
Faculties of Humanities and Theology
Department of Philosophy

Cognitive Science

Lund University Cognitive Studies 172
ISBN 978-91-88473-73-8

ISSN 1101-8453

z
a

h
r

a
 g

h
a

r
a

ee 
 

A
ction in M

ind – A
 N

eural N
etw

ork A
pproach to A

ction R
ecognition and Segm

entation

Action in Mind
A Neural Network Approach to Action Recognition 
and Segmentation
zahra gharaee 

Cognitive SCienCe | Lund univerSity

1729
78

91
88

47
37

38
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

18
   

   
   

  N
O

RD
IC

 S
W

A
N

  E
C

O
LA

BE
L 

 3
04

1 
09

03
 

 
This thesis investigates solutions to 
different aspects of action recognition in 
artificial systems. To this end several 
variants of a multi-layer cognitive model 
based on artificial neural networks are 
designed and implemented. The novel 
neural network architectures are validated in 
a number of experiments with different 
types of action input. 
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Introduction and the scope of the thesis

As humans, we are extremely efficient in recognizing the actions of others. For
example, we see immediately whether someone is walking or jogging, even if the
movements are very similar. Furthermore, recognizing actions in the form of
gestures or facial expression plays a major role in human communication. In
modern society one finds ever more artificial systems that we are supposed to
interact with in various ways. In particular, robotic systems, for example lawn
mowers and vacuum cleaners, move around in our spaces. In the near future,
we can expect many more such robotic systems that we have to interact with.
Social robotics is a growing field with many different applications. Therefore an
increasingly important scientific and engineering problem is to develop artificial
systems that recognize or categorize actions in an efficient and reliable way.
Solutions to this problem are important for many kinds of applications.

One application example concerns interactions between a human and a robot
assistant in health care situations. This scenario may be particularly relevant
for old people who have some form of disability or memory condition. One
can, for example, imagine that the robot helps the person to get in and out of
bed, to open doors, to put out the trash, to help with laundry, and to assist
in kitchen activities. To understand the activities and goals of the person, the
robot must be able to attend to his/her motions and recognize the actions and
the intentions behind them.

Another area where action recognition is important concerns surveillance sys-
tems. In this case, the system receives huge amounts of information about the
scenes that are surveilled. This information may contain the physical move-
ments of one or more individuals (humans or animals) acting in various ways
depending on their different intentions. In such situations, an automatic action
recognition system that can categorize the actions into meaningful classes would
be very useful. Furthermore, if the system can interpret the intentions of the
individual, it can predict possible future actions, which may prevent dangerous
incidents or illegal activities.

A third area where action perception will be useful is within the entertainment
industry, particularly in different forms of computer-based games where there
is a high demand for human-computer interactions. In advanced games where
the human body is involved, the gaming would become more advanced and
challenging if the computer can identify the actions performed by the human.
Again, if the computer can read the intentions of the individual, it can predict
future actions and thereby make the game more strategically interesting.
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There are many other applications for action recognition tasks. In general, to
have an effective interaction with another agent like a robot, it is necessary,
both for a human and for a robot, to perceive the motions and to recognize the
actions of the other. Therefore, human-robot interaction is largely dependent
on an efficient action recognition system. Advances on the action recognition
problem will make the robot able to have richer interactions with humans.

This dissertation is a contribution to this problem and its main purpose is to
develop an efficient action recognition framework in a robotic context. My
objective has been to develop systems, based on neural networks that can learn
to recognize or categorize different human actions. I have also tested the systems
using different types of input data – prerecorded and presegmented movies as
well as online camera input where the system learns to categorize actions in real
time. I have evaluated the systems in a number of experiments, in particular
with respect to the accuracy of the categorization and the efficiency in learning
a new set of action categories.

