
System-Level Cognitive Modeling with Ikaros

Christian Balkenius Jan Morén Birger Johansson

December 3, 2006

Abstract

The Ikaros project started in 2001 with the aim at de-
veloping an open infrastructure for system-level brain
modeling. The system has developed into a general
tool for cognitive modeling as well as robot control.
This report describes the main parts of the Ikaros
system, in particular the simulation kernel, and sum-
marizes the work done within the first five years of
the project.

1 Introduction

The goal of the Ikaros project is to develop an open
infrastructure for system level modelling of the brain
including databases of experimental data, computa-
tional models and functional brain data.

The infrastructure supports a seamless transition
from a pure modelling set-up to real-time control sys-
tems for robots running on one or several computers
in single or multiple threads.

The system makes heavy use of the emerging
standards for Internet based information such as
XML and makes all information collected accessible
through an open web-based interface. The infrastruc-
ture can be used for system level brain modeling. We
believe that this project has the potential to radically
change the way system level modeling of the brain is
performed in the future by defining standard bench-
marks for brain models and substantially increase the
gain from cooperative research between groups.

A system like Ikaros can not operate in a vaccuum.
Instead, the goal is to allow Ikaros to easily work with
as many external sources of information as possible.
There is simply too many types of information that

need to be used by the system and without taking an
inclusive approach the task of adapting information
and models becomes too great. the only viable solu-
tion is to integrate the operation of Ikaros with other
similar endeavors whenever possible.

This inclusive approach means offering a large cor-
pus of experimental data for use with Ikaros, but
also making it very easy to adapt experimental data
for use within the system. We are aiming for a real
database framework with extensive ability to import
data from public sources, but we also make sure that
it is easy to adapt data for use with Ikaros directly.

Inclusivness also means making development a
transparent and straightforward process. As part of
the standard infrastructure, Ikaros already contains a
sizeable number of standard modules that are useful
in a broad range of experiments. The infrastructure
also contain modules that allow simulations to inter-
face with various hardware such as video cameras and
robots. For example, there are easy interfaces to the
various standards for video capture.

The goal of the infrastructure specification is to be
minimally demanding for anyone developing a sys-
tem module. It should be possible to learn to use it
in a few minutes and should be platform indepen-
dent. This is absolutely necessary if anyone outside
the project is to use the interface. An overall idea is to
design a programming interface that is so easy to use
that the easiest way to gain access to the experimen-
tal database is to use that interface. As a byproduct,
this will make any model that uses the interface con-
form with the requirements of the model database.

In the following sections we describe the parts of
the Ikaros system and the choices that have been
made when designing the different components.

1

2 System-Level Models

The core concept of system-level modeling is the
module which encapsulates a part of a model. A mod-
ule can have a number of inputs and outputs and en-
capsulates a particular algorithm (Fig. 1). This does
not mean that cognitive models built using Ikaros
must adhere to a modular view of cognition. Instead,
a system-level approach to cognitive modeling ac-
knowledges that different cognitive components in-
teract in many ways and it is one of the strengths
of the approach that it explicitly shows these inter-
actions as connections between modules. A module
in Ikaros is thus not a statement about locality or
impenetrability, it is only an acnowledgement that a
system is constructed from several components, and
these components or modules have different proper-
ties.

In general, to design a system-level model it is nec-
essary to answer four questions:

What are the components of the system?
This entails answering at what level the model should
be described. Are the components individual neurons
or brain regions, or are they some form of abstract
description of functional components without direct
relation to the brain? There is no single correct an-
swer to these questions; it depends on the model be-
ing implemented.

What are the relations between the compo-
nents? Are they parallel systems with little inter-
action, or are they tightly coupled? Are they all at
the same descriptive level or are some components
subparts of others? Is the system heterogeneous or
hierarchical?

Which function is performed by each compo-
nent? How can the functions be described as math-
ematical functions or as algorithms? Ikaros supports
systems built from standard modules that implement
elementary mathematical functions as well as mod-
ules that are hand coded from scratch.

Module
Input Output

Figure 1: A module with one input and one output.

