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1. Introduction  

We are creatures of habit. Often times we follow old routines, repeat learned 
behavioural patterns, and choose immediate gratification over delayed rewards. 
Changing our habits and leaving the ‘autopilot mode’ takes effort and cognitive 
control. Executive functions (EF) refer to the cluster of top-down processes that 
mediate diverse functions ranging from overriding impulses to working memory 
and cognitive flexibility (Diamond, 2013). EF are required when one needs to pay 
attention and deliberate over choices, e.g. when you drive to your workplace for the 
first time, when you take a step back from your immediate situation and play out 
the consequences of your actions in your head before you make a move. EF 
therefore support complex cognitive skills like planning, reasoning and problem-
solving (Collins and Koechlin, 2012). Given the fundamental role of the executive 
system in supporting behavioural flexibility, investigating whether and how it 
functions in different species can provide insights into the evolution of complex 
cognition. 

The corvid family (Corvidae) represents an ideal candidate to investigate EF given 
its renowned behavioural flexibility. Consisting of more than 120 species, the corvid 
family includes ravens, crows, jackdaws, magpies, treepies, jays, nutcrackers and 
coughs. Corvids are widely dispersed across the globe, and live in vastly different 
environments, ranging from warm tropics and deserts to cold tundras and mountain 
tops, as well as cities. Their cognitive flexibility is the most likely causal factor 
behind this high level of environmental adaptability (Osvath et al. 2014).  

This thesis investigates two EF components – planning and inhibition – in corvids, 
and in some extent parrots, in order to understand the evolution of complex 
cognitive skills. Previous studies that have measured these skills mostly focused on 
primates (Mulcahy and Call, 2006; Osvath and Osvath, 2008; Stevens, 2014). The 
study of corvid cognition is informative in many respects. Corvids display complex 
cognitive abilities in various domains such as causal reasoning, memory and social 
cognition, and corvid cognition is often compared to those of great apes in 
complexity (Emery and Clayton, 2004). Thus, expanding the comparisons between 
these groups can inform whether this similarity also holds in other domains. 
Moreover, given the vast phylogenetic separation between corvids and great apes, 
comparing the cognitive skills of these groups might elucidate some of the 
mechanisms behind independently evolved complex cognition (Osvath et al. 2014). 
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1.1 Structure of the thesis 

This thesis is structured around two components of executive functions – planning 
and inhibitory control. The main body of this thesis consists of five papers, 
comprising four empirical studies and one review paper. In order to provide a 
background for those papers, three chapters precede them (Chapter 2, 3 and 4). 

Chapter 2 focuses on planning and sketches a brief history of its investigation in 
animals, preparing the reader for the empirical study on planning skills of ravens 
(PAPER I). Chapter 3 focuses on motor self-regulation (motor inhibition), which is 
an underlying cognitive mechanism supporting more complex forms of self-control 
as well as planning. This chapter gives a background and the motivation for the 
study of motor self-regulation, which is the subject of three empirical papers in this 
thesis: motor self-regulation in corvids is investigated comparatively (PAPER II) 
and developmentally (PAPER III). In PAPER IV we studied motor self-regulation 
in another bird group: parrots. PAPER V is a review paper that focuses on the detour 
paradigm, which is a widely used test in animal cognition research for measuring 
motor self-regulation among other skills. Chapter 4 gives an overall account for the 
main findings of the papers in this thesis – that corvids perform on par with great 
apes in complex planning as well as in basic motor inhibition. The findings are 
discussed from the perspective of independent evolution of complex cognition. 
Special attention is given to the avian brain and the possible selective pressures 
behind the planning and inhibitory skills of corvids. Finally, some attention is given 
to the question of how cognitive skills that allow certain detachment, like planning, 
may be grounded in anticipatory sensorimotor processes. 

1.2 On terms and concepts 

Planning and inhibition are broad terms that historically referred to various different 
processes, thus here I will specify in which context these terms are used in this 
thesis.  

1.2.1 Planning 

Planning is an everyday term that can be broadly defined as “predetermination of a 
course of action aimed at achieving some goal” (Hayes-Roth and Hayes-Roth, 1979, 
p. 275). This broad definition involves various processes like sequential planning, 
for example when solving the problem of tower of Hanoi, as well as route planning 
(McCormack and Atance, 2011). However, in this thesis, ‘planning’ refers to the 
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decision making that affect future outcomes at a different location from where the 
decision was made (the decision is measured through actions). Chapter 2 will 
introduce the history of the field that gave rise to this particular definition of 
planning, and its significance for research on animals.  

1.2.2 Inhibitory control 

Inhibitory control is a core component of executive functions and refers to wide 
range of processes that involve overriding and inhibiting prepotent responses, 
internal predispositions or external enticement in order to generate an appropriate 
response. Potent inhibitory control allows one to not become a slave to one’s 
impulses as it allows one to set aside automatic responses and instead consider 
alternative options, thus generating behavioural flexibility (Diamond, 2013; 
Mischel, 2014). As inhibitory control is studied in all empirical papers in this thesis 
(PAPER I, II, III, IV), I will briefly explain how it is measured behaviourally.  

Inhibitory control is measured behaviourally using diverse tasks ranging from 
delay-of-gratification, which involves inhibiting taking a smaller reward in favour 
of obtaining a future larger reward, to motor inhibition tasks which involve 
hindering a motor response (Cohen et al. 2013; Bari and Robbins, 2013). There is 
still an ongoing debate whether delay-of-gratification and motor inhibition tasks are 
neurologically dissociable (Duckworth and Kern, 2011; Muraven and Baumeister, 
2000). Some have suggested that inhibitory control is a non-unitary phenomenon 
not subserved by a single neural network (Jahanshahi et al. 2015). Thus, caution is 
still needed when classifying inhibitory skills in a single category, such as self-
control and motor inhibition (Friedman and Miyake, 2004).  

Beran (2015) suggested using the term ‘self-control’ for tasks where there is a 
decision between two options which are separated in time: an immediate but a 
smaller reward and a larger but later reward. Thus, delay-of-gratification tasks are 
self-control tasks. He suggests using the term ‘motoric self-regulation’ for those 
behavioural inhibition tasks that involve inhibiting a prepotent motor response 
without incurring a major cost (Bari and Robbins, 2013). The papers in this thesis 
follow Beran’s distinction. This distinction is consistent with previous research, 
where the term self-control has primarily been used for delay-of-gratification 
contexts (Ainslie, 1974; Mazur and Logue, 1978; Vanderveldt, 2016). Thus, in 
PAPER I in this thesis, self-control is studied as it involves delay-of-gratification 
experiments, while motor self-regulation is investigated in PAPER II, PAPER III 
and PAPER IV. 
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1.3 Independent evolution of complex cognition 

In the biological world, we see that many similar traits have evolved multiple times 
independently in different lineages, such as the camera eye, echolocation, warm 
bloodedness, flight, myelin and perhaps even neurons (Conway Morris, 2003; 
Moroz, 2015). What about intelligence? Can it too evolve multiple times? This 
question was answered negatively by Stephen Jay Gould (1990), who famously 
claimed that a replay of life on earth would lead to completely different outcomes 
than we see today – due to various contingent historical events – with no guarantee 
of intelligence evolving again. It is worth noting that around the time Gould 
articulated this idea, which is also called ‘the radical contingency hypothesis’ 
(Powell and Mariscal, 2015), humans were considered to be the only intelligent 
species on earth (at least by palaeontologists) – perhaps leading Gould to perceive 
intelligence as an extremely rare natural phenomenon, almost as an evolutionary 
accident (Conway Morris and Gould, 1998). 

Radically opposed to Gould’s view, Conway Morris (2003) claims that convergence 
is ubiquitous in evolution and that there are many different paths that all might lead 
to a few similar end points. This suggests a certain degree of independence from the 
initial conditions: regardless of the starting position, evolution will eventually reach 
similar adaptive peaks. According to this view, the power of natural selection in 
finding good tricks, such as complex cognition, is so powerful that, given enough 
time, human-like intelligence is highly likely to evolve no matter what the initial 
conditions are. 

These diverging views on independent evolution have implications for how to 
understand the place of the human mind. One way to test these views is through 
careful investigation of cognitive similarities in distantly related taxa. This thesis 
provides some approaches to these questions, as we found that corvids display 
remarkable behavioural similarities to great apes in tasks that require skills of 
flexible planning and motor self-regulation (PAPER I and PAPER II). Given that 
the lineages leading to corvids and great apes separated around 320 million years 
ago, these similarities likely are not inherited from the common ancestor in their 
current forms (homology), but rather a result of independent evolution (homoplasy). 
Understanding the principles of independently evolved cognitive abilities can shed 
light on underlying principles of complex cognition. Chapter 4 examines these 
issues in greater detail. Special attention is given to the possible selective pressures 
behind complex cognition, as well as to the neuroanatomical parallels between birds 
and mammals.  
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2. Planning  

We humans represent events that will take place at a different place and time, and 
we make decisions about future situations. We can use this skill-set across domains: 
planning for a dinner party or a future career. What is the evolutionary history of 
such flexible planning skills? Can other animals plan flexibly? These questions are 
among the most disputed questions in the field of animal behaviour. 

