientation and disparity (Hubel & Wiesel, 1962),
and respond strongly to edges and other local luminance features, but
only weakly, or not at all, to light that is evenly distributed within their
receptive fields. Consequently, this early cortical region seem to produce
something like a sketch drawing of the objects and surfaces that are pro-
jected onto the retinas. Remarkably, despite this dramatic reduction of in-
formation, we do not usually perceive objects as wireframes, or as clouds
of image primitives hanging freely in space; but usually such features are
integrated, by the visual system, into cohesive surfaces, where depth ap-
pear to vary smoothly over the “empty” image regions in between edges
and other isolated image features.

Several previous studies have addressed the question of how depth is
filled-in,  by  the  visual  system,  in  ambiguous  image  regions.  Collett
(1985), for example, used a random-dot stereograms where one half-im-
age contained a blank region. He found that the perceived depth in this
region was, not only, determined by the disparity of neighbouring flank-
ing image regions, which contained explicit  disparity  information, but
was also affected by the surface orientation at these surrounding regions.
He also found evidence that depth can be extrapolated into a blank image
region, from a single flanking binocularly defined sloping surface.

Evidence for disparity interpolation have also been provided by Wür-
ger and Landy (1989), who used stereo displays with a random-dot back-
ground, on which a rectangle with uniform luminance was drawn, which
vertical edges had slightly different disparities. They found that the per-
ceived depth, at a probe location within  the uniform rectangle, varied re-
latively smoothly with the distance from the vertical edges, and was es-
sentially consistent with linear interpolation of the depth at the edges.
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The Perception of Binocular Depth in Ambiguous Image Regions     3

Using a slightly different approach,  Blake and Yang (1995) explored
how  accurately  the  peaks  of  two  narrow (band-like)  surfaces,  which
depth profiles were defined by a Gabor-function, could be aligned. In one
profile, depth varied smoothly, while in the other it was only periodically
sampled so that the peak was not explicitly defined by disparity. They
found that up to a sampling period of approximately 0.3 degrees, the two
peaks could be accurately located relative each other, but that perform-
ance degraded abruptly for larger sampling periods. Blake and Yang in-
terpreted the accuracy in performance, below this limit, as evidence that
the sparsely sampled surface had been reconstructed; i.e. that depth was
interpolated across the gaps. It is noteworthy, however, that the gaps in
the periodically sampled profile were not blank, or empty, but had a ran-
dom-dot  texture  with zero-disparity,  which made them form a  back-
ground plane that could be seen through the gaps.

These and other (Buckley et al.,  1989; Wilcox, 1999; Likova & Tyler,
2003) studies strongly suggests that the processing of disparity informa-
tion,  both directly and indirectly  through inter-/extrapolation,  plays a
central role in the reconstruction of surfaces. That there is more to surface
perception than disparity processing, however, seems obvious consider-
ing that (phantom) surfaces can be induced by interocularly unpaired ret-
inal stimuli alone (Lawson & Mount, 1967; Nakayama & Shimojo, 1990;
Liu et al., 1994). That binocularly unpaired stimuli typically induce illus-
ory contours, and are strongly associated with surface discontinuities, is
not surprising considering that they predominantly arise due to half-oc-
clusion (see Nakayama & Shimojo, 1990). That a few interocularly un-
paired image components, inserted to suggest occlusion, dramatically can
alter the perceived (binocular) depth of a stereoscopically viewed scene
have been pointed in a number of previous studies (Ramachandran &
Cavanagh, 1985; Anderson, 1994; Nakayama, 1996; Anderson, 1998).

An example of this effect is illustrated in figure 1. In both stereograms
the  binocular disparity  content is identical,  and contain a background
plane defined by the outlined dots, and a foreground plane defined by
the black dots. In figure 1b, however, small sections of the outlined dots,
in the background, have been erased to suggest an occluding disc-shaped
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surface in the foreground. When correctly fused, the difference in per-
ceived depth of the ambiguous central white region, is striking. In figure
1a, the central white region is perceived as belonging to the background,
and the black dots in the foreground are perceived as isolated islands, as
schematically depicted in figure 1c. In figure 1b, however, the central am-
biguous white region is perceived as belonging to the foreground, and
forms a distinctly opaque disc together with the neighbouring black dots,
as depicted in 1d.

Figure 1: A & B. Example of how the depth in an ambiguous image region
depends on the interaction between disparity and occlusion information. The
stimulus can be viewed either by crossing the eyes and fusing the right and
middle  image,  or  by  focusing behind  the image  and fusing the  left  and
middle images. See text for explanation. C & D. Schematic illustration in the
different surface completions in A and B.
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B
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The Perception of Binocular Depth in Ambiguous Image Regions     5

In previous examples of stereo capture (Ramachandran & Cavanagh,
1985;  Ramachandran,  1986;  Häkkinen  &  Nyman,  2001)  it  has  been
demonstrated that a few isolated unpaired image components, marking
the boundaries of an illusory surface, can produce discontinuities in the
binocular matching of a periodic patter; so that the components of the
pattern are matched at one depth outside the illusory border, and at an-
other (closer) depth within the enclosing illusory border.

The example in figure 1 differ slightly, but significantly, from such in-
stances of stereo capture, in that there is no ambiguity, whatsoever, with
respect to the binocular correspondence of the visible image components.
Consequently, the difference in perceived depth of the central ambiguous
region in figure 1a and b can not be attributed to any difference in how
the individual dots are binocularly matched in the two conditions. Con-
sidering that the only difference between figure 1a and b is whether small
sections of the outlined dots are erased, or not, it appears obvious that the
difference in perceived depth must be attributed to these section being in-
terpreted as evidence for an occluding surface. What is, perhaps, most in-
teresting about the central region, in figure 1b, however, is that the per-
ceived depth is not confined to the illusory boundary that is created by
the missing sections, but appears to cover, or spread into, the whole re-
gion. One conceivable explanation for this would be that the depth in-
duced by the unpaired sections, is interpolated across the region. This ex-
planation feels  akward,  however,  since  interocularly  unpaired  stimuli
predominantly provide qualitative (however see Liu et al., 1994; Gillam &
Nakayama, 1999) depth information, which clearly is unsuitable input to
an interpolation mechanism. A more reasonable explanation, considering
how smoothly the illusory edges, the black dots, and the “empty” central
region are integrated into an opaque surfaces, which has the same depth
as the black dots, is that the perceived depth of this region is a result of
interactions  between  the  processing  of  the  unpaired  stimuli  (illusory
boundaries), and the processing of the binocular disparity content.