When developing the systems presented in this thesis, I have taken inspiration
from how humans recognize and categorize actions. As humans we are equipped
with a very efficient action recognition mechanism that we use automatically in
our daily experiences. Experiments on human subjects reveal that they are
capable of recognizing the actions performed by an actor after only about two
hundred milliseconds of just observing the rough kinematics of the movements
of the body joints (Johansson (1973)). Further experiments by Runesson and
Frykholm (1983) and Runesson (1994) show that subjects extract subtle details
of the actions performed, such as the gender of the person walking or the weight
of objects lifted (where the objects themselves cannot be seen).

My aim has been to use available knowledge about human action recognition
in implementing artificial systems. From a computational point of view, action
recognition is quite difficult. First it requires a channel through which the
artificial action recognizer communicates with humans. Humans and animals
communicate with each other through sensory modalities such as vision, hearing,
olfaction and touch. For example if you see your friend, then you wave your hand
or nod your head to greet her and you do it only when you believe that she will
see your action. The systems studied in this thesis use only the visual modality,
when the system is interpreting human actions.

There are different types of visual input that can be used for action recognition
systems, for example RGB images, depth maps and skeleton information. Each
type has its advantages as well as limitations. Some of the action recognition
methods are largely dependent on the types of input they utilize. For the aims of
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this research, I have provided the system with skeleton information of a moving
human body collected by a Kinect camera. The input information consists of
a vector of 3D positions of the joints of a human skeleton (see the cover of the
book). In earlier research with an action recognition architecture that is similar
to the neural network architecture of this study, 2D contours (black and white
images) were also used as input (Buonamente et al. (2016)).

In my studies, an action is represented to the action recognizer by a sequence of
consecutive posture frames, where each frame is composed of 3D joint positions.
Each posture represents the static pose of the action performer, while the con-
secutive posture frames show the kinematics of the action during a time interval
(motions). This generates spatio-temporal characteristics of the actions, which
is the central structure to be dealt with for the action recognition system.

If, for example, an action sequence is represented by on average 50 posture
frames and each posture frame represents 20 skeleton joints in 3D space, then
the system receives as input data 50 vectors of 60 dimensions just by observing
a single action sequence that is performed. This illustrates that the problem
involves a high-dimensional input space, which makes the perceptual analysis
complicated. To deal with this condition, a method is required that maps from
a high-dimensional input space to a low-dimensional space without omitting the
substantial information of the action data.

The multi-layer neural network architectures that have been designed and de-
veloped for this research are able to deal with different problems relating to
action recognition tasks. The main modules of the proposed architectures are
preprocessing, neural network layers and ordered vector representation. The
preprocessing module modifies the input data to make the data independent of
variation in viewpoint angles and change in distance and it employs cognitive
functions like an attention mechanism and dynamics extraction to improve the
performance of the system.

The neural network layers perform several tasks in the architectures. First
comes a mapping from the high-dimensional input space to 2D topographic
maps that extract spatio-temporal features of the actions. Second, based on
sequences of the extracted features, another neural map is formed with clusters
or sub-clusters corresponding to different actions. Using self-organizing neural
networks such as self-organizing maps or growing grids performs the first and
the second tasks. The third task performed by the third-layer neural network is
to label the clusters/sub-clusters of the previous neural map and thus categorize
the actions.

For the aims of this study, I implemented different levels of action recogni-
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tion architectures to improve the efficiency and robustness of the system and
to make it function for a wide range of actions. First, I developed a system
that recognizes the actions through the physical movements of the performer
without involving any other entities. Next I developed a hybrid system that
recognizes actions also involving objects, for example that the agent moves an
object to a particular area. Then I developed the architecture to perform action
recognition in an online real-time mode. Next, the action recognition system
was developed to recognize unsegmented actions in online test experiments. Fi-
nally, a new architecture that builds on growing grid neural networks instead
of the self-organizing maps was designed and implemented. This change in the
underlying structure made it possible to perform the action recognition tasks
more efficiently and the learning was much faster.