Many animals exhibit future-oriented behaviour such as migration, nest building 
and food caching. But such behaviours rarely qualify as genuine examples of 
cognitive foresight. A future-oriented behaviour does not necessarily entail a 
planning agent. Hard-wired adaptations for nest building and migrating allow 
animals to achieve future benefits without planning (Raby and Clayton, 2009). 
Where should we look then in order to find out whether animals can make 
intentional decisions for delayed outcomes? As animals lack language to 
communicate about their future intentions, one needs behavioural tests to answer 
this question. 

2.1 Köhler’s proposal 

The base of the behavioural criterion of planning used in this thesis, dates back to 
the proposal of Wolfgang Köhler (1922), who studied problem-solving in 
chimpanzees. When facing a banana hanging from the ceiling, Köhler’s 
chimpanzees stacked boxes on top of each other to reach it. But the means (boxes) 
to secure the solution and the goal were always simultaneously perceptually 
available to the chimpanzees. Köhler concluded that chimpanzees can plan for such 
immediate situations, but that it remained to be tested whether they could plan for a 
goal which is outside their sensory scope. He formulated a planning experiment that 
he never conducted. First leave a hungry ape in a room full of boxes, with no access 
to food. Later, give the same hungry animal access to another room which contains 
food hanging from the ceiling, however without access to the first room that 
contained boxes. This procedure should be repeated few times. Köhler was 
interested in whether the ape would eventually make the connection, and secure the 
means ahead of facing the problem, and bring boxes to the banana room. According 
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to Köhler, this experimental design would detect planning abilities. He also argued 
that it would be an even higher achievement if the animal could override smaller 
immediate reward in order to secure the means for a future larger reward, thus 
hinting at the role of executive functions in planning. More than 80 years after 
Köhler’s initial proposal, the first experimental planning studies were conducted. I 
will briefly recapitulate the theoretical framework of these studies. 

2.2 Memory research 

The theoretical roots of the experimental studies on animal planning are found in 
memory research. Tulving (1972) made a distinction between two types of memory 
systems that together comprise declarative memory: episodic and semantic memory. 
While semantic memories can be defined as general ‘knowledge about the world’, 
episodic memories refer to recollections of specific episodes in one’s personal past. 
Broadly, the semantic and episodic distinction can be thought of as a 
knowing/remembering distinction.  According to Tulving (1972, p. 385), “… 
episodic memory receives and stores information about temporally dated episodes 
or events, and temporal-spatial relations among these events”. This definition of 
episodic memory focuses on its information content (what happened, where did it 
happen, when did it happen?). Later definitions included a phenomenological 
distinction between episodic and semantic memory. Tulving (1983) claimed that 
these memory systems were accompanied with different forms of consciousness: 
episodic memory is associated with autonoetic (self-knowing) consciousness, i.e. 
the experienced first-person perspective of the recalled event. This consciousness 
creates the feeling of that the event belongs to one’s own past and it enables re-
experiencing and pre-experiencing episodes. Suddendorf and Corballis (1997) 
introduced the term ‘mental time travel’ to describe this ability to travel to one’s 
personal past or future and re- or pre-experience events. Semantic memories, on the 
other hand, come with noetic (knowing) consciousness that refers to the feeling of 
familiarity without any personal reference.  

Memories are essential for planning. Since the future does not yet exist, it cannot 
have a causal influence on current actions; instead, past causes leave various traces 
in cognition, such as memories that may lead to actions which influence future 
outcomes (Osvath and Martin-Ordas, 2014). This close relationship between 
memory and foresight has been identified before (e.g. Ingvar, 1979, 1985). Many 
have argued that the functional and evolutionary benefit of memories is that they 
allow preparation for the future (Klein, 2013; Michaelian, 2016; Suddendorf and 
Corballis, 2007; Tulving, 2005). One can either be guided by a particular memory 
of a situation, which get cued in certain settings, or one can simulate new events by 
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combining elements of different memories. In fact, episodic memories are never 
carbon copies of what happened in the past, but labile and constructive, which 
provides adaptive benefits as the gist information and the recombination of those 
memories enable novel future simulations (Schacter and Addis, 2007). 

The link between memory and foresight has also been documented in patients 
suffering from amnesia. Tulving worked with a patient called K.C. who suffered a 
severe form of retro- and anterograde amnesia (due to a brain trauma), with a 
degenerated the episodic system but an intact semantic system. K.C. could not recall 
a single episode of his life, and he was also unable to imagine a personal future 
scenario. He described the subjective state as ‘blank’ when attempting to remember 
or imagine personal situations. The failures of the episodic memories where strongly 
correlated with failures in episodic foresight. Consistently, later studies in humans 
have found a large overlap between the brain regions supporting episodic memory 
and future-thinking (Addis et al. 2007; Buckner, 2010; Hassabis and Maguire, 2007; 
Schacter et al. 2012; Szpunar et al. 2014). Developmental studies in humans have 
also found that episodic memory and episodic foresight abilities develop around the 
same age (Atance and Meltzoff, 2005; Atance and O’Neill, 2001; Atance and 
Sommerville, 2014; Busby and Suddendorf, 2005; Payne et al. 2015; Scarf et al. 
2013). 

Tulving (1983, 2002) claimed that semantic memories exist in non-human animals, 
but that episodic memories do not. Since true mental time travel is considered 
episodic in nature, and as animals were considered to lack episodic memories, it was 
concluded that animals can not engage in mental time travel, including flexible 
planning (Suddendorf and Corballis, 1997). These views gained support from the 
then-dominant view that animals are highly impulsive and hence stuck in time 
(Roberts, 2002). However, such conclusions were made before any actual 
experiments targeting animal planning had been conducted. The lack of evidence, 
mostly based on anectodes and field reports, was posited to be the evidence for 
absence (Suddendorf, 1994). 

Early research on mental time travel in animals focused on episodic memories. 
These studies formulated behavioural criteria for episodic memories which, 
following Tulving’s first definition (1972), stressed the flexible integration of what-
where-when components of an event in a memory (Clayton and Dickinson, 1998). 
Tulving’s later definition of episodic memories (1983), which involved autonoetic 
consciousness, was not used because it is empirically difficult, if not impossible, to 
determine whether animals have autonoetic consciousness. Hence, defining 
episodic memory with autonoesis made it problematic to conclude whether animals 
have episodic memories (Clayton et al. 2001; 2003). Instead, the term was replaced 
by ‘episodic-like memory’, which fulfilled the what-where-when criterion but 
bypassed addressing autonoetic consciousness (Clayton and Dickinson, 1998). 



20 

However, some claimed that a demonstration of what-where-when memory is not 
sufficient to demonstrate episodic (-like) memory because semantic memory can 
also store what, where and when information of a past event (Suddendorf and 
Busby, 2003). For example, I can semantically know the place and time of my own 
birth, without episodically remembering it. Suddendorf and Busby (2003) thus 
suggested replacing the term ‘episodic- like memory’ with ‘www-memory’ (what-
where-when memory). WWW-memories have been demonstrated in many species, 
ranging from birds, rodents and primates to cephalopods and insects (Babb and 
Crystal, 2006; Dere et al. 2006; Eacott and Easton, 2010; Eichenbaum et al. 2005; 
Feeney et al. 2009; Hampton et al. 2005; Jozet-Alves et al. 2013; Martin-Ordas et 
al. 2010; Meyers- Manor et al. 2014; Menzel, 2005; Pahl et al. 2007; Schwartz et al. 
2005; Zentall et al. 2001; Zinkivskay et al. 2009). 

The demonstrations of www- memories in animals were not viewed as decisive 
evidence of animals engaging in mental time travel, because they failed to show 
autonoetic consciousness, and, as mentioned above, they do not behaviourally 
distinguish between episodic and semantic memory (Suddendorf and Busby, 2003; 
Tulving, 2002). Tulving (2005) suggested that this problem becomes tractable 
through planning tests, if one accepts that autonoetic consciousness and mental time 
travel involve not only the past but also the future.  

2.3 Episodic foresight and the ‘spoon test’ 

The human uniqueness hypothesis initially focused on our ability to prepare for 
future motivational states, independent from our current motivational states. In a 
nutshell, the argument can be exemplified as this: while a recently fed non-human 
predator pose no danger to its prey, a recently fed human might, because only 
humans can foresee that they will be hungry tomorrow and thus they can act now to 
satisfy those future needs (Suddendorf, 1994). Suddendorf and Corballis (1997) 
formulated this idea in so-called the Bischof-Köhler hypothesis, which states only 
humans can flexibly anticipate their future states of need and act now to secure them. 
Ever since it’s formulation, the Bischof-Köhler hypothesis (henceforth the BK-
hypothesis) has led to various controversies such as whether it has been falsified in 
certain animal studies, whether humans can make decisions truly unaffected by their 
current needs, or whether the hypothesis rather tap into the semantic instead of the 
episodic system (Naqshbandi and Roberts, 2006; Osvath and Martin-Ordas, 2014; 
Raby et al. 2007). The hypothesis is notoriously difficult to interpret in precise 
motivational and cognitive mechanisms (Osvath, 2016). 