What information is transmitted between the
components and how is it coded? The question
of coding is the most important for a system-level
model and the only one where Ikaros puts any major
constraints on the possible models. In Ikaros, all in-
puts and outputs are coded as matrices of floats. This
limits the possible models in several ways that makes
it mode likely that different models can be intercon-
nected. Although Ikaros puts no constraints on the
interpretation of the matrices, this type of structure
is best used for coding in terms of numerical values,
either directly or using some form of distributed code.

In Ikaros, the components are specified using an
XML-based language which also describes the rela-
tion between the components. The function in each
component is described either using standard mod-
ules or by writing new simulation code. The transfer
of information between components is implicit in the
coding of the different modules.

3 Describing Models

Fig. 1 shows a simple module. This module has a sin-
gle input through which it receives input data and a
single output through which it sends its output data.
The input is read in discrete time and the module
also generates new output at discrete intervals.

Modules can be connected together to form sys-
tems (Fig. 2). This network of modules is what makes
up a model in Ikaros. Here, the model consists of three
modules A, B and C. Module A has one input (a) and
two outputs (b and e). Module B has two inputs (c
and f) and a single output (d). Finally, module C
has one input (g) and one output (h). The complete
model has the single input a and the single output d.

One of the great strengths of Ikaros is its ability
to handle large complicated cognitive models consist-
ing of many interacting subcomponents. To allow the

2

A
a b c d

fe

g h
C

B

Figure 2: A small system with three modules A, B, C
with connections between them.

specification of such architectures, an XML-based de-
scription language has been developed. This language
has three main components: the module, the group
and the connection.

A module element describes an instance of a par-
ticular Ikaros module and sets its parameters. These
parameters are handled to the constructor function of
the module as described in section 3.3***. The only
two required attributes are class and name that de-
cides what code the module will run and how it will
be referred to.

<module

class = "MyClass"

name = "MyModule"

alpha = "3"

beta = "0.1"

/>

A connection between two modules are specified in
a connection element:

<connection

sourcemodule = "Thalamus"

source = "Output"

targetmodule = "Amygdala"

target = "Input"

/>

Finally, it is possible to group modules and con-
nection in to larger structures. The following exam-
ple corresponds to the structure shown in Fig. 3 and
Fig. ??. It defines a group (or new module) called X
with an input x and an output y. The group consists
of three modules A, B and C which have multiple
connections between them. The input x is connected

to the input a of module A and the output y receives
data from output d of module B.

Groups can also be given inputs and outputs to
let them function as new modules or be stred in ex-
ternal files and be used as call descriptions, but a
specification of these features are beyond the current
description.

4 The Simulation System

Currently, the main part of Ikaros is the simulation
system which consists of a platform independent sim-
ulation kernel together with a large set of modules
that implements different functions and models.

4.1 Design Criteria

There were a number of important considerations in
the choice of the simulation structure. The first was
that it should be platform independent. There are
two reasons for this. The first is that it was expected
that the system would be required to run on differ-
ent architectures. The second, and more important
reason was that the we did not want to depend on
one particular compiler or operating system. Having
once spent several years on a simulator in a discon-
tinued dialect of object-Pascal had tought us that
portability is something that has to be considered
from the outset and it is well known that code is
only portable once it has been ported. By simulta-
neously developing for several operating systems, it
would be almost guaranteed that Ikaros would be rea-
sonably portable. We have consequently strived to
comply with the relevant standards as much as pos-
sible. These includes ANSI C++, POSIX and BSD
sockets. A related choice was to depend on as few
external libraries as possible. Although the current
version of Ikaros uses external libraries for sockets,
timing and threads, it can still be run in a minimal
version that only uses a small set of standard C++
libraries.

The second main design choice was to use a
discrete-time model for simulation. Although this is
the normal operation for most neural network sim-
ulators, there are some notable exception. However,

3

A
ax b c d y

fe

g h
C

B

X

Figure 3: A group consisting of three modules. The group is externally considered as a module named X with one
input x and one output y. These inputs and outputs are internally connected to input a of module A and output d of
module B.