In the following, I will, in Chapter 1, present the biological motion analysis
as well as intentional actions that sometimes result in a change in the world
as a consequence of the performance of an action. In Chapter 2, the action
recognition problem and its challenges including the input space are described.
Other proposed approaches of the literature for categorizing and recognizing
human actions, which see the same problem from different perspectives such
as human-robot interactions or by using language/concept for recognizing the
actions, are presented in chapter 2. In Chapter 3, I describe my proposed action
recognition approach together with the biological and cognitive inspirations used
to develop different components of the system. The action segmentation problem
is described in Chapter 4, together with psychological approaches to human
action or event segmentation. Later in Chapter 4, I present the computational
models for action segmentation. Next, In Chapter 5, I describe the experiments
I have performed during my thesis work to study different angles of the action
recognition problem. After these background chapters follow the six articles
that form the core of this thesis.
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Part I

Action in Mind: A Neural
Network Approach to Action

Recognition and Segmentation

1





Chapter 1

Intentional actions vs
biological motion

1 Introduction

Before answering the question of how we perceive the actions performed by
other humans, let us first consider how we produce an action. The muscles
are activated by motor neurons that are the final neural elements of the motor
system. The two prominent sub-cortical structures involved in the motor control
are the cerebellum and the basal ganglia (Gazzaniga et al. (2014)).

The neural codes found in the motor areas are abstract and more related to
the goals of the action than to the specific muscle patterns needed to produce
the movement to achieve the goal. Thus the motor cortex may have more than
one option for achieving a goal. As an example, consider the case when you are
working on the computer, typing a letter, with a cup of coffee on your desk. Let
us assume that you have two options: continue typing the letter or sipping your
coffee. If you choose the coffee, then you need to achieve some intermediate
goals such as reaching the cup, grasping it and bringing it to the mouth. Each
of these intermediate goals requires a set of movements and in each case there
is more than one way to perform them. For example, which hand do you chose
to take the cup of coffee? In situations like this, you make your decisions on
multiple levels and thus you choose a goal, choose an option to achieve the goal
and also choose how to perform each intermediate step.

The affordance competition hypothesis proposed by Cisek (2012) builds on an

3



evolutionary perspective, which says that the brain’s functional architecture has
evolved to mediate real-time interactions with the world. These interactions are
driven by the internal needs of humans, such as thirst and hunger, while the
world defines the opportunities for the actions, the so-called affordances.

The affordance competition hypothesis claims that humans develop multiple
plans in parallel. While performing an action we are already preparing the next
steps. This means that both the process of action selection (what action to
chose) and its specification (how to perform the action) take place simultan-
eously within an interactive neuronal system.

2 Event perception in humans

I next turn to how humans perceive events. There are three main theories in
this area: the perception of causality, the ecological approach and biological
motion. Firstly, causality is an important aspect of the events and it plays an
important role in event cognition. In a famous series of experiments, Michotte
(1963) investigated the role of causality in the perception of events. He studied
how the observer perceives the event when viewing animated sequences involving
a small number of objects. In one class of experiments, a square moved in a
straight line from left to right until it approached a second square. Then the
first square stopped moving and the second started to move in the same straight
pathway as the first one.

By changing the parameters such as the absolute and the relative speed of the
objects, the distance between them when the first object stops and also the time
between when first object stops moving and the second starts to move, Michotte
identified a range of parameters that led to the perception that the first object
causes the movement of the second object. The perception of causation was
strongest when (1) the movement of second object starts at the same time that
the movement of the first object ends, (2) the two objects were not too far apart,
(3) they moved on the same motion path but not too slowly and (4) the second
object moved at a slower speed than the first one.

Michotte argued that the critical determinant in perceiving the causal interac-
tion between two objects is when the motion of the objects is perceived as a
single event. He called the perception of common motion across different ob-
jects the ampilation of the movement. In a case of launching, the motion of the
first object is transferred to the second one when the first stops and the second
starts moving. In the condition that the time interval between the stopping of
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the first one and the starting of the second one is long, the observer perceives
two separate motion events with no causal interaction.