Devising non-linguistic planning tests thus became critical for testing the BK-
hypothesis. Suddendorf (1994) offered one such test, which share similarities with 
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Köhler’s original proposal as it involves two rooms; however, the critical issue was 
the satisfaction of a future motivational states instead of the current ones. Again, 
inspired by the BK-hypothesis, and again similar to Köhler’s ideas, Tulving (2005) 
devised the ‘spoon test’, which was meant to measure episodic foresight and 
autonoetic consciousness, and to be administered non-linguistically. Tulving 
explains the spoon test with an Estonian child tale, in which a girl dreams of 
attending a party where chocolate pudding is served. Unfortunately, she cannot eat 
any because the pudding is served only to those who brought their own spoon. The 
next night the girl brings a spoon to her bed, anticipating the upcoming party that 
will occur in her ensuing dream. Tulving (2005) set out three requirements for the 
spoon test: 1) the behaviour must not be instigated by a current physiological or 
psychological need 2) the cues from the learning situation should be absent at the 
time of planning (in order to exclude non-autonoetic associative learning 
mechanisms) 3) the behaviour must satisfy a future motivational state.  

Suddendorf and Corballis (2010) made the spoon test requirements more precise. 
Their new criteria involve: 1) use of single trials (to ensure the planning action is 
based on a memory of a specific event), 2) use of novel problems (to avoid innate 
response tendencies and related learning histories) 3) use of spatiotemporal 
separation between the planning action and its consequence (to show long-term 
memory) and 4) use of problems from range of domains (to avoid predispositions 
and to show domain flexibility).  

Others have developed additional behavioural criteria, by including a self-control 
component to planning experiments (Osvath and Osvath, 2008). The self-control 
aspect approaches planning from the angle of executive functions. Solving the 
spoon test while also executing pronounced self-control provides a good test of 
deliberate future orientation. First, self-control experiments induce a competition 
between two qualitatively different motivations (between an immediate small 
reward and a later but a larger reward), and this addresses the BK-hypothesis’ 
requirement of considering future motivational states. Second, self-control is 
intimately related to future orientation: it becomes hard to explain self-control 
without attributing the agent some sort of representation of the future, as otherwise 
it would always choose an immediate gratification that is perceptually present. A 
self-control setting also reveals whether the animal expects to get immediately 
rewarded by the means themselves that lead to the future reward, and thereby 
whether it is planning or not (it should always select the means if they are 
intrinsically rewarding and hence have a higher value in themselves than the small 
reward). As mentioned, this approach was first articulated by Köhler (1922), 
however it has only been used in two planning studies (Osvath and Osvath, 2008; 
PAPER I). As part of the planning study, these studies gave the animals a choice 
between an immediate food reward and an item that could be used in the future to 
get a larger reward. Such intertemporal choice tasks involving selections between 
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token versus immediate food reward are highly taxing for most animals as well as 
for human children (Beran and Evans, 2012; Hackenberg, 2009; Judge and Essler, 
2013; Lemmon and Moore, 2007; Mischel and Metzner, 1962; Thompson et al. 
1997). 

Ever since its formulation, the spoon test (and its variations) has become a 
benchmark test to measure animal planning skills. The essential idea relies on 
selecting and saving the ‘spoon’ that will only be useful in the future, in the absence 
of any perceptual cues emanating from the goal situation, except obviously from the 
spoon itself. Thus far, experimental studies on planning skills have only targeted 
two distinct animal groups: primates and corvids (for detailed reviews see: Osvath 
and Martin-Ordas, 2014; Raby and Clayton, 2009; Scarf et al. 2014; Thom and 
Clayton, 2016).  

2.3.1 Studies on primates 

Before reviewing the experimental studies, it is worth mentioning some 
observations from the wild and from zoo settings, that indicate planning in great 
apes. Field observations have suggested that wild chimpanzees flexibly plan the 
next morning’s breakfast (Janmaat et al. 2014), and that they transport tools to be 
used for out of sight food resources (Boesch and Boesch, 1984; Goodall, 1964; Sanz 
and Morgan, 2009). Wild orangutans appear to communicate the next day’s travel 
directions to conspecifics by long calls (van Schaik et al. 2013). A male chimpanzee 
in a zoo in Sweden was observed piling stones near the visitors area – hours before 
the arrival of the visitors – and later throwing the stones at the visitors when they 
appear, which indicated a dissociation between (expressed) emotional states 
(Osvath, 2009). Later, more controlled observations suggested that this chimpanzee 
also planned for deception. The chimpanzee hid projectiles out of sight from the 
visitors, by placing them under self-manufactured concealments, thus catching the 
visitors unprepared (Osvath and Karvonen, 2012).  

Experimental studies on primates have used tasks from two different domains: tool-
use and bartering with humans. While the studies slightly differed in methodology, 
they all tested whether animals can secure the means ahead of time to solve a future 
problem at a different location (See PAPER IB for comparisons and results). In the 
tool-use tasks, great apes were generally successful (Dufour and Sterck, 2008; 
Mulcahy and Call, 2006; Osvath and Osvath, 2008); however long-tailed macaques 
failed (Dekleva et al. 2012). In the bartering tasks, there was large a variation in the 
performances of the great apes, and chimpanzees performed the poorest (Bourjade 
et al. 2014; Dufour and Sterck, 2008; but see Osvath and Persson, 2013). In fact, the 
poor performance of the chimpanzees seen in the first bartering study (Dufour and 
Sterck, 2008) led to the idea that their planning skills are domain-specific 
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(Suddendorf and Corballis, 2010). However, a later study showed that chimpanzees 
can successfully plan for a bartering event (Osvath and Persson, 2013), while a more 
recent study again found chimpanzees performed markedly poorly in bartering tasks 
compared to other great apes (Bourjade et al. 2014). Tonkean macaques and brown 
capuchins also mostly failed in the bartering tasks (Bourjade et al. 2012). 

It is worth noting that the long-tailed macaques who failed in these planning tasks 
readily solve the problem when the means and the goal are within their sensory 
scope (Dekleva et al. 2012). However, inducing a spatiotemporal separation 
between the means and the problem creates difficulties. Solving such tasks requires 
a host of skills that must be coordinated, such as mental representation of a 
spatiotemporally detached events, inhibition, and some sort of means-end-
reasoning, to mention a few. Children pass similar tests, although not including self-
control settings, only around the age of four, coinciding with certain maturation of 
the episodic memory system and inhibitory skills (Atance and Sommerville, 2014; 
Redshaw and Suddendorf, 2013; Russell et al. 2010; Suddendorf et al. 2011).  

2.3.2 Studies on corvids 

There are few studies to date (before PAPER I) on corvid planning skills (Cheke 
and Clayton, 2012; Correia et al. 2007; Raby et al. 2007). All studies aimed to test 
the BK-hypothesis by investigating whether the birds could act in the present to 
satisfy future motivational states. The experiments made use of the food-caching 
behaviour typical to most corvid species. One study suggested that scrub-jays 
(Aphelocoma californica) planned for the next morning’s breakfast when caching 
the previous evening: the birds cached significantly more food in a room where they 
received no breakfast for six consecutive mornings compared to another room where 
they received breakfast (Raby et al. 2007). The behaviour of the birds was also 
sensitive to what type of food that would be lacking at a specific place the next 
morning. Later studies extended these findings and suggested that scrub-jays and 
Eurasian jays (Garrulus glandarius) can dissociate their current motivational state 
from future motivational states, i.e. they arrange their caching behaviour to satisfy 
their future needs independently from their current needs (Cheke and Clayton, 2012; 
Correia et al. 2007).  

Although these studies seemed to falsify the BK-hypothesis, they were criticized on 
other grounds. One recurrent objection questioned the domain generality of the 
corvid planning ability (Premack, 2007; Shettleworth, 2010; Suddendorf and 
Corballis, 2008, 2010). Planning skills of humans are domain-general. We can plan 
for various contexts, such as when shopping for the weekend’s party or when 
preparing to go to the moon. The corvid studies all tested the birds within the 
caching domain. Since these corvids are habitual food cachers, their planning 
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abilities might be limited to caching contexts and might thus reflect species-specific 
predispositions. Suddendorf and Corballis (2008) argued that jays might have 
evolved ways to bridge the long-term effects of their caches – akin to the taste 
aversion phenomenon in rats (Garcia et al. 1966).  However, they argued this ability 
might manifest only within the restricted domain of caching and may not apply 
across contexts. Suddendorf (1994) called such domain-specific cognitive feats 
‘laser-beam cognition’, a term first used by Cheney and Seyfarth (1990). Thus, there 
was a need for investigating whether corvid planning also apply to non-caching 
domains, and this question was addressed in PAPER I. 