In  order  to explore,  in  a  more  systematic  manner,  how binocularly
paired, and unpaired, stimuli interact to form the surfaces we ultimately
perceive; we designed a random-dot stereogram, in principle similar to
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the one in figure 1; were the perceived depth of an ambiguous image re-
gion could be manipulated depending on the amount of unpaired dots
along a (virtual) boundary, and the density of the dots in two different
depth planes.

The basic design of the stimulus (see figure 2) consisted of two differ-
ent layers of randomly distributed dots. The dots in the foreground layer
had zero disparity, and were randomly positioned anywhere within an
enclosing quadratic  frame.  The dots in the background were also ran-
domly distributed, but within a smaller rectangular region that spanned
only half of each image; i.e. from left to the centre, or vice versa, from
right to the centre. In this display, the empty image regions, on the side
that contain no background dots, have ambiguous depth, and can be per-
ceived to be part of either the background, or the foreground.

In this  basic  version of the  stimulus (bottom stereogram, figure  2),
however, most people report  that this ambiguous region belong to the

Figure 2: Example of the stimulus used in the experiments. In the actual ex-
periment, the background and forground dots had the same size, but were
differently colored (black/white) against a gray fond.
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The Perception of Binocular Depth in Ambiguous Image Regions     7

background, which suggests that the depth of the background dots is ex-
trapolated across this  entire region, causing the foreground to be  per-
ceived as a (binocularly) transparent plane. 

This is in itself remarkable since it suggests that extra-/interpolation in
a background plane  can override  the contrasting information that  the
foreground dots provide, despite the fact that these are much closer than
the inducing background dots.

The perceived depth of this ambiguous region is, however, easily ma-
nipulated by, for example, adding a few binocularly unpaired dots along
the (virtual) boundary where the background dots end. In this case (top
stereogram, figure 2), most people report that the ambiguous region be-
long to the foreground, and that it creates a distinctly opaque surface to-
gether with the foreground dots. That is, the foreground appears divided
into one transparent half (on the side where dots can be seen in the back-
ground), and one opaque half.

Since the resulting percepts in the two conditions are qualitatively very
different from each other, and since the ambiguous image regions, essen-
tially, is forced to take on the depth of either the background, or the fore-
ground, no explicit depth probe is needed to determine how depth in the
ambiguous region is interpolated, but the sensation of opacity/transpar-
ency of the foreground can in itself be used as an indicator of this.

One of the things we wanted to investigating with this display was to
what extent the density of the dots in the foreground determine whether
the ambiguous region is perceived as opaque, or transparent. The answer
to this question is interesting, not least, from a computational perspective.
In virtually all computational models of stereopsis, it is assumed that sur-
faces, in general, are opaque (however see Prazdny, 1985) and relatively
smooth. Typically this assumption is translated into binocular matching
constraints (Marr & Poggio, 1976; Pollard et al.,  1981) that enhance the
strength of neighbouring matches that  have similar  disparities. If  such
constraints are in fact utilized by the visual system, it would suggest that
a densely textured region would be more likely to be perceived as a co-
herent opaque surface, than an image region with a low density, where
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the individual texture components would receive less support from each
other, and hence would be more weakly connected.

In the first experiment, we manipulated the density of the foreground
and background dots too see how this would influence the perception of
opacity  of  the  ambiguous  image  region.  In  addition,  we changed the
number of unpaired dots to investigate how this would interact with the
dot density. In the following two experiments, we investigated the role of
the placement of the unpaired dots. This was followed by an experiment
where we looked at the how the perceived depth of the ambiguous region
varied depending on whether the background was defined by dots on
one, or both sides of it. Finally, we investigated more explicitly the role of
contours induced by different types of stimuli.

2 General Methods

2.1 Participants

The participants were recruited through posters in the university area
and were mainly students. They were screened for stereo vision before
they were allowed to participate in the experiment.

Before performing the actual tests, each participant was shown a series
of examples of the basic stimuli (figure 2), where the type of the stimuli
(opaque or transparent) alternated between each trial. In the opaque con-
dition, there were between 8-12 unpaired dots present in the central zone.
Participants were instructed to see the stimuli as  a window they were
looking out from, with the foreground dots lying on the glass of the win-
dow. The participants were then asked whether the left  and right half
foreground of the window appeared any different in the two conditions.
A majority of participants spontaneously described one half of the win-
dow as being opaque, often using terms like “frosted”, “moist”, or simply
“less clear”, when the stimuli contained unpaired dots along the centre.
Some participants initially expressed an uncertainty of where the differ-
ence lay in the two conditions; but after having being explicitly instructed
to disregard the colours of the dots, and whether or not there were any
visible dots in  the  background,  most  participants did see  a difference
between the opaque and transparent condition. Participants who did not
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perceive any difference between the two conditions, after 20 examples,
did not participate in the any of the main experiments.

2.2 Apparatus

The  stimuli  were  displayed  on  a  Hitachi  CM815ET  Plus  monitor  on
which the gamma value had been calibrated to make a fine raster, of al-
ternate black and white pixels, appear the same shade of grey as a homo-
geneous surrounding intermediate grey.

The stimuli was viewed through a double mirror stereoscope, mounted
on the monitor, from a viewing distance of approximately 35 cm. The size
of 1 dot on the screen was 2.95 arc min, and the full width,  (Fig. 3), of one
half image of the stereogram including the frame was 5.9 deg. The screen
was set to a colour temperature of 9600K.

2.3 Stimuli

The basic stimuli used in all experiments were constructed, according to a
common 3-D layout (Fig. 3), consisting of a foreground plane with a dot
density of 1.5%, surrounded by a 2 pixel wide frame, and a background
plane, extending over only half the image, also with dot density of 1.5%
and a disparity of 4 pixels. The same dot size (=1 pixel) was used for both
the foreground and background in all experiments. To minimize possible
interference from incorrect matching of dots in different planes, the fore-
ground dots and the frame were black, and the background dots includ-
ing possible monocular dots were white on half of the trials. On the other

Figure 3: The general structure of the stimuli used in
the different experiments. See text for explanation.
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half of the trails, the colours were reversed. The colour between the dots
and outside the frame was a constant intermediate 50% grey.

Another  purpose of alternating foreground and background colours
was to reduce potential learning effects. To further reduce learning ef-
fects,  the  side  where  the  background  dots  were  presented  was  also
changed throughout the experiments. In the following description of the
stimuli, unless explicitly stated, the background dots are assumed to span
the left side.

In both the transparent and opaque condition, there were always right
image unpaired dots present within a 4 pixel wide monocular zone, MR ,
at the left end of the frame (Fig. 3), but only in the opaque condition were
there also left image unpaired dots present in the central 4 pixels wide
monocular zone, ML .