<group name = "X">

<input name = "x" targetmodule = "A" target = "a" />

<output name = "y" sourcemodule = "B" target = "d" />

<module name="A" ... />

<module name="B" ... />

<module name="C" ... />

<connection sourcemodule= "A" source = "b" targetmodule = "B" target= "c" />

<connection sourcemodule= "A" source = "e" targetmodule = "C" target= "g"/>

<connection sourcemodule= "C" source = "h" targetmodule = "B" target= "f" />

</group>

Figure 4: Example of a group of modules with its own input and output. The graphical representation of this system
is shown in Fig. 3

4

to allow the easy integration of different types of al-
gorithms, it was decided that a discrete time simula-
tor would be most useful. It is hard to imagine how
many algorithms could be adapted to a continuous
time framework. In most cases, this choice does not
limit the possible models that can be designed since
it only relates to the times when different modules
communicate and not their internal structure.

Another consideration was that to make the system
attractive it should be as easy as possible to use many
different types of programming styles with the sys-
tem. As a consequence, we decided to only use stan-
dard C data structures such as integers and matrices
of floats. The use of doubles was decided against on
grounds of efficiency and the lack of support for dou-
bles in most vector co-processors.

4.2 Module Interface

All inputs and output of modules are represented as
arrays or matrices of floats and the sizes of these ma-
trices are represented by integers. The sizes of all
data structures used by Ikaros are calculated dur-
ing startup and can not be changed during execu-
tion. This restriction only applies for the data moved
between modules; for internal data used in modules
there are no restrictions at all. The actual code in a
module can use any coding style as long as the in-
puts and outputs are in the right format - indeed, it
is entirely feasible to embed or interface with an in-
terpreter in a module for a completely different lan-
guage transparent to Ikaros itself. Since Ikaros itself
is written in C++, either C like or C++ like coding
styles can be used as long at it is wrapped in a C++
class. Although the inputs and outputs are part of the
Ikaros kernel data structures, the modules themselves
does not know about this. Instead, they can magically
assume that the input matrices are always filled with
the required data. This design decision has made it
easy to incorporate code not specifically written for
Ikaros as long as it is reasonably clean. For example,
the main function of a trivial module that would only
copy its input to its output may look like this:

MyModule::Tick()

{

for(int i=0; i<size; i++)

output[i] = input[i];

}

The point here is that this code looks like any
C++ code and there is nothing Ikaros specific with
it. When this function is called, the array input will
contain the input to the module and after execution,
Ikaros takes care of the result in the array output.

It was also considered fundamental that simula-
tions using Ikaros would not be slower than simu-
lations made in a dedicated system. Conceptually,
all modules in Ikaros run concurrently and syn-
chronously. This mode of operation was selected be-
cause it is the only possibility when it is necessary
that execution order is well defined, which is the case
for many algorithms. Because of the synchronous op-
eration, there will be a delay of exactly one time step
(or tick) between the production of an output from
a module and the time when it can be used by an-
other module. In most cases, this extra copying step
is necessary anyway and does not usually incur any
extra execution cost. Since this overhead is not always
desired however, version 0.8.0 introduced zero-delay
connection between modules.

Using this type of connections, there is no delay at
all between the production of an output and its use
by other modules. Instead, the second module refers
directly to the memory where the first module has
produced its output. To make the result well defined,
zero-delay connections are only allowed within sub-
sets of of the complete module networks that form
directed acyclical graphs. That this condition is ful-
filled is checked during start-up when all modules are
sorted according to their position in the graph. With
zero-delay connections, the input to the system can in
principle be processed in a single time step regardless
of the number of modules that the information passes
on its way to the output. In this case, the execution
overhead is negligible.

The kernel also includes a small set of libraries that
hides system specific code for sockets, timing, threads
and serial communication. In addition there are util-
ity libraries for memory management, XML process-
ing and mathematical functions. In most cases, the
programmers need not know about any of these li-

5

braries to use Ikaros.

4.3 Kernel Start-Up

The kernel is responsible for the creation of the net-
work and its modules at startup, the scheduling dur-
ing system execution, and the propagation of data
between the modules. Fig. 5 shows the main compo-
nent of the running Ikaros system.

Detailed knowledge of the kernel operation is not at
all necessary or even recommended for use of Ikaros.
Knowing why and in what order things are started
do however make it easier to understand the design
decisions made. This section can be skimmed lightly
without any loss of understanding.