2.4 Domain-general planning in ravens 
We investigated whether the planning skills of some corvids are domain-general, by 
testing ravens (Corvus corax) in non-caching domains in series of four experiments, 
using two conditions in each that were selected for their ecological invalidity: a tool-
use task and a bartering task (PAPER I). Since ravens do not use tools in the wild 
or engage in bartering with humans, successful performance cannot be explained by 
species-specific predispositions. And importantly, using these tasks also allowed us 
to compare the performances of the ravens with those of primates, who, as 
mentioned above, have been tested in tool-use and bartering tasks. Our study mainly 
replicated, but also extended, the studies on primates. We met all criteria by 
Suddendorf and Corballis (2010): we investigated the first trial performances 
separately, we used novel problems, we inserted spatiotemporal separation between 
the means and the problem, and we used two tasks from different domains. In 
addition, one experiment (Experiment 2) extended the waiting duration from 15 
minutes to 17 hours, replicating a previous study on great apes (Mulcahy and Call, 
2006). A self-control experiment was conducted (Experiment 3) by offering the 
ravens a selection between an immediate reward and the tool/bartering token that 
could be used to obtain a larger reward in the future. Experiment 4 extended beyond 
the primate studies. It was again a self-control experiment, but this time the future 
problem was much closer in time and space compared to Experiment 3. It tested 
whether ravens would take into account this temporal and spatial distance when 
making their decisions, i.e. whether the value of the tool in relation to the immediate 
food item would differ with this distance. Such temporal sensitivity indicate that the 
decisions are made for non-arbitrary futures, and that the functional item is not 
carrying an intrinsic value only. 

In the tool-use condition, the ravens matched the great apes’ performance (Dufour 
and Sterck, 2008; Mulcahy and Call, 2006; Osvath and Osvath, 2008) despite 
lacking predispositions for tool use. In the bartering condition, the ravens performed 
better than the great apes (Bourjade et al. 2014; Dufour and Sterck, 2008; Osvath 
and Persson, 2013; PAPER 1B).  The ravens also displayed pronounced self-control 
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abilities by significantly often resisting an immediate reward to obtain a larger 
reward in the future, again matching performances of great apes in a previous study 
(Osvath and Osvath, 2008). We also found that ravens ascribed a higher value to the 
functional item, in relation to the immediate food reward, when the future problem 
was closer in time. This shows a temporal sensitivity behind their decisions, and 
suggest that the functional tool was not selected ‘blindly’, i.e. through implicit 
associative learning processes (Jenkins and Moore, 1973; Shanks, 2010). Thus, 
when considering all four experiments together, we concluded that the corvids 
possess flexible planning skills that are not restricted to the caching domain, and 
which have so far only been documented in few great ape species (Bourjade et al. 
2014; Dufour and Sterck, 2008; Mulcahy and Call, 2006; Osvath and Osvath, 2008; 
Osvath and Persson, 2013).  

It’s worth mentioning that our study documented the similarity between raven and 
great ape planning on a behavioural/functional level, and that more studies are 
needed to tease apart whether the cognitive mechanisms are equally similar as well. 
The episodic system seems to be required to solve similar planning tasks in humans, 
and when chimpanzees and orangutans were successful in such an experiment 
(Osvath and Osvath, 2008), it was parsimonious to suggest that they also use an 
episodic system, given their close phylogenetic proximity to humans. When it 
comes to ravens, we cannot yet assume that they use memory systems identical to 
great apes, given the vast phylogenetic separation between these lineages. However, 
we can probably conclude that ravens rely on long-term declarative memories to 
solve such tasks.  

2.5 Future directions  

The intense emphasis on human uniqueness and autonoetic consciousness might 
steer the research away from investigating the evolutionary conserved cognitive 
mechanisms supporting prospection (Osvath, 2016; Osvath and Martin-Ordas, 
2014; Raby and Clayton, 2009). Attempting to find what makes us humans 
cognitively unique is of course interesting, however it risks unwarranted 
dichotomies that ignore biological continuity. Instead, we should focus on the 
cognitive mechanisms underlying prospection from a broader biological perspective 
(Osvath, 2016). 

Similarly, we should question the criteria that were set to reflect human uniqueness. 
Take the ‘future need’ requirement – the backbone of the BK-hypothesis. It’s not at 
all clear what is meant with terms such as ‘current motivational states’ and ‘future 
needs’ (Osvath, 2016; Thom and Clayton, 2016). There are good grounds to suggest 
that many future decisions are based on current motivational states, or current 
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motivational states that arise from “memories” of the future (Boyer, 2008; Gilbert 
and Wilson, 2007). This relates to the issue of complete contextual detachment – 
the assertion that human mental time travel can go above and beyond the cues in the 
environment (Suddendorf and Corballis, 2007). One should also question whether 
such detachment is possible, given the importance of the environmental cues in 
evoking episodic memories (Matute et al. 2011; Nairne, 2002; Osvath, 2016). 

Consequently, studying the cuing mechanisms behind memory retrieval and 
subsequent planning action is a promising avenue for understanding the 
mechanisms behind animal prospection (Osvath and Martin-Ordas, 2014). For 
example, chimpanzees and orangutans seem to remember specific events that took 
place three years ago given specific cues in the environment, and use those 
memories in a simple planning task involving tool-use (Martin-Ordas et al. 2013). 
The results strongly suggest that the memory is cued by a certain setup, which leads 
to an intentional action ‘towards’ the memory (Klein, 2013; Underwood et al. 2015). 
In our raven experiment (PAPER I), a similar cuing mechanism might have been in 
play, for example the presentation of the items on selection board might have 
constituted a cue that evoked a memory about a specific task. One can also argue 
that the cuing evoked memories not only about the specific task but also the whole 
situation, including the waiting interval between the selection and the future event. 
This could partly explain the temporal sensitivity behind the ravens’ decisions. 
Currently these are so far qualified speculations that need controlled experiments 
for verification. However, they are empirically testable and this gives better 
prospects for the prospection research on animals compared to the requirement for 
autonoesis (Osvath, 2016). 

Similarly, one should also avoid a strict dichotomy between episodic and semantic 
memory and pay attention to the intimate link between these memory systems in 
supporting planning (Irish, 2012; Irish and Piguet, 2013; Kwan et al. 2012; Schacter 
et al. 2012). Recently, Szpunar and colleagues offered a working taxonomy for the 
broad concept of prospection, with a focus on four modes of future thinking 
(simulation, prediction, intention and planning) ranging through the episodic-
semantic memory continuum (Szpunar et al. 2014). Although this taxonomy mainly 
focuses on humans, where strict non-linguistic behavioural criteria is not needed, it 
appears as the ravens’ performances in our study fit at least with ‘episodic intention’, 
which Szpunar et al. (2014) define as “setting a goal in relation to a specific 
autobiographical future event”. The ravens’ behaviours do not fit very well with the 
semantic end of this spectrum as the animals must form a specific link between the 
tool/token and the future task in order to be successful. Nonetheless, the proposal of 
such an organizational framework on mental time travel is promising in 
distinguishing between different forms of future thinking and inspiring a dialogue 
between different disciplines studying prospection (Szpunar et al. 2014).  
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3. Motor self-regulation  

Investigating the evolution of cognition is challenging (MacLean et al. 2012). Ever 
since Tinbergen’s formulation of the four questions (1963), comparative 
psychologists acknowledge that a trait can be analysed on four different levels: 
ontogeny (how it develops), causal mechanisms (e.g. how it is instantiated in the 
brain), function/adaptation (how it impacts reproduction/survival) and phylogeny 
(its evolutionary history). In order to gain a full understanding of the evolution of 
any trait, all these four questions must be answered (Shettleworth, 2010). When it 
comes to the evolution of cognition, the last two questions (function and phylogeny) 
are the most challenging to address because they require large-scale comparative 
research (MacLean et al. 2012). Importantly, what is often lacking is a robust 
quantification of the targeted cognitive skill together with valid and reliable tests 
that can be applied to wide range of species (MacLean et al. 2012). Instead, previous 
research on cognitive evolution has largely relied on proxies for cognition such as 
various brain size measures (Deaner et al. 2007; Dunbar, 1998). 

Inhibitory control is a fundamental cognitive mechanism that is necessary for many 
higher cognitive skills such as planning. Thus, its comparative investigation can 
shed light on aspects of cognitive evolution, such as whether well-developed 
inhibition correlates with complex cognitive skills as well as with neural and 
ecological factors (MacLean et al. 2014). It is only recently that comparative studies 
have begun to address the evolution of inhibitory control (Amici et al. 2008; 
MacLean et al. 2014; Vlamings et al. 2010). Since cognition cannot be directly 
observed but only inferred from behaviour, comparative zoologists must find robust 
ways to quantify the cognitive skill in question, and use cognitive tests that can be 
applied to a wide range of species (MacLean et al. 2012). When it comes to 
inhibitory control, it’s precisely the absence of a certain (impulsive) behaviour that 
implies potent inhibition.  