The disparity of the background dots was evenly divided between the
left and right images, so that the texture boundary created by the dots
and the blank right region appeared binocularly centred at half the total
image width. To make the texture boundary appear centred even when
monocular dots were present in the central zone, the width of the back-
ground region, containing binocular dots, was slightly reduced so that
the average width of the left  and right  image regions, containing dots,
equalled half the total image width.

The positions of the left image unpaired dots, within the central zone,
were always randomly selected. However, in order to keep control over
the exact number of visible unpaired dots, the set of possible positions
never included those that were already occupied by an unpaired dot, or a
dot in the foreground or the background. In all experiment, the image
size of the stimuli, including the frame was 120x120 pixels.

2.4 Procedure

In the main experiments, a two-alternative forced-choice procedure was
utilized,  in which participants were instructed to push the  down-arrow
button, on a keyboard, if the whole “window” (the foreground) appeared
transparent, and the up-arrow button if only half the “window” appeared
transparent.
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Each trial started with a stereoscopic fixation cross consisting of 2 over-
lapping diagonal lines (41 arc min long) for 500 ms and was followed by
the stimulus. After 1000 ms, the word ‘half’ appeared above the stimulus
and the word ‘whole’ appeared below the stimulus. At this point, the par-
ticipants would press one of the keys to indicate whether they perceived
the  whole  front  surface  as  transparent  or  only  half.  The  stimulus re-
mained on the screen until the answer was given, which would blank the
screen in preparation for the next trial. An inter-trial interval of 1000 ms
was used. Key presses before the initial 1000 ms stimulus presentation
were discarded to encourage participants to view each stimulus for at
least that time.

3 Experiment 1
In  the  first  experiment,  we  investigated how the  number of  unpaired
dots, and the density of dots in the foreground, and background, would
influence the perception of depth in the ambiguous region. We wanted to
test  the  hypothesis  that  the  probability  of  perceiving  this  regions  as
opaque would be higher with an increasing number of unpaired dots at
the centre. Further, we expected the probability of perceiving the ambigu-
ous region as opaque to increase with increased foreground density, and
to decrease with increased background density.

3.1 Materials & Methods

There were 10 participants. In total, 384 stimuli were presented to each
participant and they had to judge whether the ambiguous part of the im-
age appeared transparent or opaque.

Three different groups of stimuli (of the types shown in figure 3) were
used. In stimulus group A, the number of unpaired dots was varied to in-
vestigate how it would influence the perception of a surface as opaque or
transparent.  Each participant  were shown 48  different  stimuli without
unpaired dots and 12 x 8 different stimuli with 1, 2, 3, 4, 5, 6 ,7, 10 or 15
unpaired dots respectively. The dot-density in the the foreground, DF,
and the background, DB, were both set to 1.5%. Stimulus group A con-
tained 144 stimuli in total.
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In stimulus group B, there were 60 different stimuli without unpaired
dots and 60 stimuli with 7 unpaired dots (note that 7 dots, within the
central monocular region, corresponds to a density of 1.5%). The density
of dots in the foreground layer  was set to either 0.375%,  0.75%, 1.5%,
3.0%, and 6.0%. The background density was held constant at 1.5%. 12
different stimuli at each foreground density were presented to the parti-
cipants. Stimulus group B contained 120 stimuli in total.

Stimulus group C was identical to group B except that the the fore-
ground density  was held constant at 1.5%, and the number of unpaired
dots M was either zero or 7, while the background density was varied
over the set {0.375%, 0.75%, 1.5%, 3.0%, 6.0%}.

The stimuli from groups A, B, and C were mixed and presented in ran-
dom order. The reaction time for each stimulus was also recorded togeth-
er with the order in which the stimuli were presented.

3.2 Results
Group A
The average responses of the participants to stimuli in group A were in-
terpreted as the probability that the the ambiguous area would be per-
ceived as opaque given a certain amount of unpaired dots (m). The prob-
ability for opacity in each condition is shown in Fig. 4. Logistic regression,
using the function

 p
�
opacity ��� e ����� m 	�
 1 � e ����� m 
 ,  

gave a best fit with the parameters α=0.211 and β=-0.282. Both α and
βm have significant influences on the perception of opacity (p<0.001 in
both cases).  Here,  a>0 indicates that without unpaired dots, the parti-
cipants had a tendency to perceive the ambiguous area as transparent
rather than as opaque, while b<0 shows that the perception of opacity in-
creased with the number of monocular dots.

Group B
The data from stimulus group B where the foreground density was var-
ied is shown in Fig. 5. Without any unpaired dots along the centre, there
is little change in the perceived opacity of the ambiguous area when the
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foreground density changes. The small increase in opacity seen in Fig. 5 is
not significant (ANOVA, p=0.068). A closer look at the data reveals that
only the first point with a foreground density at 0.00375 differs signific-
antly from the mean probability at 0.245 (t-test, p<0.01). Excluding this
point, we find that the probability of identifying the ambiguous area as
opaque is 0.313 in this stimulus group and that the remaining change in
opacity as a function of background density is not significant (ANOVA,
p=0.913).

With unpaired dots present, the probability of perceiving the ambigu-
ous area as opaque decreases with increased foreground density as shown
in  Fig. 5  (p<0.001).  Linear  regression  gives  the  approximation
p(opacity)=0.914-5.959d, where d is the foreground density. There was a
significant interaction between foreground density and the number of un-
paired dots (ANOVA, p<0.001).

Group C
The perceived opacity of stimulus group C, where the background dens-
ity was varied, is shown in Fig. 6. The amount of unpaired dots, and the
background density  both  have  significant  positive  effects  on the  per-

Figure 4: Opacity as a function of  the number of un-
paired dots in stimulus group A. The error bars indicate
the 95% confidence interval around the mean.
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ceived opacity (ANOVA, p<0.001 for both). There was no significant in-
teraction  between  the  number  of  unpaired  dots  and  the  background
density (ANOVA, p=0.241).

Figure 5: Opacity  as a function of  forground density,
with and without unpaired dots. The error bars indicate
the 95% confidence interval around the mean.

Figure 6: Opacity as a function of background density,
with and without unpaired dots. The error bars indicate
the 95% confidence interval around the mean.

132

14     LUCS 128

ceived opacity (ANOVA, p<0.001 for both). There was no significant in-
teraction  between  the  number  of  unpaired  dots  and  the  background
density (ANOVA, p=0.241).