The most important aspect of the kernel is the cre-
ation sequence that occurs when the system starts up.
This happens in six steps:

Class Registration When the IKAROS program
starts, it first registers all code for the modules con-
tained in the system. This initialization step builds
a data structure that contains pointers to a creator
function for each module type and binds it to a mod-
ule class name.

Module Creation When the initialization has fin-
ished, the kernel reads the supplied control file in
XML-format, which specifies the modules to activate
and gives them instance names and other parameters.
One instance of each module specified is created for
every occurrence of that module in the control file.
A module can thus have multiple instantiations with
different parameters. When each module is created,
it registers its inputs and outputs in the kernel using
to allow them to be connected in the next step. At
this stage, the individual modules also gain access to
any additional parameters set in the control file for
that particular module.

Connections When all modules have been created,
the kernel continues to read the control file and make
the specified connections between modules.

Size Calculations Most input and outputs have
dynamical sizes that are set during start-up. For ex-
ample, if the input of a module is connected to the
output of another module that produces a 4x4 ma-
trix, the input of the second module will adapt to this
and set the size of its outputs accordingly. There can
be any relation between the size of an input and the
size of an output.

For example, the output from the module could be
set to have the double size of the input or some other,
more complex relation. Since there can be a number
of cyclical relations between different modules, the
calculation of output sizes is performed iteratively
until all sizes have been established. In principle this
means that a poorly designed set of modules could
cause the kernel to enter a non-terminating loop with
the sizes never stabilizing. In practice there is a limit
to the number of iterations allowed. [???]

Sorting the Modules All modules are sorted in
two ways (Fig. 6). The modules are partitioned into
different sets that each contains a directed acyclical
graphs (DAG) of modules with zero-delay connec-
tions between them and only delayed connections to
any other modules. Each of these sets can be run in
a separate thread and is called a thread group. A
topological sort is performed on the groupsaccording
to their positions in the DAG which defines a par-
tial order relation on the modules. This order is used
when the modules are executed to make sure that a
module that produces data that another module will
use is always executed before that other module if
they have zero-delay connections between them.

Module Initialization When all modules have
been connected, the initialization phase starts. At
this stage, the size of the input that each module will
receive is known and each module is allowed to cre-
ate any additional storage that it needs and initialize
variables. To do this, the kernel calls an initialization
function for each of the created modules.

4.4 Kernel Operation

The scheduling mechanism of the Ikaros kernel is re-
sponsible for calling the code of each module instance

6

WebUI

Kernel

Process 1

Thread 1

Thread 2

Process 2

Kernel
TCP/IP

TCP/IP
XHTML

SVG

JavaScript

JSON

Data

Web

Browser

A

B

C
D E

F

G

Figure 5: The Ikaros kernel. The kernel starts a number of threads where a number of modules (A-G) are executed.
The modules communicates through a set of circular buffers that correspond to outputs from the modules. The kernel
can also communicate with other Ikaros processes running on the same or on a different processor or computer. In
addition, the kernel communicates with an optional graphical user interface client running in a web browser.

2
1

02

0

1

Figure 6: The order of execution of three modules. The
numbers on the connections indicate the delay in the con-
nections. The numbers on the modules indicate the order
in which they should be executed. The two shaded areas
correspond to two thread groups.

once during each discrete time step (or tick).

In the simplest case the scheduling consists of call-
ing the tick function for each module in the order in
which they were sorted during initialization. When
Ikaros runs in threaded mode, each thread group is
handled separately in this way instead. In threaded
mode, there is no communication between modules in
different DAGs during this time which greatly sim-
plifies the operation of the kernel.

In a second step, the data propagation function is
called to copy data from outputs to the inputs of
the modules. Data propagation is done simultane-
ously for all modules. The output for each module
is copied to the input to which it is connected. The
propagation process is also responsible for the sim-
ple data translation that is made by the system and
concatenation in the case when several outputs are
connected to the same input. In addition, this stage
delays the data on connections with delays.

Finally, the kernel handles timing when Ikaros runs
in real-time mode. In this case, the kernel makes sure
that the execution of the tick did not take longer

7

than allowed and waits for the appropriate moment
to start the next tick.