Large-scale comparisons mostly adopted inhibition tasks that required overriding a 
strong motor tendency to select a more appropriate response (motor self-regulation). 
Detour tasks around transparent barriers have become benchmark tasks to yield 
large comparative data on motor self-regulation (MacLean et al. 2014; Vlamings et 
al. 2010). 
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3.1 Detour tasks and motor self-regulation 

When an animal faces a reward, a direct reach for it is often a natural motor 
response. What happens when you introduce a transparent barrier between the 
animal and the reward? Then the animal has to inhibit the prepotent motor response 
of directly reaching for the reward and instead take a detour around the barrier. The 
visible reward exerts a strong perceptual pull for a direct reach, and inhibiting this 
pull and taking a detour is often difficult for animals, including human children 
(Diamond, 1990; Köhler, 1927; Vallortigara and Regolin, 2002). This need of 
inhibiting strong motor impulses makes detour tasks promising candidates to study 
motor self-regulation (PAPER V).  

Over the years, detour tasks have taken many shapes and forms, and recently they 
were simplified in order to be aptly administered to many different species in 
comparative research (MacLean et al. 2014). One detour task – the cylinder task – 
appeared to be simple and suitable for such studies (Bray et al. 2014). The cylinder 
task involves a transparent cylinder that has openings on its ends. The reward is 
placed at the centre of the cylinder and the animal has to inhibit the prepotent 
tendency of directly reaching for the reward, thus bumping into the barrier, and 
instead reach for the reward through the open end of the cylinder. Before being 
tested on the cylinder task, subjects are trained on an opaque cylinder, where they 
learn to retrieve the reward from inside the cylinder by a detour. Failures in the 
transparent cylinder task may thus not be explained by lack of task knowledge, but 
of inhibition. 

Recently, the cylinder task was one of the tests used in a large-scale comparative 
study that investigated the evolution of motor self-regulation (MacLean et al. 2014). 
This study comprised 36 different species (29 mammal and seven bird species) on 
two motor self-regulation tasks. The results were correlated with various 
neurological (e.g. absolute and relative brain size) and ecological (e.g. social group 
size and dietary breadth) factors in order to find possible proximate and ultimate 
mechanisms behind inhibitory control. The study found that in the cylinder task, the 
great apes were the most successful of all tested animals, and that absolute brain 
size was the best predictor of the task performance. The authors then suggested that 
bigger brains offer a cognitive advantage, potentially because they allow a greater 
number of neurons. 

The effort of MacLean and colleagues should be applauded as they managed to 
obtain an unprecedented amount of comparative data from 567 animals and 36 
species, which is a good approach for looking at the arguably two most difficult 
aspects of Tinbergen’s level of analysis: phylogeny and function. However, the 
tested species in this study were mostly mammals, and in particular primates, 
whereas avian species were underrepresented. Out of seven bird species tested in 
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MacLean et al. (2014), two belonged to corvid family (Eurasian jays and scrub-
jays), however, there were no species from the Corvus genus. Corvus species are 
known for their complex cognitive abilities (Bird and Emery, 2009; Güntürkün and 
Bugnyar, 2016). When it comes to self-control, they also demonstrate well-
developed delay-of-gratification skills (Dufour et al. 2012; Hillemann et al. 2014). 
We thus tested three Corvus species (ravens, New Caledonian crows and jackdaws) 
in the cylinder task, and found that all three species performed similar to the great 
apes in the replicated study (PAPER II, MacLean et al. 2014). These results 
suggested that the absolute brain size may not be a good predictor for motor self-
regulation when comparing different taxa such as birds and mammals (Chapell, 
2016; PAPER IV).  

3.2 Development of motor self-regulation 

Comparative developmental studies seek to understand how various cognitive 
mechanisms come together in different lineages to build adaptive systems (Gomez, 
2005; Rosati et al. 2014). Since cognition is not created de novo but develops 
through the combination of cognitive mechanisms, understanding how and when 
these are combined in different species can shed light on cognitive evolution. 
Findings from evolutionary developmental biology suggest that many differences 
in mature traits between species can be traced to the changes in the pace and pattern 
of the developmental pathways (Gould, 2002; West-Eberhard, 2003). For example, 
comparative developmental studies have revealed various differences in 
developmental pattern and timing (heterochrony) between great apes and humans in 
social and physical cognition (Herrmann et al. 2010; Wobber et al. 2010), which 
partly explain their cognitive differences in later life (Rosati et al. 2007, 2014). 

Comparative developmental studies can also be informative when it comes to the 
understanding of independent evolution of complex cognition: they can answer 
whether cognitive skills shared in distantly related species, such as corvids and 
primates, also show similarity in their developmental pattern (homologous 
developmental pathways) (Bertossa, 2011). Is the cognitive similarity between 
corvids and great apes in motor self-regulation (PAPER II) paralleled in the 
developmental pattern? We attempted to answer this question by examining the 
development of motor self-regulation in ravens using three detour tasks (PAPER 
III). The results suggest ravens follow a developmental pattern similar to that of 
primates, albeit at a considerably faster rate (See Chapter 4 for an interpretation of 
these results from the perspective of independent evolution of complex cognition). 
Similar investigations on heterochrony are missing in other bird species when it 
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comes to the motor self-regulation tasks involving detours, but I hope PAPER III 
will set the stage for more developmental studies on birds.  

Besides the comparisons with other species, studying the development of inhibitory 
control is valuable in its own right as inhibitory processes are acknowledged to play 
a key role during cognitive development (van den Wildenberg and Crone, 2005). 
Immature cognition is prone to attentional and behavioural interference, and a 
gradual overriding of this interference is due to the development of inhibition skills 
(Dempster, 1992; van der Molen, 2000). Consistently, children experience big 
difficulties with inhibition, and they only gradually get better throughout 
development on various inhibitory control tasks (Davidson et al. 2006; Diamond, 
1990). There is evidence that this improvement correlates with the maturation of the 
prefrontal cortex (Durston et al. 2002). Do birds also experience similar inhibitory 
problems during the juvenile period? Can parts of avian cognitive development also 
be linked to the maturation of inhibitory competency? These are some of the 
questions that can be approached by more developmental research on birds.   

3.3 Parrots, inhibition and neuronal numbers 

In PAPER II, we concluded that the absolute brain size cannot be a reliable predictor 
of the cylinder task score across birds and mammals as Corvus corvids had excellent 
scores despite having vastly smaller brains compared to great apes. Can there be a 
more meaningful brain measure in predicting the cognitive performance across 
taxa? Recently, it was shown that brains of songbirds and parrots have much higher 
neural densities than mammalian brains (Olkowicz et al. 2016). Same study found 
corvids and parrots have higher percentage of neurons located in the pallium 
compared to mammals and other birds. For example, ravens have a similar number 
of pallial neurons to capuchin monkeys, despite having a much smaller absolute 
brain size.  

Recently, it was suggested that the number of neurons in the pallium is a better 
predictor of the cylinder task performance across birds and mammals than the 
absolute brain size (Herculano-Houzel, 2017). In this paper, the cylinder task scores 
of the Corvus species tested in our study (PAPER II) was plotted together with the 
other species’ scores tested in the multi-species study (MacLean et al. 2014), and 
the pallial neural numbers roughly predicted the task performance. This hypothesis 
led to a prediction: other bird species that also have a large number of pallial neurons 
– such as parrots – should also reach high scores on the cylinder task. We thus tested 
four parrot species (African grey parrots, blue-headed macaws, blue-throated 
macaws and great green macaws) on the cylinder task (PAPER IV). However, 
somewhat surprisingly, parrots performed remarkably worse than Corvus species 
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and great apes. We offered different explanations for this poor performance, ranging 
from possible differences in brain architecture to the involvement of other cognitive 
and non-cognitive contextual factors affecting task performances (PAPER IV).  

3.4 The cylinder task: some methodological concerns 

In PAPER IV, we also found that parrots displayed strong learning effects in the 
cylinder task as there was a significant increase in successful performance over 
trials. This marks a discrepancy between the cylinder task and other motor self-
regulation tasks, where such rapid learning effects are largely missing (Berkman et 
al. 2014; Gerstadt et al. 1994; Piaget, 1954; Zelazo et al. 1996). Inhibitory problems 
present a knowing/acting mismatch: knowing the rules often does not lead to perfect 
performance as one can still act inappropriately due to an inhibitory deficit 
(Diamond, 2013).  

Take the Piagetian test of conservation of liquid volume (Piaget, 1954). In this task, 
an equal volume of water is distributed into two containers respectively. One is tall 
and thin and the other is short and thick. The subject is then asked which container 
has more water. Despite knowing that the same amount of water is present in both 
containers, even 4 to 5-year old children sometimes indicate that more water is 
found in the tall container because the higher water level creates a perceptual pull 
(Diamond, 2013). The action is not consistent with the knowledge; one also needs 
inhibition. Other motor self-regulation tasks use a task-switching component to 
create a knowing/acting mismatch: on certain trials, subjects must switch their 
previously reinforced behaviour in response to a different stimulus (e.g. stop-signal 
task, go/no go task). Subjects know the rule that they need to change their response 
when a new stimulus arrives, however they have problems inhibiting the previously 
repeated action. 

Potentially as a result of such dissociation between rule knowledge and action, it is 
rare to observe a strong learning effect in motor self-regulation tasks, thus inhibitory 
control is often considered as ‘hard to train’ (Killcross and Coutureau 2003). How 
can then the observed rapid learning curves in the cylinder task reconcile with the 
inhibitory requirements of this task? Can the knowing/acting mismatch weaken after 
repeated trials on the cylinder task? How about the species like ravens and 
chimpanzees that do not show any learning curves and perform well already on the 
first trials? These questions are discussed in PAPER V.  