Figure 5: Opacity  as a function of  forground density,
with and without unpaired dots. The error bars indicate
the 95% confidence interval around the mean.

Figure 6: Opacity as a function of background density,
with and without unpaired dots. The error bars indicate
the 95% confidence interval around the mean.

132



The Perception of Binocular Depth in Ambiguous Image Regions     15

Additional observations
The data was also analysed to test for influences on perceived opacity
from other factors in the experiment. These included foreground colour
and whether the unpaired dots were presented to the left or right eye.
The foreground colour had a significant effect on perceived opacity (AN-
OVA, p<0.01).  When the foreground dots were  white, the ambiguous
area was more likely to be perceived as opaque although the effect was
very small (∆p(opaque)<0.05). Surprisingly, which eye the unpaired dots
were presented to also had a significant influence on opacity (ANOVA,
p<0.001). When the unpaired dots where presented to the right eye, the
probability of perceiving the ambiguous area as opaque increased on the
average  by  0.127.  There  were  no  significant  interactions  between  the
number of unpaired dots, foreground colour and which eye viewed the
unpaired dots.

As could be expected, the reaction time for each participant decreased
during the experiment, but the reaction time was also influenced by a
number  of  other  factors.  The  reaction  time  decreases  with increasing
number of monocular dots (ANOVA, p<0.001) as shown in Fig. 7. It was
also influenced by the foreground colour (ANOVA, p<0.01) such that the

Figure 7: Reaction time as a func-
tion of the number of unpaired dots.

133

The Perception of Binocular Depth in Ambiguous Image Regions     15

Additional observations
The data was also analysed to test for influences on perceived opacity
from other factors in the experiment. These included foreground colour
and whether the unpaired dots were presented to the left or right eye.
The foreground colour had a significant effect on perceived opacity (AN-
OVA, p<0.01).  When the foreground dots were  white, the ambiguous
area was more likely to be perceived as opaque although the effect was
very small (∆p(opaque)<0.05). Surprisingly, which eye the unpaired dots
were presented to also had a significant influence on opacity (ANOVA,
p<0.001). When the unpaired dots where presented to the right eye, the
probability of perceiving the ambiguous area as opaque increased on the
average  by  0.127.  There  were  no  significant  interactions  between  the
number of unpaired dots, foreground colour and which eye viewed the
unpaired dots.

As could be expected, the reaction time for each participant decreased
during the experiment, but the reaction time was also influenced by a
number  of  other  factors.  The  reaction  time  decreases  with increasing
number of monocular dots (ANOVA, p<0.001) as shown in Fig. 7. It was
also influenced by the foreground colour (ANOVA, p<0.01) such that the

Figure 7: Reaction time as a func-
tion of the number of unpaired dots.

133



16     LUCS 128

reaction time decreased with on the average 376 ms when the foreground
was white. A difference was also found for the cases where the parti-
cipants perceived the ambiguous area as opaque compared to when it
was seen as transparent (ANOVA, p<0.001); The participants reacted on
the average 451 ms faster when the region was perceived as opaque.

3.3 Discussion

The results show that the perception of opacity in the ambiguous region
depends on the number of unpaired dots along the centre, as well as the
density of the dots in the foreground and the background. The role of
these different variables are different however.

With an increasing number of binocularly unpaired dots, present in the
central monocular zone, the probability of perceiving the ambiguous im-
age region as opaque increases (Fig. 4). This is exactly what was expected
since each unpaired dot is a cue that indicates that an opaque surface is
present. Evidently, several such unpaired dots are necessary to suggest
an opaque surface. However, above a level of approximately 10-15 un-
paired dots, the probability of seeing the ambiguous regions as opaque
saturates.

When the density of the dots in the foreground increases, there is no ef-
fect on the perception of opacity without unpaired dots (Fig. 5). With un-
paired dots present, however, the ambiguous area looks, relatively, more
transparent with increasing foreground density. This result clearly con-
tradicts  the hypothesis  that  the  components in  a  high density texture
would be more strongly connected, and therefore more likely to be integ-
rated into a coherent opaque surface. One possible explanation for this
result, however, may be that the unpaired dots simply becomes relatively
less salient due to the increased number of dots in the foreground, and
the signal (of occlusion) they provide therefore becomes weaker. Another
possibility, if transparency is considered as a surface property, is that the
higher density do create a more strongly connected plane/surface, which
facilitates the propagation of (the property) transparency, from the unam-
biguous side to the ambiguous side.

The effect of the background density is different from that of the fore-
ground density in several ways. First, when the background density in-
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creases, the ambiguous foreground region becomes more opaque. This
again disconfirms the prediction that an increased background density
would  make  the  unambiguous  area  more  transparent  which  in  turn
would influence  the ambiguous area.  Instead, the background density
works the other way, and does so in a way that does not interact with the
number of unpaired dots. Instead, the effect of background density is ad-
ditive. A possible explanation for this result is that an increased back-
ground density produces a more distinct texture boundary at the centre,
which in itself may be interpreted as evidence of an occluding surface.

It is interesting to note that the reaction time depends on the number of
unpaired dots in the stimulus. This can possibly be explained by the fact
that the ambiguity decreases with an increasing number of unpaired dots.
This is in line with the observation that the binocular fusion of random
dot stereograms, containing an occluding surface, is faster when there are
unpaired dots present (Gillam & Borsting, 1988) that are positioned in a
manner that is ecologically consistent with the occlusion geometry.

An unexpected result was that when the foreground dots were white,
the ambiguous area was more likely to be perceived as opaque than when
the foreground dots were black. This suggests that the lightness is some-
how a part of this process. This is most likely a monocular effect that in-
teracts with binocular transparency.