4.5 Anatomy of a Module

Every module in Ikaros must implement five func-
tions. For a module names MyModule, the following
functions are be defined and called in the following
order:

MyModule() The creator function registers all
the inputs and outputs of a module. It also gains ac-
cess to all parameters of this instance of the module
from the control file.

SetSizes() This optional function is called repeat-
edly during start-up to calculate the sizes of dynamic
outputs based on the sizes if the inputs to the mod-
ule.

Init() The init function is called after kernel ini-
tialization and lets the module gain access to its in-
puts and outputs. This is also were any internal data
structures are allocated.

Tick() The tick function is where the actual work
is being done by the module. It is called repeatedly
during the execution of a module and should calcu-
late new outputs based on its inputs (See example in
section 3.1).

∼MyModule() This optional function deletes any
module specific memory that has been allocated in
Init() and performs other clean-up that may be nec-
essary.

A template for new modules is available as part
of Ikaros. This template is named MyModule and a
new module can easily be added to Ikaros by simply
renaming the template.

5 Standard Modules

Ikaros contains a large number of standard modules.
These can be divided into a number of categories.

IO Modules There is a set of modules that read
data from different file formats, for example text data
or different media files. Other modules are used to
communicate with external devices such as cameras
or robots.

Utility Modules To simplify the design of models,
there are also a large number of utility modules for
simple mathematical operations. This includes vec-
tor and matrix operations and standard mathemat-
ical functions including polynomial functions. Other
utility modules are used to collect data or statistics
or to control an experiment. A few utility modules
are used to generate input such as the function gen-
erator.

Image Processing Modules Another set of mod-
ules implement standard image processing functions.
There are modules to transform the colors in an im-
age. modules that scale images in different ways or
performs other spatial transforms. To apply differ-
ent image processing operators there is a module for
convolution, but also modules for specific operators
such as the Sobel operator and parametrically de-
fined Gabor filters. There are also several modules
that performs edge detection. A few vision modules
are more complex and implements a saliency map or
an attention focusing mechanism.

Environment Modules To allow simulation of an
agent in an environment, there are a number of mod-
ules that implements simple environments. The Grid-
World module implements a two-dimensional envi-
ronment consisting of a grid with obstacles together
with an agent that can navigate in it while being con-
trolled by other Ikaros modules. There is also a vari-
ant where the agent can move continuously over the
grid. This module also simulates a 2D visual field us-
ing a ray casting algorithm. More environment mod-
ules will be added in the future. For example, we are
currently working on a simulation of an arm.

Other Modules The standard module also include
a few neural network algorithms and some general
learning algorithms.

8

6 Real-Time Execution

When Ikaros is used to control robots it is necessary
that the precise timing of input and output can be
controlled. To accomplish this the kernel has func-
tions to time the execution of each tick. When Ikaros
starts up it sets it time-base to the required interval
and tries to time the ticks to this time-base. It in-
ternally controls that it is able to keep up with the
desired speed and will report delays in the execution.

Obviously, the accuracy of the timing will depend
on the underlying operating system. Since Ikaros is
currently not running on real-time operating systems,
any other process can in principle interfere with real-
time execution. In practice, it is possible to get less
than 1 ms resolution on Max OS X and probably
similar performance on other operating systems.

An important factor that contributes to real-time
performance is the ability to run Ikaros in multi-
threaded mode. In this mode, the kernel tries to
run every module in a separate thread. When there
are zero-delay connections between a set of modules,
the kernel will automatically put these in the same
thread.

In thread model, each module can be set to run
at different time intervals, For example, a slow visual
processing module may run 5 times per second while
a faster motor control module can be allowed to run
100 times per second. This feature is very useful for
robotic control where some loops need to run at high
speed while others are much heavier.

(Gallmeister, 1995) (Nichols et al., 1996)

7 A Graphical User Interface

To monitor ongoing simulations, Ikaros has a graphi-
cal user interface. Like the modules and connections,
this user interface is specified using XML. This XML
specification is read by the Ikaros kernel which starts
up an integrated web-server which allows standard
web browsers to act as graphical clients. The browser
gets get a set of JavaScript routines from Ikaros that
are run in the browser and implements the graph-
ical user interface. The actual drawing is made us-
ing SVG. The choice of JavaScript+SVG was based

on the fact that this would make the system truly
platform independent. For communication with the
sever, the interface uses JavaScript Object Notation
(JSON). Although we initially planned to use XML
for this communication, JSON turned out to be much
simpler to use since it can be natively parsed by
JavaScript using the eval function.