PAPER V is a review paper on the detour paradigm in animal cognition. It identifies 
some of the cognitive mechanisms involved in solving the detour problem, and 
critically investigates the inhibitory requirement of the detour tasks in relation to 
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learning effects. A main conclusion from these considerations is that some species 
differences in the cylinder task might not only reflect differences in motor self-
regulation but often also in functional generalization from the opaque cylinder to 
the transparent cylinder as well as the learning speed in solving the transparent 
cylinder task. Thus, acknowledging the potential involvement of these other 
cognitive mechanisms might provide a more balanced approach to comparative 
studies, instead of merely looking at the terminal scores over ten trials as a measure 
of a species inhibitory competence. Besides, these other cognitive mechanisms are 
meriting to study on their own behalf. For example, it was recently proposed that 
neuronal numbers might be a better predictor of the flexible application of rules to 
new situations as well as of the speed of learning, rather than the absolute cognitive 
skill (Güntürkün et al. 2017). With careful modifications to, and controls of, the 
setup (as discussed in PAPER V), the cylinder task can be a versatile tool for testing 
such skills along with inhibition. 

One of the major challenges in phylogenetic comparative studies is to develop 
robust tests that reliably quantify the cognitive skill in question across a wide range 
of species. Thus, critical analyses of the methodology and cognitive requirements 
of the cylinder task may make this task more robust. For example, the current 
criterion of the cylinder task counts all touches to the barrier as an inhibition failure, 
even if the touch was not directed towards the reward behind the barrier. This might 
create a bias against those species – especially exploratory and tactile ones – that 
touch the barrier for other purposes than attempting to reach the reward (Noland and 
Rodrigues, 2012). PAPER IV analysed such error patterns in four parrot species, 
and found two species made many touches of the barrier that were not ‘food-
directed’, suggesting that those behaviours were not inhibition failures. This relates 
to a general challenge in the field of comparative psychology: tasks should be 
adapted to the sensorimotor apparatus and the ecology of the tested species. This is 
a way to avoid the mistake of measuring athletic skills by testing fish, monkeys, 
birds and humans on climbing a tree (Macphail, 1987; de Waal, 2016). 
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4. Homoplasy and complex cognition 

Two papers in this thesis found that corvids perform on a par with great apes: in 
planning (PAPER I) and motor self-regulation (PAPER II). These papers thus 
extend the list of cognitive skills that corvids show similarities to great apes (Emery 
and Clayton, 2004; Güntürkün and Bugnyar, 2016). What is the evolutionary 
mechanism that produces this similarity in these distantly related groups? Is this 
similarity due to homology (due to common ancestry), or homoplasy (due to 
independent evolution)? The homology explanation is not sufficient in explaining 
this similarity because the common ancestor of the groups – a stem amniote – likely 
did not have such complex cognitive skills. Therefore, we have to posit a 
homoplastic explanation: corvids and great apes evolved similar levels of complex 
cognitive abilities independent of each other. This leads to a conclusion that there 
might be different ways to build complex cognitive skills. Understanding the 
underlying principles behind such independent cognitive similarity can help us 
understand the building blocks of complex cognition – and its repeatability (Gould, 
2002; Osvath et al. 2014). Despite the surge of comparative studies on cognitive 
abilities, the mechanisms behind such independently evolved complex cognition 
have received relatively little theoretical interest (Papini, 2002; Seed et al. 2009; 
Osvath et al. 2014). 

In order to better understand the mechanism behind the independent evolution of 
complex cognitive skills, it is useful to distinguish between two major homoplastic 
mechanisms: convergence and parallelism. Convergence describes a trait similarity 
in two different lineages, independently arising from different developmental 
mechanisms or underlying substrates. A text-book example of convergence is insect 
wings and bird wings. While bird wings are constructed using forelimbs, insect 
wings are built using body scales. Parallelism, on the other hand, refers to a 
similarity arising independently from the same developmental mechanisms or 
underlying substrates. An example of parallelism is the bird wings and bat wings, 
as both lineages used the same underlying structure (forelimb) when building the 
wings independently from each other (their last common ancestor did not have 
wings, but had forelimbs). Both mechanisms give central importance to selective 
pressures as a major evolutionary force. However, parallelism also stresses the 
importance of the previously evolved characters that limit the future trajectory of 
evolution: the evolution of wings in birds and bats depended on their common 
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ancestor evolving forelimbs. Such constraints indicate that the possible evolutionary 
trajectories are restricted, due to past contingencies, and the degrees of freedom in 
building intelligence are perhaps more limited (Gould, 2002; Osvath et al. 2014).  

There is an ongoing debate in biology on the precise characterization of homology 
and homoplasy, given the presence of genetic deep homologies of independently 
built traits; as well as the presence of non-homologous developmental pathways 
behind homologous traits in different lineages (Arendt and Reznick, 2004; Beatty, 
2006; Hall, 2013; Pearce, 2011; Powell and Shea, 2014; Scotland, 2011; Shubin et 
al. 2009; Wray, 2002). Similarly, there is no single, undisputed definition of the 
term parallelism and many different classifications have been offered. The term has 
been restricted to genotypic homoplasy (Gould, 2002; Hall, 2007; Pearce, 2011; 
Scotland, 2011), homologous developmental pathways generating the homoplastic 
trait (Powell, 2007) and whether the taxa that independently evolved a particular 
trait are closely related (Arendt and Reznick, 2008) or share a comparable ancestral 
starting point (Güntürkün and Bugnyar, 2016; Rehkämper and Zilles, 1991).  

The issue becomes even more complex when it comes to cognition, as it comprises 
multiple interacting levels such as the body, the brain, neuro-regulatory genes etc. 
(Bertossa, 2011; Güntürkün and Bugnyar, 2016). Since all animals share a common 
ancestor, they inevitably share deep homologies on some level of analysis 
(Bogonovich, 2011; Wagner, 2007). For example, the same gene family (Pax) is 
involved in eye development in vastly diverged taxa such as arthropods and 
vertebrates (Shubin et al. 2009). This suggests that the homology/homoplasy as well 
as the parallelism/convergence distinction might be level dependent: it depends on 
what level of biological organization is selected when making the distinction 
(Ereshefsky, 2007; Griffiths, 2007; Hall, 2003). We thus need to focus on multiple 
levels when investigating the independent evolution of complex cognition between 
different groups. Brains constitute one level, but perhaps equally important is the 
pattern of cognitive development (Osvath et al. 2014). 

4.1 Developmental parallels 

In PAPER III we investigated the development of motor self-regulation in ravens 
using three detour tasks, and found similarities to primates, including humans, in 
the pattern of development: the sequence in which these detour tasks were solved 
throughout infancy were similar in raven chicks to those of rhesus macaque and 
human infants (Diamond, 1990). This finding provides some support for parallelism 
as it hints at the shared developmental mechanisms used by taxa as distant as corvids 
and primates. However, there might also be convergent elements on other levels of 
development. For example, one future way to address this issue might be to 
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investigate whether these groups require fully developed motor self-regulation skills 
before developing self-control competency to pass delay of gratification tasks used 
in PAPER I. 

When it comes to planning skills, developmental studies in corvids are lacking, as 
opposed to such studies on children (Hudson et al. 2010). Children generally 
succeed in the planning tasks studied in PAPER I around the same time they develop 
episodic memory skills (Busby and Suddendorf, 2005). Future studies should 
investigate the developmental trajectory of episodic memory and planning abilities 
in ravens and other corvids, to figure out the potential developmental parallels to 
those of children. 

4.2 Homoplastic brains 

Does cognitive similarity between corvids and great apes entail similarity in their 
neural architecture? This is one of the cardinal questions in the field of comparative 
neuropsychology (Güntürkün and Bugnyar, 2016). Before looking at this question, 
a brief summary of avian brains is necessary, together with the identification of the 
components within the avian brain that likely support inhibition and planning skills.  

On the surface, the avian and mammalian brain are strikingly different. While the 
mammalian forebrain comprises most of the neocortex that has a laminar and 
columnar architecture, a similar structure is missing in the bird brain, which instead 
contains multiple large aggregations (nuclear architecture) without an apparent 
laminar or layered structure. This apparent lack of neocortex in the bird brain 
together with the old and erroneous assumption that bird brains cannot support 
complex cognitive skills led to the incorrect conclusion that the it was mostly the 
subpallial regions that birds and mammal brains shared (Edinger, 1899).  