An even more surprising result was that the perception of transparency
was influenced by which eye viewed the unpaired dots. The ambiguous
surface was more likely to be perceived as opaque when the unpaired
dots were viewed by the right eye. There can obviously not be any ecolo-
gical explanation for  this effect,  and the result  therefore  seems due to
some asymmetry in the experiment, or the observer. Despite an exhaust-
ive examination of the entire experimental setup, we did not find any
such asymmetry. Another possibility is that ocular dominance is a factor
here, but unfortunately we did not test the participants for this, and and
were thus not able to test this hypothesis.
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surface was more likely to be perceived as opaque when the unpaired
dots were viewed by the right eye. There can obviously not be any ecolo-
gical explanation for  this effect,  and the result  therefore  seems due to
some asymmetry in the experiment, or the observer. Despite an exhaust-
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such asymmetry. Another possibility is that ocular dominance is a factor
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4 Experiment 2 - Shifted unpaired dots

The results of experiment 1 clearly showed that the probability of per-
ceiving the ambiguous region as opaque increased with an increasing
number of unpaired dots present in the central monocular region. The
only reasonable explanation for that the unpaired dots had this effect on
the ambiguous region is that these are interpret as evidence for an occlud-
ing surface. However, since the reaction time decreased for each parti-
cipant, one can not rule out that some kind of learning effect interfered
with their  responses.  That  is,  it  is  possible that  their  judgements was
based a simpler form of categorization, rather than an actual evaluation
of the depth of the ambiguous region. Their judgements could, for ex-
ample, be based simply on the presence/non-presence of unpaired dots
at the centre. If this was the case in experiment 1, the exact positioning of
the unpaired dots would not be important, but any placement close to the
centre would have been equally effective. To rule out the possibility that
the depth judgements were based on such a simple categorization of the
stimuli, we essentially replicated experiment 1A with the exception that
on some of the trials that  contained unpaired dots,  the unpaired dots
were  slightly  shifted  away from the  centre  into the  binocular  region,
which contained the background dots. The effect of this was that there
were now binocularly matched (background) dots on both sides of the
unpaired ones. Such a display is not consistent with an occluding surface
and should therefore not cause the ambiguous region to appear opaque,
unless judgement is based simply on the presence/non-presence of un-
paired dots.

4.1 Materials & Methods

There were eight participants in experiment 2.  Four different  stimulus
types (I-IV) were used in the experiment. In all four types, the foreground
and background densities were held constant at 1.5% (the same interme-
diate level as in experiment 1, group A). In the type-I stimuli there were
no unpaired dots. In the type-II stimuli there were 7 unpaired dots within
the central monocular region ML. In the type-III stimuli there were also 7
unpaired dots, but the whole central  monocular  region was shifted 10
pixels  to the left  (Fig. 8),  so that  binocularly fusible (background) dots
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were present to the right of the monocular region. The type-IV stimuli
were identical to the type-III stimuli except that the number of unpaired
dots was doubled to 14, compared to 7 for type III. There were 12 trials of
each type (48 in total).

4.2 Results

The results of the experiment are presented in Figure 9. The probability of
perceiving the ambiguous areas as opaque when seven monocular dots
are presented without offset (type II), is significantly higher than for stim-
ulus types I, III and IV (t-test, p<0.001 in all cases). There is no significant
difference between stimulus types III and IV (t-test, p=0.25). Comparing
stimulus type I with III and IV shows that there is a significant difference
in both cases (t-test, p<0.05 and p<0.001 respectively).

4.3 Discussion

As expected, the unpaired dots that were placed in the ecologically valid
region had a much larger effect on the perceived opacity of the ambigu-
ous region, even compared to the condition when there were twice as
many unpaired dots but these were shifted into the binocular region. We
interpreted this as evidence that the depth judgements in experiment 1
mainly were due to a global interpretation of the scene, rather than due to
some simpler categorization approach, like a simple “feature-detection”
of the unpaired dots.

Figure 8: Overview of the stimuli used in experiment
2. The central monocular region ML was left-shifted
by 10 pixels.
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5 Experiment 3 - Randomly Distributed Unpaired Dots

Contrary to  our prediction,  in  experiment  1,  an increased  foreground
density did not raise the probability of perceiving the ambiguous region
as opaque, but rather, in the condition when unpaired dots were present,
it made the ambiguous region appear, relatively, more transparent com-
pared  to  lower  foreground  densities.  With  an  increasing  foreground
density, the number of background dots that are “naturally” occluded by
dots in foreground will increase. Because such “naturally” (in lack of a
better word) occurring dots arise anywhere within the background re-
gion, these will most likely be flanked by binocularly matchable (back-
ground) dots on both the left and right side. In such isolated instances,
the unpaired stimuli is a cue to (local) occlusion, but it is also a cue that
the  foreground is  transparent.  If  such “naturally”  occurring unpaired
dots accounted for  the  result  in experiment 1B,  they should have  the
same effect if added at different locations in stereograms with lower fore-
ground  densities.  This  was  explicitly  tested  in  the  third  experiment,
where we added different amounts of unpaired dots to the transparent
region at random locations.

Figure 9: The probability of perceiving the ambiguous region as opaque
for each of the four stimulus types: I, no unpaired dots; II,  7 unpaired
dots at centre; III, 7 unpaired dots, shifted; IV, 14 unpaired dots, shifted.
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5.1 Materials & Methods

There were seven participants in experiment 3. Each participants were
presented with a total of 200 stimuli. In half of the cases, seven unpaired
dots where added along the border between the two regions, and in half
of the cases, no unpaired dots where present (Fig. 10). To each stimulus
was further added either 0, 2, 4, 8, or 16 unpaired dots, at randomly selec-
ted positions anywhere within the half-image that also contained binocu-
larly matchable dots in the background (as indicated by region A in fig.
10).

5.2 Results

The results of experiment 3 failed to reveal any effect of the added un-
paired dots in the transparent region (Fig. 11, ANOVA, p=0.7).

5.3 Discussion

Adding unpaired dots to the half of the image that is always perceived as
transparent had no effect on the perceived depth of the ambiguous re-
gion. This shows that it is not the increased number of naturally occur-
ring unpaired dots, per se, but some other factor, that causes the fore-
ground to appear more transparent when the density increases, as shown
by experiment 1B.

6 Experiment 4 - Extrapolation vs Interpolation

The results of experiment 1 showed that with no unpaired dots present,
the ambiguous region was more often interpreted as part, or a continu-
ation, of the background plane. This suggests that the depth, defined by

Figure 10: Layout of the stimuli used in experiment 3. The re-
gion A contained randomly placed unpaired dots.
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the disparity of the background dots, is extrapolated into the ambiguous
region. By increasing the density of the background plane (experiment
1C), our initial prediction was that this would produce a more strongly
connected surface that would be more strongly extrapolated into the am-
biguous region,  which in turn would cause  the  foreground to appear
more transparent. Contrary to our prediction, an increased background
density made the foreground appear more opaque. As discussed earlier,
however, this result may have been caused by the fact that the texture
boundary became more evident with increasing background density, and
might have been interpreted as evidence of occlusion. Another, perhaps
more obvious, way to induce a stronger background is to let the ambigu-
ous region be flanked by background dots on both the left and right side.
If some form of depth propagation occurs in the background plane, from
the  binocular  region  into  the  ambiguous  region;  then  interpolation
between two binocular background regions should have a stronger influ-
ence on the ambiguous region than extrapolation from a single flanking
binocular background region. This was explicitly investigated in experi-
ment 4, were the ambiguous region was flanked on either one, or both,
sides by dots in the background.