Unfortunately, few browsers currently support
SVG and we made the choice to only actively sup-
port FireFox. The first version of Ikaros that used
this graphical user interfece was released a few days
before the first version of FireFox to include native
SVG rendering (version 1.5).

Although much of the code was developed using
Adobe SVG plug-in, it turned out that it has some
problems with asynchronous communication with the
server and it was decided that support for this plug
would be dropped. We expect that other browsers
will also support SVG and JavaScript in the required
way in the future.

Currenty, Ikaros has support for graphical objects
such as bar graphs, different forms of plots, images,
grids and vector fields. The graphical client can easily
be extended with new graphical objects by writing a
JavaScript code for the drawing of the new object.

One limitation of using this solution is that it is not
as fast as using a dedicated program for the client and
very far from using a graphical subsystem included
in Ikaros. However, we felt that this solution has sev-
eral advantages. First of all, of course, it means the
whole system becomes totally platform independent.
But also, and perhaps more importantly, it enables
us to transparently monitor and control a running
simulation remotely, independent of what system the
simulator and the client is running, and we can do so
with a simulation running in another room or across
two continents with no loss of functionality.

If fast, concurrent representation is important, the
very open-ended structure of an Ikaros module en-
ables users to simply write a graphical module that
includes the toolkit or other representational system
of their choice and display data sent to the module
from there. Likewise, a module that receives user in-
teraction can change the behavior of other modules
in the system accordingly by defining a ”command
channel” that sends data to other modules via the

9

same mechanism as ordinary data. Ikaros doesn’t care
how data is interpreted within modules after all.

(Flanagan, 2002) (Eisenberg, 2002)

8 Validating Models

To automatically validate a model against relevant
data, for example, neurobiological databases, the
specification of a module can include the models at-
tribute. For example, a module that claims to model
the amygdala could be describes in the following way:

<module

class = "MyClass"

name = "MyModule"

models = "Amygdala"

/>

This information could be used to match the graph
made up of the modules in an Ikaros model to con-
nectivity data found in neurobiological databases.
Some first attempts towards such as system have been
taken (Gustafsson and Balkenius, 2004).

9 Experiment Database

In our earlier studies of classical conditioning we have
developed an extensive database of the design and re-
sults of conditioning experiments. The development
of this database started in 1996 and now contains ap-
proximately 200 different experiments. The database
is stored in a way that allows the experimental de-
scriptions to be used as input to computer simula-
tions of learning by classical conditioning. the world.

Unfortunately, this database is stored in a form
that is not easy to access unless the simulator de-
veloped at LUCS is used. Because of this, we have
not been abe to reply to requests from other research
groups to use the database. It also has the limita-
tion that it only covers classical conditioning and not
other learning paradigms. As a part of the project
proposed here, we want to extend the experiment
database by adding more experiment types and by
translating the database to a more accessible format.

First, we will add experiment description for other
learning paradigms besides classical conditioning.
This includes operant conditioning experiment as
well as more cognitively oriented experiments. The
goal is to cover all experiment types that are regularly
used with animals and humans. We estimate that the
final database will include approximately 1000 exper-
iments.

The entry for each experiment will include all in-
formation that is necessary to reproduce the exper-
imental conditions in a simulator or a real experi-
ment. This includes detailed data of the stimuli used,
the apparatus, the exact timing etc. It will be im-
portant to differentiate between the part of the ex-
periment description that contains the logic of the
experiment and features such as timing and spatial
location that are often not essential. This will allow
modelers to adapt experiments to their needs in much
the same way that an experiment developed for one
species has to be changed to fit another. The database
will also contain experiment descriptions in narrative
form and pointers to external databases such as Med-
line and BIOSIS when appropriate.

To allow easy access to the experiment database, it
will be coded in the XML format that is widely used
for on-line data. The choice of XML for the database
is natural since it allows for an evolving and continu-
ally expanding database structure. It can also be used
to mediate the transfer of information from other al-
ready existing databases. Apart from translating the
already existing database to this format, we will also
develop tools that can be used to encode and visualize
experiments through a web-based interface.