However, this picture gradually changed, thanks to studies that found similarity in 
the neural connectivity and neural architecture between avian and mammalian 
brains (Karten, 1969). The discoveries of homologous neural types and circuits as 
well as other functional similarities between avian and mammalian brains through 
genetic, physiological and anatomical studies led to a redefinition of the 
nomenclature of the bird brain, where it was declared that the large parts of the bird 
cerebrum are pallial instead of striatal (Jarvis et al. 2005; Güntürkün and Bugnyar, 
2016; Karten, 2013). Later studies found other striking similarities such as the 
presence of laminar and columnar wiring in bird brains (Wang et al. 2010; Jarvis et 
al. 2013). More recently, it was found that parrot and songbird brains have markedly 
high neural densities than mammalian ones (Olkowicz et al. 2016). 
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The prefrontal cortex is thought of as the seat of executive functions in mammalian 
brains (Güntürkün, 2005). Birds have an associative brain structure called 
nidopallium caudolaterale (henceforth NCL), and it is considered to be an analogue 
of the prefrontal cortex, given its role in executive functions (Güntürkün, 2005; 
Helduser and Güntürkün, 2012; Mehlhorn et al. 2010; Mogensen and Divac, 1982; 
Rose and Colombo, 2005; Veit and Nieder, 2013). NCL shows remarkable 
similarity to the prefrontal cortex in neurochemistry and connectivity pattern 
(Güntürkün, 2005; Shanahan et al. 2013). However, despite sharing many 
homologous elements, NCL and prefrontal cortex also diverge in some 
characteristics such as certain gene expression patterns and their relative position in 
the cerebrum, which indicates they represent a case of homoplasy (Güntürkün and 
Bugnyar, 2016).  

Can complex executive skills of corvids (e.g. planning and inhibition) be explained 
by their brain architecture? On a gross scale, corvids have a large brain-to-body-
ratio (Cnotka et al. 2008; Olkowicz et al. 2016), as well as some of the largest brains 
of all birds (Lefebvre et al. 2004). However, from a mosaic evolution perspective, 
it might be more meaningful to focus on the specific regions involved in executive 
functions, such as NCL. When it comes to inhibitory control, NCL supports motor 
self-regulation (Güntürkün, 1997; Hartmann and Güntürkün, 1998; Kalt et al. 1999) 
and delay-of-gratification (Kalenscher et al. 2006). NCL is also considered to play 
an important role in supporting episodic memory and planning skills in birds (Allen 
and Fortin, 2013). The associative brain regions (nidopallium – thus NCL – and 
mesopallium) are relatively enlarged in corvids compared to other bird species, with 
the exception of parrots (Mehlhorn et al. 2010; Sayol et al. 2016). Interestingly, a 
similar enlargement occurred independently in primates as they possess relatively 
larger associative brain regions compared to other mammals (Rehkämper et al. 
1991).  

Humans need an intact episodic system to solve the planning tasks the ravens were 
tested on in PAPER I (Schacter et al. 2012). Do ravens use similar neurocognitive 
structures when planning? In humans, the brain network supporting episodic 
memory largely overlaps with the network supporting future planning (Addis et al. 
2007). The core network involves the prefrontal cortex, parahippocampal regions 
and the hippocampus. Birds have analogous regions to the prefrontal cortex (NCL) 
and the parahippocampal region (parahippocampalis). The bird hippocampus is 
largely homologous and functionally similar to the mammalian one, although the 
finer details of this homology is yet to be established (Rattenborg and Martinez-
Gonzalez, 2011; Striedter, 2016). Allen and Fortin (2013) investigated the 
evolutionary roots of the episodic memory network, and concluded that the 
fundamental circuitry is present in birds, and possibly even in reptiles. Episodic 
memories critically depend on the binding and integration of the contextual details 
of a single event such as where-what-when information; and this binding is mediated 
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by the hippocampus (Buckner, 2010; Buzsaki and Moser, 2013; Hassabis et al. 
2017). In all vertebrates, the main function of the hippocampus appears to be spatial 
navigation (‘where’ information), and it has been postulated that the episodic 
memory evolved when the hippocampus gained this new function of contextual 
binding, once it started receiving highly processed contextual input from associative 
brain regions (Allen and Fortin, 2013; Buzsaki and Moser, 2013). Some suggested 
that the episodic memory evolved and become more complex independently in birds 
and mammals, due to the relative enlargement of the hippocampus as well as the 
higher processing of the contextual information in the association brain areas in both 
groups (Striedter, 2016). Unfortunately, at this stage these hypotheses remain rather 
speculative as we do not know the finer neurological details of the episodic system 
in birds, and whether corvid planning skills are mediated by the episodic system as 
in mammals. However, future studies can shed light on the precise involvement of 
different neural components (such as NCL), e.g. by intervention studies on avian 
species that has demonstrated both episodic memory as well as planning skills, such 
as scrub-jays (Clayton and Dickinson, 1998; Clayton and Emery, 2015; Raby et al. 
2007). 

Corvids have a long developmental period compared to other birds, just as many 
primates have a longer developmental period compared to other mammals. Corvids 
are altricial birds, which means that hatchlings are incapable of locomotion. This is 
in contrast to precocial birds, like chickens, where hatchlings are mobile. Whereas 
brain growth is to a great extent finished before hatching for precocial birds (Bennett 
and Harvey, 1985), it continues during the post-hatching period for altricial birds 
(Starck and Ricklefs, 1998). The majority of post-hatching brain expansion in 
altricial birds occurs in the telencephalon (Charvet and Striedter, 2011), which 
contains structures such as NCL that support executive functions (Güntürkün, 
2012). Such post-hatching telencephalic enlargement might be especially 
pronounced in corvids that go through slower developmental period with extended 
parental care and delayed brain maturation compared to other bird species (Striedter 
and Charvet, 2008).  

Given these considerations, the executive feats of ravens (PAPER I and PAPER II) 
can partly be explained by enlargement of associative brain regions – especially the 
NCL. However, rather than the size alone, the level of analyses should also include 
the number of neurons within the associative regions (Herculano-Houzel, 2017). In 
primates, including humans, it was recently found that the prefrontal cortex holds 
around 8% of all cortical neurons (Gabi et al. 2016). We are so far lacking 
information about the corresponding numbers in birds, and future studies might 
reveal whether corvids differ from other birds as well as from primates in the 
proportion of neurons located in NCL. A potential difference in such numbers 
between corvids and parrots might also provide an explanation for why parrots 
performed poorly in the cylinder task compared to corvids (PAPER IV).  
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Bird brains can no longer be considered as just birdbrains, given their large neural 
densities and the presence of brain structures supporting complex cognition, as well 
as their complex cognitive skills in various domains (PAPER I, II).  In fact, bird 
brains might arguably be more efficient than the mammalian brains with the same 
neural numbers, because the low inter-neuronal distances – due to high neural 
density – allow a faster processing speed, thus increasing the information processing 
capacity (Dicke and Roth, 2016; Olkowicz et al. 2016). This might partly explain 
why ravens outperform capuchin monkeys, which have a very similar number of 
pallial neurons, on planning tasks (PAPER I), as well as on the cylinder task 
(PAPER II). The number of neurons seems to provide a better measure for the 
information processing capacity of brains than the previously used gross measures, 
such as absolute or relative brain volume, however, future studies might shed light 
on the involvement of other neural factors such as myelinization, number of 
synapses and the speed of synaptic transmission (Dicke and Roth, 2016). 

4.3 Selective pressures for complex cognition 

The evolution of cognition is generally considered to reflect adaptations to 
environmental complexity (Powell et al. 2017). What are the selective pressures 
behind the evolution of cognitive skills such as inhibition and planning in corvids? 
I will discuss a few candidates, but we are still far from a well-founded hypothesis. 

According to the social intelligence hypothesis, navigating complex social 
environments is the key evolutionary factor behind complex cognition (Dunbar, 
1998; Humphrey, 1976). Most corvids live in complex social environments where 
individuals are attuned to social dynamics such as kin relationships, affiliations and 
hierarchical group structures (Boeckle and Bugnyar, 2012; Bugnyar, 2013; Massen 
et al. 2014a, 2014b). However, in contrast to primates, in birds it is not the size of 
the social group but rather long-lasting partnerships that correlates with brain size 
(Dunbar and Shultz, 2007; Shultz and Dunbar, 2007). Both long-term memories and 
inhibition could be particularly useful in such complex social settings: episodic 
memory would allow remembering specific social events (e.g. who was aggressive 
or cooperative?), and this information can be used in forming alliances and engaging 
in reciprocal social exchanges (Allen and Fortin, 2013; Loretto et al. 2017; Müller 
et al. 2017). Episodic memories would also be useful when protecting food caches 
from potential pilferers (Bugnyar, 2013). Indeed, many corvid species such as 
scrub-jays, ravens and Clark’s nutcrackers seem to remember which individual was 
watching a particular food caching event and they protect their caches accordingly 
(Bugnyar et al. 2016; Bugnyar and Heinrich, 2005; Bugnyar and Kotrschal, 2002; 
Clary and Kelly, 2011 Dally et al. 2006; Emery and Clayton, 2001; Heinrich, 1999).  
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Perhaps more related to prospection skills, a more complex social environment can 
also lead to an “arms race of prediction” (Osvath, 2016). Being predictable is not an 
evolutionarily stable strategy (Brembs, 2011), as it can lead to unfavourable 
outcomes such as falling prey to predators or being outcompeted by conspecifics for 
limited resources. It’s been suggested that predicting the behaviour of conspecifics 
may be particularly beneficial for species such as corvids and great apes, which live 
in complex social environments, and this in turn may have led to the evolution of 
more complex planning abilities (Osvath, 2016).  