6.1 Materials & Methods

There  were  eight  participants  in  experiment  4.  Each  participant  was
shown 180 stimuli in total divided equally into three types The stimuli of
type I were identical to those in experiment 1A. For type II stimuli, the
binocularly matchable dots, in the background, spanned only ¼ of the
whole image width (WI), leaving ¾ of the background empty. Finally, for

Figure 11: Layout of stimulus type I, and type III, in experiment 4. Note
that the different widths are not drawn to proportion.
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type III stimuli, there were binocularly matchable (background) dots on
both the left and right side of the central ambiguous region, both ¼ x WI

wide, and the empty region was centred in the middle (Fig. 11) and was
½ x WI. To the 60 stimuli of type I, II and III was added either 0, 3, or 6
unpaired dots at each border. This means that for type III stimuli, there
were twice as many unpaired dots, in total, compared to stimulus type I
and II, since unpaired dots were added to both eyes; left unpaired dots to
the left of the empty region, and vice versa right unpaired dots to the
right of the empty region.

6.2 Results

The results of the experiment are summarized in Fig. 12. Without any un-
paired dots, there was a significant difference in the opacity of stimulus
type I and either of II (t-test, p<0.013) and III (t-test, p<0.05). There was
no significant difference between stimulus type II and III. With three un-
paired dots,  the result  was similar.  There  was a  significant  difference
between stimulus type I and either of II (t-test, p<0.001) and III (t-test,
p<0.001).  Again,  there  was no significant  difference  between stimulus
types II and III. Finally, when six unpaired dots were present, the only

Figure 12: The probability of perceiving the ambiguous region as opaque
depending on whether it is flanked by a binocular background region on
one, or both sides. Type (I) 0: Both, (II) 1: Half, (III) 2: Quarter.
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significant  difference  was  between  stimulus  group  I  and  III  (t-test,
p<0.001). We also compared stimulus type II  and III without unpaired
dots with stimulus type I with 3 unpaired dots and found no significant
differences.  In  addition,  we compared  stimulus type  I  with three  un-
paired dots with stimulus type II and III with six unpaired dots. The per-
ception of opacity was significantly different in both cases (t-test, p<0.001
and p<0.001).

6.3 Discussion

The results of experiment 4 clearly shows that when the ambiguous re-
gion is flanked on both sides, by background dots, it is more likely to be
perceived as transparent than when it is flanked on only one side. This ef-
fect is seen regardless of whether unpaired dots are present or not. It is
interesting to note that the ambiguous (foreground) region, in the double-
flank (type 1) condition with three unpaired dots on each side, is judged
to be equally transparent as the stimuli in the two different single-flank
(type II and III) conditions in which there were no unpaired dots. The ef-
fect of double flanks is even more pronounced when comparing stimulus
type I, with three unpaired dots along each border, and stimulus types II,
with six unpaired dots along the single border. Although the same num-
ber of unpaired dots are present in these two condition, the perceived
opacity differs dramatically. This shows that it is not the absolute number
of unpaired dots, alone, that determine the perceived opacity of the fore-
ground, but the strength of the extra-/interpolated background is also an
important  factor.  It  is  also interesting to  note  that  foreground,  in  the
double-flank condition without unpaired dots, is judged to be more trans-
parent than in any other stimuli in this study. The probability of perceiv-
ing this stimulus as opaque is approximately 0.2, which is well below that
of any other stimuli we used. The results suggest that the increased per-
ception of the transparency, when the ambiguous region is flanked on
both sides, is the result of some form of interpolating process connecting
the two flanking regions.
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7 Experiment 5 - Contours

The results of the previous experiments suggest that the placement of the
unpaired dots is a highly important factor in determining the perceived
depth of the ambiguous region. When the unpaired dots are arranged in
a manner that is consistent with an occlusion interpretation, and an “illus-
ory” edge seen at the centre, the foreground is more likely perceived as
opaque. When the arrangement of the unpaired dots (experiment 2 and 3)
does not support an occlusion interpretation, no “illusory” edge is seen,
and the foreground is  more likely perceived as transparent.  In experi-
ment 6 we explicitly investigated the role of different types of contour in-
ducers.

7.1 Materials & Methods

There were 8 participants in experiment 5. There were six types of stimuli
in the experiment with different types of contours at the border between
the ambiguous and unambiguous image region (Fig. 13).  In stimuli of
type I, two black (Kanizsa-like) quarter sections of a disc were placed in
the background, at the top and bottom as depicted in figure 13. The radi-

Figure 13: Stimuli layout for the different types used in experiment 6. I:
Illusory (2-D) contour in the background. II: Illusory contour in the back-
ground, with unpaired sections. III: Illusory contour in the forground. IV:
Line in the forground. V: Line in the background. VI: Control.
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us of the black disc-section was 10 pixels. The type II stimuli was identic-
al to type I except that part of the discs now extended into the ambiguous
region in one eye, but not the other. Type III stimuli used the same Kaniz-
sa-inducers as in the type I stimuli, but they were now positioned in the
foreground rather than in the background. Type IV had a simple straight
vertical line along the border in the foreground, while type V stimuli had
the same line in the background layer. Finally, stimuli of type VI were the
control and did not contain any line or contour. Type VI was identical to
the stimuli used in experiment 1A, with no unpaired dots present.

7.2 Results

The perceived opacity for each of the stimulus types are shown in Fig. 14.
There was no significant difference between stimulus type I and V (t-test,
p>0.05),  but  both differs  significantly from the control stimulus (t-test,
p<0.001 in both cases). Stimuli II and IV also differs significantly from the
control stimulus (t-test, p<0.001 for both). There was no significant differ-
ence between stimulus types II and IV. Stimulus type II also differs signi-
ficantly from the control (t-test, p<0.01).

Figure 14: The probability of perceiving the ambiguous region as opaque.
I: Illusory contour in background, II: Illusory contour in background, with
unpaired  sections  III:  Illusory  contour  in  foreground,  IV:  Line  in  fore-
ground, V: Line in background, VI: control stimulus without any boundary,
nor unpaired elements.
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7.3 Discussion

As expected, the results shows that when the black disc-section are fully
visible to both eyes (type I) they do not contribute to making the fore-
ground more opaque. Although the abrupt cut-off of the black disc sec-
tors can be interpreted as a cue to occlusion (in a 2-D scene), it is obvious
from the results that when unambiguous disparity information is avail-
able, it is  used instead and that it overrides the signal that the cut-off
discs provide. If the cut-off sections of the discs in fact were caused by an
occluding foreground surface, it should have been accompanied by a bin-
ocular mismatch of the ends of the sectors as is the case in the stimuli
type II. In the stimuli of type II, the disparity information and the signal
provided by the cut-off  discs cooperate, since they are both consistent
with an occlusion interpretation. Consequently, in this condition, the fore-
ground was almost always interpreted as opaque.