A general problem regarding the ampilation of the movement is which com-
putational principles that govern it. Michotte argues that the ampilation is
determined by a wide set of principles related to Gestalt continuity laws. These
principles don’t depend on experience with particular interactions but they are a
priori aspects of the human perception structure. Partly because of the measure-
ment issue, no complete account of ampilation of the movement and its connec-
tion to the perception of causality has been proposed, which makes this theory
difficult to evaluate. Other researchers who replicated the Michotte experiments
also reported that the causal judgments are sensitive to learning, expectations
and context.

Secondly, in the ecological approach to perception, Gibson (1979) considers
three main kinds of events in visual perception. The first concerns changes in
the layout of surfaces, the second changes in the color or texture of the surface,
and the third the coming into or out of the existing surfaces. As an example,
assume that someone puts a ball into a glass of milk. If the ball density is a little
less than that of the milk, then the ball barely floats in the glass. This leads to
changes in the surface layout and to the creation or destruction of surfaces.

Gibson argues that an event is determined by the presence of an invariant struc-
ture that persists throughout the changes. This approach relies on the structure
of the world surrounding the observer, while it does not rely on the experience
or mental structure of the observer. Gibson’s approach may account for simple
visual events determined through physical properties. It can not, however, de-
scribe mental representations of events and the role of these representations in
cognition.

The third approach is biological motion as investigated by Johansson (1973).
It concerns the perception of a moving body when a point-light technique is
applied. This approach will be described in more detail in the following section
3. Johansson’s point-light experiments played an important role for a theory of
how actions are individuated, identified and represented. It inspired much later
research on biological motion analysis.

The three types of research on the perception of actions and events presented
here indicate two common conclusions. The first is that the dynamic features
of activities are central, which means that an event can be perceived with a tra-
jectory of changes over time (spatio-temporal trajectory). The three theories all
agree that what individuates the event is a configuration that is present over the
time duration in which the event lasts. Therefore, although the events consist
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of changes, they still possess a higher-order stability that persists through these
changes, and this stability is what characterizes them. The second conclusion is
that the perceptual systems organize the information in a hierarchical manner.
The sensory components are combined into more general forms in this hierarchy.

In the real world, however action perception occurs in multiple ways in humans.
For example we can recognize some actions without dynamics like the action
‘point’. In fact the recognition often only takes one body posture, or one body
posture in a particular context. With that said, in this thesis I will study the
actions based on their spatio-temporal trajectories.

3 Motion analysis

The term biological motion is used for any type of physical movements that
are performed by humans or other animals. Biological motion is almost always
meaningful for both the performer and the observer. For human actions and
for many biological motions, we categorize them with the aid of verbs in lan-
guage, for example, wave, walk and punch. Some biological motions are pure
movements such as the movements that carried out in dance or sports. We can
still describe them partly by using verbs such as move arm up/down, move leg
back/forward, turn head right/left etc.

For his studies, Johansson (1973) designed experiments based on a patch light
technique for visual perception of motion patterns characteristic of living organ-
isms like humans. In this technique, the actions are represented by a few bright
spots describing the motions of the main joints of a human while an action like
walking, running, dancing, etc., is performed.

The patch light technique is built up from, bright (or dark) spots moving against
a homogeneous contrasting background. The kinematic-geometric model for
visual vector analysis that was originally developed for studying perception of
mechanical motion patterns was extended to biological motion patterns.

An example of the mechanical perception studies is Wertheimer’s demonstration
of the “Law of common fate”. When, in a previously static pattern of dots, some
dots began to move in a unitary way, the static form is broken up and the moving
dots form a new unit. In an analogous way, the joints of a human body are the
end points of bones with constant length and their motion is seen as the end
points on a moving, invisible rigid line or rod. Johansson calls this perceptual
mechanism ‘the rigidity principle’.
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Figure 1.1: The contours of a walking (above) and running (below) subject shown in part (A). The corresponding dot
configuration is shown in part (B). From Johansson (1973).