Similarly, inhibitory control would be useful in a social setting, e.g. when inhibiting 
feeding in the presence of a dominant individual (Amici et al. 2008; Stevens, 2010, 
2014). Indeed, increased capacity of inhibition was posited to be one of the driving 
forces behind high levels of cooperation in our species, by enabling high levels of 
social tolerance (MacLean, 2016). In primates, species having high levels of fission-
fusion dynamics – that is characterized by a high degree of variation in group 
composition across time – have higher levels of inhibitory control compared to 
species with more cohesive group structure (Amici et al. 2008; Aureli et al. 2008). 
While a similar investigation is yet to be conducted on birds, it’s worth noting that 
raven non-breeders also display high levels of fission-fusion dynamics where the 
individuals disperse over large areas and they form temporary groups near food 
sources and for night roosts, and they engage in repeated interactions with each other 
in different locations (Loretto et al. 2017). 

According to the cognitive buffer hypothesis, the need for solving novel problems 
in a dynamic environment is the central driving force behind complex cognition 
rather than navigating complex social life per se (Deaner et al. 2003; Rosati, 2017; 
Sol, 2009). Corvids first arose and diversified in the beginning of the Miocene 
epoch, about 20 million years ago (Jønsson et al. 2012). This period is characterized 
by large climatic changes, marked by middle Miocene extinction that wiped out 
large number of terrestrial and aquatic species due to cooling. Could corvid 
cognitive skills be better explained by an adaptation to the harsh environmental 
conditions in Miocene, which necessitated unique problem-solving skills 
(Bogonovich, 2011; Osvath, 2013)? Especially relevant for the evolution of 
planning skills might be the need to forage for food that is displaced in time and 
space, which might have been required in harsh Miocene conditions (Clayton and 
Emery, 2008). Representing the out-of-sight food requires certain detachment from 
‘here and now’- hence a form of displacement. Interestingly, such out-of-sight 
events has been suggested as a key environmental pressure for the evolution of 
symbolic communication in humans (Bickerton, 2014; Gärdenfors and Osvath, 
2010; Osvath and Gärdenfors, 2005) and some have suggested that ravens display 
certain form of displacement when recruiting conspecifics to out-of-sight food 
resources (Fitch et al. 2010). 
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It’s worth noting that these hypotheses are not mutually exclusive as social and 
environmental factors interact in shaping the evolution of cognitive skills. We need 
large-scale comparisons involving many species in order to get a clearer picture of 
the selective pressures driving cognitive evolution. 

4.4 Embodied cognition 

Around 30 years ago, humans were considered as a singleton in evolution with their 
complex cognitive abilities. This picture gradually changed with the demonstration 
of complex cognitive abilities in e.g. great apes, dolphins, parrots and corvids. As 
the scope of comparative cognitive research grows, we realize that behaviours 
requiring some form of cognitive sophistication may not be limited to vertebrates 
but may also be present in molluscs such as octopuses and in arthropods such as 
jumping spiders and honeybees (Cheng et al. 2002; Cross and Jackson, 2016; Finn 
et al. 2009).  However, as the range of tested species increases, we might need to re-
examine our view of cognition and make it less human-centred in order to reach a 
better understanding of the evolution of mind in its broadest biological context 
(Keijzer, 2017).  

Keijzer claims it is inadequate to take human intelligence as the reference for 
assessing complex cognition in different species, and it is also not sufficient to 
define cognition fundamentally as information processing (Shettleworth, 2010). He 
proposes that ‘biologically embodied cognition’ might provide a broader view, as it 
assigns cognition to wide range of systems which do not display mind in any 
ordinary way, and yet they allow smooth bodily coping with the environment for 
self-preservation. This is a similar idea that has been postulated by the well-
established field of embodied cognition and the Bayesian approach to mind (Osvath, 
2016). In short, the idea is that cognition exists not in order to understand the world 
but to guide action to keep the agent in equilibrium with its environment 
(homeostasis) (Clark, 2013; Friston, 2010; James, 1890; Pezzulo and Cisek, 2016). 
All life is embodied and homeostasis is a universal property of living systems: all 
life engages in active regulation to maintain the system within certain boundary 
conditions (goal state) for its preservation and reproduction. This view suggests life 
and mind are connected, and cognition should be understood similarly (e.g. Deacon, 
2011; Pezzulo, 2008).  

Anticipation and prediction are essential components for sensorimotor control, as 
can be exemplified by the funny observation that you cannot tickle yourself: your 
brain predicts and expects the effect of your action, thus killing the surprise. 
According to the ‘predictive brain hypothesis’, brains constantly attempt to predict 
what is to come in order to cope with the ever-changing environment (Bar, 2009; 
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Clark, 2013). These predictions are formed through extracting environmental 
regularities, and they get updated when the sensory inputs do not confer with those 
predictions (Friston, 2010). The hypothesis is that higher-order detached skills such 
as planning and imagination are grounded in this fundamental mechanism of 
predictive sensorimotor processing; and some cognitive models do not even 
distinguish between perception, action, and planning (Toussaint, 2009). Thus, 
higher and detached faculties like planning and mental time travel are grounded in 
sensorimotor mechanisms that are anticipatory in nature (Pezzulo, 2008). 
Consistently, it has been suggested that neural mechanisms supporting mental time 
travel originally evolved to support spatial navigation (Buzsaki and Moser, 2013; 
Hills, 2006).  

This idea also forms the basis of the ideomotor/feeback control theory. Anticipation 
arises from the very principles of feedback control: actions are selected based on the 
anticipation and the evaluation of their sensory consequences (James, 1890; 
Pezzulo, 2008). Thus, animals are not mere stimulus-response machines but they 
constantly engage in prospection and prediction – a process also called active 
inference (Friston, 2010; Pezzulo and Castelfranchi, 2009; Seligman et al. 2013). 
There is thus a continuity between simpler and more complex forms of prospection.  

Since bodies are fundamentally and causally part of cognition (Chemero, 2011), and 
since corvids and great apes vastly differ in their embodiment, can we really 
conclude they are cognitively similar? Are we not neglecting this bodily aspect of 
cognition when naming corvids as ‘feathered apes’ (Barrett, 2011; Emery, 2004; 
Osvath et al. 2014)? Corvids are adapted to flight, which requires fast decisions 
making on the wing. Thus, calling corvids feathered apes might neglect this 
fundamental embodied aspect of corvid cognition which is different than the apes 
(Emery, 2016). But there are attempts to bring to attention this bodily contribution 
to cognition, by the idea of bodily developmental constraints (Barton, 2012; 
Holekamp et al. 2013). The idea is that the variation in body plans between species, 
due to phylogeny and past adaptations, can partly explain the variation in their 
cognitive flexibility. Thus, comparative studies should pay attention to this bodily 
aspect of cognition instead of only focusing on the selective pressures. 
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5. Concluding remarks 

Cognitive zoology is a relatively new research area that aims to understand the 
evolution of cognition. As the comparative scope of tested species grows, we have 
a better understanding of why and how cognition evolves. This thesis contributes to 
this endeavour by studying the components of executive functions in corvids, and 
(to some extent) parrots. The studies in this thesis found behavioural (functional) 
parallels between corvids and great apes, leading to questions such as whether the 
parallels also exist on the mechanistic level (e.g. on the neural and developmental 
mechanisms). The picture of cognitive evolution will not be sufficiently clear until 
comparisons expand to multiple levels of biological organization. It is remarkable 
that birds and mammals show similar complex cognitive skills despite being 
separated from each other for around 300 million years. Future studies should 
expand the horizon of phylogeny by testing basal mammals and basal birds, in order 
to understand what is novel and what is conserved in evolutionary history.  

It is exciting to see many labs around the world cooperate to understand the 
evolution of the mind. While the number of species tested is growing, there is a need 
of finding valid and reliable cognitive tests to yield robust comparisons of the 
targeted cognitive skill in wide array of species. This thesis highlights some of the 
challenges of such large-scale species comparisons and offers some ways to tackle 
them.  

Studying the evolution of cognition brings its unique challenges compared to 
studying other biological phenomena. First, cognition cannot be observed but only 
inferred from behaviour (in case of animal cognition: non-linguistic behaviour). 
Thus, creative test designs are necessary to eliminate alternative explanations for 
the observed behaviour (Shettleworth, 2010). Second, cognition is not static, like a 
bone in a body, but an active embodied process that emerges though the interactions 
with various components that are in constant flux (e.g. attention, motivation, 
memory, bodily orientation, the environment itself etc.). Thus, cognitive tasks 
should take into account these factors as well as the ecology of different species to 
make the comparisons meaningful (Bitterman, 1975). Third, the same concept can 
mean different things to different researchers within the field of cognitive science, 
creating a problem of incommensurability (Kuhn, 1982). For example, terms like 
‘planning’ and ‘self-control’ can evoke different representations in different people, 
thus it is essential to be clear about in which contexts these terms are used and 
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measured in cognitive studies on animals. Paying attention to such factors will be 
fruitful in understanding the place of the mind in the universe.  
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