10 Examples

Modeling developmental disorders (Balkenius and
Björne, 2001; Björne and Balkenius, 2005). Models
of visual attention (Balkenius, 2003; Balkenius et al.,
2004). Models of haptic perception (Johnsson and
Balkenius, 2006a,b). Models of visual contour pro-
cessing Karlsson (2004). Modeling the role of context
in learning Balkenius and Winberg (2004). Robot
control (Johansson, 2004). Models of somatosensory
cortex (Johnsson, 2004). Models of emotion (??)

10

Morn, J. (2002). Emotion and Learning - A Com-
putational Model of the Amygdala, Ph.D thesis,
Lund. ISBN 91-628-5212-4

Balkenius, C. and Morn, J. (2000). Emotional
Learning: A Computational Model of the Amygdala.
Cybernetics and Systems, 32 (6):611-636.

Acknowledgments

We would like to thank all the people that have
tested and commented on the system during its
development, in particular Takashi Omori, H̊akan
Jonson, Kolbjörn Gripne, Magnus Johnsson, Lars
Kopp, Chris Prince, Martin Butz, Stefan Karls-
son, Stefan Winberg, Anders Karlström, Mikael
Asker, Vin Thorsteinsdottir, Sigurbirna Haflidadot-
tir, Kiril Kiryazov, Gianguglielmo Calvi. More infor-
mation about Ikaros can be found at the web site:
http://www.ikaros-project.org.

References

Balkenius, C. (2003). Cognitive processes in contex-
tual cueing. In Schmalhofer, F., Young, R. M.,
and Katz, G., editors, Proceedings of the European
Cognitive Science Conference 2003, pages 43–47.
Lawrence Erlbaum Associates, Mahwah, NJ.

Balkenius, C., Åström, K., and Eriksson, A. P.
(2004). Learning in visual attention. In ICPR ’04
workshop on learning for adaptable visual systems
(LAVS).

Balkenius, C. and Björne, P. (2001). Toward a robot
model of attention-deficit hyperactivity disorder
(adhd). In Balkenius, C., Zlatev, J., Kozima, H.,
Dautenhahn, K., and Breazeal, C., editors, Pro-
ceedings of the First International Workshop on
Epigenetic Robotics: Modeling Cognitive Develop-
ment in Robotic Systems, volume 85 of Lund Uni-
versity Cognitive Studies.

Balkenius, C. and Winberg, S. (2004). Cogni-
tive modeling with context sensitive reinforcement
learning. In Proceedings of AILS ’04. Dept. of
Computer Science, Lund.

Björne, P. and Balkenius, C. (2005). A model of
attentional impairments in autism: First steps to-
ward a computational theory. Cognitive Systems
Research, 6(3):193–204.

Eisenberg, J. D. (2002). SVG Essentials. O’Reilly.

Flanagan, D. (2002). JavaScript: the definitive guide.
O’Reilly, fourth edition.

Gallmeister, B. O. (1995). POSIX.4—programming
for the real world. O’Reilly.

Gustafsson, M. and Balkenius, C. (2004). Using se-
mantic web techniques for validation of cognitive
models against neuroscientific data. In Proceedings
of AILS ’04. Dept. of Computer Science, Lund.

Johansson, B. (2004). Elastic template matching in
outdoor environments. Master’s thesis, Lund Uni-
veristy Cognitive Science, Lund.

Johnsson, M. (2004). Cortical plasticity: A model of
somatosensory cortex. Master’s thesis, Lund Uni-
veristy Cognitive Science.

Johnsson, M. and Balkenius, C. (2006a). Experi-
ments with artificial haptic perception in a robotic
hand. Journal of Intelligent and Fuzzy Systems, in
press.

Johnsson, M. and Balkenius, C. (2006b). LUCS hap-
tic hand II. Technical Report 9, LUCS Minor.

Karlsson, S. (2004). Monocular depth from occluding
edges. Master’s thesis, Department of Mathemat-
ics, Lund Institute of Technology.

Nichols, B., Buttlar, B., and Farrell, J. P. (1996).
Pthreads Programming. O’Reilly.

11