To generate the stimuli for the perception of biological motion a video of an
actor, dressed in black against a black background, was recorded. Small patches
of reflecting tape were attached to certain areas of the actor’s body, representing
the actor’s joints and they were flooded by light from one or two searchlights
mounted close to the lens of the video camera. The recording begins when the
actor starts performing the action and lasts to the end of the action. The movie
of the motions of 10 spots from the main joints of a human body has always given
the impression of a human performing the action (for example walking in frontal
direction). It is important to point out that when the motion was stopped, the
set of light spots was never interpreted as representing a human body by the
observers – it is only the dynamic pattern that generates a perception of an
action.

Now, the question is how 10 points moving simultaneously on a screen in a
rather irregular way can create such a vivid and definite impression of human
walking or jogging (see Fig. 1.1). In the research by Johansson (1973), it was the
first time ever for the observers to see a walking pattern built up from moving
light spots. So the question is why these spots evoke the same impression of
motion as a movie of a walking person does.
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Figure 1.2: An example of visual vector analysis. The proximal pattern of the moving dots (A). The perceived diagram
extracted from the stimuli combination (B). The resulting vector analysis of the motion of the middle point
corresponding to the perception.

A first answer is that the previous experiences of the observers help them to
recognize the human walking. There exists a heavy over-learning in seeing hu-
mans walking, which makes it natural for us to perceive the motion pattern of
the light dots as a walking human. The first guess could be that the group-
ing of moving elements is determined by general perceptual principles, but the
vividness of the perception is a consequence of prior learning.

To find a more complete answer, it is useful to briefly consider visual perceptual
processes and to understand how the vision system constructs the perception.
The model for motion and space perception is called visual vector analysis and
it has three main principles: First, the elements in motion on the picture plane
of the eye are always perceptually related to each other. Second, the equal and
simultaneous motions in a set of proximal elements automatically connect these
elements to rigid perceptual units (following Johansson’s rigidity principle). Fi-
nally, the third principle says that when in the motions of a set of proximal
elements, equal simultaneous motion vectors can be mathematically abstracted
these components are perceptually isolated and perceived as one unitary motion.

The term equal in the second and the third principles does not only refer to
the Euclidean parallel dot motions with the same velocity but also includes,
first, the motions that follow tracks that converge to a common point in depth
(a point at infinity) on the picture plane and, second, dot motions where their
velocities are mutually proportional relative to this point.

The visual vector analysis specifies the basic mechanism for visual motion and
space perception. It has the consequence that the ever-changing stimulus pat-
terns on the retina are analyzed in order to detect maximal rigidity in coherent
structures. The mechanism explains why we automatically obtain perceived
size constancy as well as form constancy from projection of rigid objects in mo-
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Figure 1.3: Vector analysis of a non-respective shrinking configuration represented by four elements. The physical motion
of the element (p). The common concurrent motion component (C) is perceived as a translation to the depth.
The residual (r) is perceived as a shrinking or as a rotation in depth.

tion. What is critical for perceiving rigidity is not rigidity in distal objects, but
rather the occurrence of equal motion components in the proximal stimulus.
This process is fully automatic and independent of cognitive control.

To understand the visual vector analysis better let’s assume that there are three
moving points named as a, b and c as shown in Fig. 1.2 (part A) in which points
a and c are moving horizontally and point b is moving in a diagonal direction.
The observer perceives the pattern as three dots forming a vertical line moving
horizontally while point b also moves vertically up and down along the line as
shown in Fig. 1.2 (part B). The vector analysis for the motion of the point b is
shown in Fig. 1.2 (part C) in accordance with the perception description. The
diagram demonstrates the correctness of the analysis from a mathematical point
of view.

Another illustrative example of visual vector analysis is shown in Fig. 1.3. Con-
sider four elements all moving together toward direction P. The motion that an
observer perceives is a shrinking and rotation in depth in relation to the point
at infinity I. The mathematical abstraction explains the motion by dividing the
vector P into two vectors r and c, where the vector r represents the circular
motion and the vector c represents the translator motion in depth.