Less expected, however, was that the stimuli of type III would make
the foreground appear more opaque. At first glance, the stimuli arrange-
ment in this condition does not seem to be ecologically consistent with an
occlusion interpretation. In fact, however, it is a perfectly reasonable res-
ult, if one assumes that, for example, a white paper with the foreground
dots painted on it, were laid out across the discs. In other words, the ex-
planation here is the same as that for the classic (2-D) Kanizsa-illusion,
with the only difference that here it is displayed in a 3-D setting.

The  perhaps most  interesting result  of  experiment 5,  however,  was
how large effect the placement of a single, binocularly fusible, vertical
line had on the perceived depth of the ambiguous region. When placed in
the foreground, the foreground was almost always perceived as opaque;
and when placed in the background, the foreground was almost always
perceived as transparent. Note that there were no unpaired dots present
in any of the stimuli in experiment 5. Since the background dots termin-
ate at the centre, in all stimuli we used, there is distinct difference in the
2-D appearance of the left and right half (of each half-image). One side of
the background is textured, and one side is not. When the ambiguous,
empty, region is perceived as part of the foreground, the lack of back-
ground  dots  in  this  region is  attributed  to  the  occluding foreground.
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When, however, the ambiguous region is perceived as part of the back-
ground, the lack of dots in this region can only be attributed to that the
texture ends, but not necessarily the background surface itself. Possibly,
when the vertical line is inserted in the foreground, it works to reinforce
this attribution since it suggest that the change, in texture, is caused by a
change in the foreground. The line divides the foreground in to two dif-
ferent surfaces, which are more easily attributed with different properties
(opaque/transparent).  Likewise,  when the  line  is  placed  in  the  back-
ground, it reinforces the probability that the texture difference is attrib-
uted to, or caused by, a change in the background, or rather the property
(texture/no texture) of the background surface.

8 General Discussion
The results of experiment 1 showed that the probability of perceiving the
ambiguous region as an opaque foreground surface increased with the
number of unpaired dots that were added along the centre. Above ap-
proximately 10-15 dots, however, the effect saturated, and the ambiguous
region was almost always perceived as opaque. Contrary to our predic-
tion, we also found that an increase in the foreground density did not
make  the  ambiguous region appear  more opaque. When no unpaired
dots were present, in the central monocular zone, changes of foreground
density had basically no effect on the perception of the ambiguous region.
With unpaired dots present, however, higher foreground densities made
the foreground appear, relatively, more transparent than lower densities.
This result seems counter-intuitive, but may possibly  be accounted for
simply by the fact that the saliency of the unpaired dots decrease with in-
creasing foreground density. It should be noted that, due to their small
size, the individual unpaired dots were very difficult to explicitly locate.
Further we found that an increased density of the background dots made
the  ambiguous region more likely to be perceived as part  of  the  fore-
ground,  whether unpaired dots were present in the monocular zone or
not. Again this  result stand in contrast to our initial prediction that a
higher background density would more strongly define the background
surface, which in turn would facilitate the extrapolation of depth into the
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ambiguous region. When the background density increases, the texture
boundary that is created between empty (ambiguous) region, and the re-
gion containing the background dots, become more distinct. Possibly, this
texture boundary is in itself interpreted as a cue to occlusion.

The results of experiment 2 showed how important the exact placement
of the unpaired dots is in order for them to make the foreground appear
opaque. When the unpaired dots were shifted into the region containing
the background dots, their influence on making the foreground opaque
was dramatically reduced,  even if  there were twice as many unpaired
dots as in the condition when they were placed at the centre. This clearly
shows that it is not the presence of individual unpaired dots, per se, that
induce the the perception of opacity of the foreground, but that rather
that they have this effect only when they are ecologically consistent with
an occlusion interpretation.

In experiment 3,  the hypothesis was tested that the increase in per-
ceived transparency of the foreground, with increasing foreground dens-
ity (experiment 1B), could have been caused by “naturally” occurring un-
paired dots. Such randomly occurring unpaired dots are (at least theoret-
ically)  a  cue  to  transparency.  The  results  of  experiment  3  did  not,
however, support this hypothesis.

Experiment 4 showed that in a display where the ambiguous region is
flanked, by background dots, on both the left and right side, the fore-
ground is more likely perceived as transparent  compared to a display
where the ambiguous region is flanked on only one side. The results also
showed that it took a greater number of unpaired dots to make the fore-
ground appear opaque in the double-flank condition, compared to the
single-flank condition.

Finally, in experiment 5,  it was demonstrated that a straight vertical
line (stimuli IV) that explicitly divided the foreground into two separate
regions, was equally effective, in making the foreground appear opaque,
as a stimuli (type II) that contained more explicit cues to occlusion, such
as end-cuts and unpaired segments. Remarkably, when the straight line
was instead placed in the background plane, the foreground was judged
to be transparent more often than the control stimuli, which contained no
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vertical line, nor any unpaired dots. In all the stimuli we have used in this
study, the lack of dots in the empty region can, essentially, only be attrib-
uted to two factors; the lack of dots on one side can either be caused by
an occluding surface in the foreground, or it can simply be due to the fact
that the texture, but not necessarily the background surface itself, termin-
ate at the centre. Our interpretation of the result (of experiment 5, stimuli
V) that an explicit (binocularly) visible border, presented at the texture
boundary, increase the likelihood of perceiving the foreground as trans-
parent, is that such an explicit border better supports the latter alternat-
ive, and hence make the occlusion interpretation less likely.

Due to major differences in the stimuli, method and procedure used in
the experiments presented here, it is difficult to compare, other than we
have already done, our result to those of previous studies that have ad-
dressed binocular  depth  interpolation.  The  perhaps  most  similar,  and
therefore most relevant, study was performed by Gillam and Nakayama
(2002).

In ordinary 2-D displays, a set of  abutting collinear line terminators
typically induce an illusory contour (see for example Kanizsa, 1974) that
follows the line terminations, and that is, locally, perpendicular to the ori-
entation of the lines. When two such set of line terminators meet, the res-
ulting percept  of  an illusory contour is  generally  stronger.  In  natural
scenes,  such  abrupt  termination of  a  pattern,  or  texture,  is  usually  a
strong indication of occlusion. In a 2-D image, however, depth is ambigu-
ous and either set could be occluding the other.

By using stereo displays where the depth of two such sets of lines were
defined by binocular disparity, Gillam and Nakayama (2002) investigated
the conditions under which illusory contours arise. Two different sets of
lines were used. Both sets of lines were made up of randomly oriented
straight lines. In one set (they referred to as the forest) the lines were also
randomly tilted in depth. In the other set (the  plane)  the disparity was
constant, and hence made all lines lie in a single fronto-parallel plane.

When the two sets were displayed, one above the other, so that the dif-
ferent sets of line terminators met at the same height, a distinct illusory
contour was seen when the forest was further away than the plane, but
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not when the plane was further away than the forest. This result is not
surprising, considering that a plane can easily occlude a set of isolated
objects, but a set of isolated objects (lines) can not occlude a plane; but it
effectively demonstrates that illusory contours are not well predicted, in
3-D scenes, by the presence and placement of line-terminators, or other
local (2-D) image features, alone. In particular, the illusory contour was
not  defined, in their displays, by the line-terminators of the occluding
set, but by the line-terminators of the occluded set. This became evident
when the two sets of lines were made to either overlap slightly, or were
slightly separated from each other. In both cases, when the  plane were
closer than the forest, a distinct illusory contour was seen were the lines of
the forest terminated, not were the foreground lines (plane) terminated.

Gillam and Nakayama argue that these findings support the view that
the perception of illusory contours are intricately linked with the inter-
pretation of occlusion and surface layout, and therefore require an ana-
lysis at the surface level of description. In their view, line-terminations
and other, local, low-level cues to occlusion do not, automatically, induce
illusory boundaries, but do so only in conjunction with surface layouts
that support an occlusion interpretation.

We fundamentally agree with this view, and our results seem to sug-
gest that binocularly unpaired elements (experiment 2,3), or other bound-
ary inducers (experiment 5 I & II) are treated no differently than line-ter-
minators in this respect. That is, the presence of such elements do not, per
automaticity, induce an illusory contour, or make the ambiguous region
appear opaque, but they have this effect only when their arrangement,
and the surface layout, is ecologically consistent with an occlusion inter-
pretation.

Turning to consider possible mechanisms that can account for the per-
ceived depth in the ambiguous region, in the basic version the stimuli, we
see essentially two different possibilities. A prerequisite in both accounts
is that the disparity of the dots in the fore- and background have been ac-
curately computed; i.e. that the correspondence problem, with respect to
the available image primitives (the individual dots), have been success-
fully resolved. This assumption is reasonable, considering that the likeli-
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hood for mismatching of non-corresponding dots were low, due to the
different colouring of the dots (black in the foreground and white in the
background), and due to the relatively low density used. Moreover, it is
assumed that a preliminary surface completion process have been carried
out, independently in the fore- and background, that involves interpola-
tion and extrapolation of disparity into the empty image regions.

Subsequently, considering first the condition when no unpaired dots
are present, one possibility (account I) is that the transparency that is in-
duced on the side where dots can be seen in the background, is treated
(by the visual system) as a property of the foreground surface, which is as-
signed/spread to the whole foreground (as schematically depicted in fig-
ure 15 Ia). Alternatively, in account II, the perceived transparency of the
foreground is not treated as a property of the foreground per se, but arise
due to the extrapolation of the background surface, which in turn inhibit
the interpolation of disparity in the foreground, and so to speak resolves
the foreground surface (figure 15 IIa). Considering, on the other hand, the
condition where unpaired dots are present and induce an illusory edge;
account I imply that the illusory edge block the spread of (the property)

Figure 15: Outline of two possible mechanisms that can account for the
percieved depth of the ambiguous region. See text for explanation.
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transparency in the foreground (figure 15 Ib), while account II imply that
the illusory edge have the effect of blocking the extrapolation of the sur-
face in the background, which in turn prevents the background from in-
hibiting the disparity interpolation in the foreground (figure 15 IIb).

Although these two accounts appear very different  from each other,
they  seem  to  predict  remarkably  similar  results,  and  appear  able  to
equally well account for our results. Nevertheless, we strongly favour the
second of these accounts, primarily because it appears akward to treat
(binocular) transparency/opacity as a property of a surface. Rather, in 3-
D displays, opacity and transparency is in itself evidence for the pres-
ence/non-presence of a surface. That is, where we see opacity we see a
surface, and where we see binocular transparency we see empty space.
We believe that one reason why the two mechanisms appear difficult to
discern from each other, is due to the arrangement of the stimuli we used.
Because  the  dots  are  very  clearly  separated  into  two  distinct  depth
planes,  these  are  readily  interpreted  as  surfaces,  and  hence  account I
seem equally appropriate. In more natural scenes, however, and in the
more general case, it is not necessarily this obvious which collections of
image primitives are part of the same surface, and which primitives that
belong to different surfaces. In fact, this is ultimately the problem that
needs to be explained, and it therefore seems akward to involve a surface
property as part of the explanation for how surfaces are completed. Or,
perhaps more simply put, account II appears more natural since it sug-
gests that binocular transparency/opacity is a result of the surface com-
pletion process, rather than the other way around that (“free-floating”)
transparency/opacity is causing the surface completion.

Placing the mechanism, proposed in account II above, into the broader
context  we get  the  following tentative  model  of  binocular  depth pro-
cessing (see figure 16).

First, individual low-level image primitives in the left and right retinal
images are binocularly matched, and a preliminary solution to the corres-
pondence problem is found, supposedly in fashion as suggested by con-
ventional  (low-level)  models of  stereopsis;  e.g.  Marr  & Poggio (1976),
Prazdny (1985), Månsson (2002). Given this preliminary solution, the dis-
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Figure 16: Outline of a model for binocular depth procesing. I: Discrete
image primitives are binocularly  matched, and unpaired elements are
identified. II:  Identification of occluding boundaries. III: Preliminary sur-
face completion; inter-/extrapolation of explicit disparity information. IV:
Background  surfaces  inhibit  interpolation  in  foreground  layers.  V:
Rendered (visible) surfaces.
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parity of corresponding image elements is computed, and binocularly un-
paired image elements are identified.

Second, binocularly unpaired image elements, as well as (2-D lumin-
ance) edges, line-terminators, and other low-level cues to occlusion are
used to identify potential occluding edges the scene.

Third, the disparity of the binocularly matched image primitives (the
output of stage I) is input to a preliminary surface completion process,
which within the boundaries defined by occluding edges estimate depth
within empty regions, by means of inter-/extrapolation of the explicit dis-
parity information. Likely, this integration process is controlled by some
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