As a third example, take two elements perceptually representing the end points
of a rod in a pendulum motion shown in Fig. 1.4. Experiments have shown
that changing the angle, but keeping a constant distance between the two ele-
ments results in perceiving a frontal-parallel pendulum motion that is depicted
in Fig. 1.4 (part A). Changing both the angle and the distance between two
elements results in perceiving a pendulum motion in depth, which is shown in
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Figure 1.4: Three motion combinations of a pendulum in two stimuli. The points are perceived as a fronto-parallel
pendulum motion of point P about point C while there is a constant distance between the two points but
change of the angle (A). The points are perceived as a pendulum motion in plane in a certain angle (30-60
deg) towards the fronto-parallel plane (both distance and angle change) (B). The same motion as perceived
in (B), but the axis is now moving during the cycle (C).

Fig. 1.4 (part B). Now if a constant component of translation is added to both
elements of the motion pattern, as shown in Fig. 1.4 (part C), the motion will
be seen as the same as the pendulum motion in Fig. 1.4 (part B). This means
that the constant component is effectively separated perceptually and seen as a
reference frame for the pendulum motion.

Such a perceptual separation of a common component is a typical example of
perceptual vector analysis. When the common component is subtracted, the
residual motion forms a translatory, rotary or pendulum motion. The common
motion is just a reference frame for the deviating component and changes in this
component do not change the perceived primary motion.

The patterns of biological motion can be described by subtracting the common
motion components such as the semi-translatory motion of the hip and shoulder
elements (the trunk), which are found in the movements of all elements in the
body. In contrast, the motions of the knees and the elbows are rigid pendulum
motions relative to this reference frame. The semi-translatory motion in walking,
which is inherent in the movements of all 10 elements, plays no decisive role for
identifying a walking pattern.

To investigate whether the recognition of walking from the motion of 10 points
is independent of the course of the common component, three experiments were
performed by Johansson (1973). In the first experiment, a common compon-
ent was subtracted from the element movements in a walking pattern. The
horizontal translatory component was subtracted and the up-and-down motion
remained as a small common motion residual. The result shows that the ob-
servers still immediately reported seeing a walking person.

In the second experiment, the amount of information given to the observer was
manipulated so that the observer was shown a little less than half a step cycle
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and this interval was chosen randomly during the walking period. The result
of the second experiment also shows that all observers without any hesitation
reported a walking human.

Finally, in the third experiment, in contrast to the first two experiments, an
extra component was added to the primary movement of each element. The
extra component was produced by slowly rotating a mirror oriented at a 45-
degree angle to the optical axis of the lens in front of the camera. The mirror
was reflected to the TV camera by which the scene was recorded. The circular
motion produced had a diameter of a circle covering about one-third of the
distance between the foot and the shoulder element. The result of the third
experiment shows that all subjects also reported seeing a walking man, albeit
in a very strange wavy way.

The general conclusion of these three experiments is that adding or subtracting
common components to the movements of the elements does not disturb the
identification of the walking pattern. It also shows that the vector analysis model
is valid for the perception of complex motion patterns representing biological
motions.

The fact that the natural kinematic patterns, based on the point-light displays
used by Johansson (1973), contain unique information about the dynamic prop-
erties of the elements is called Kinematic Specification of Dynamics (KSD) by
Runesson and Frykholm (1983). In the experiments performed by Johansson
(1973), they applied the KSD information by using the recordings of natural
event. Normally visible features such as shapes, colors, clothing and facial ex-
pressions were removed as well. Therefore only rough kinematic aspects were
available to the observers.

The perceptual outcome of the KSD is much richer than only representing that
the persons engaged in walking or other activities are detected and recognized
from the recordings by the human observers. For instance, the observer can
perceive how strenuous push-ups are and that a person who climbs up on a
ladder does not start painting a wall and only pretends to do so. They can see
that a bicycle ride is not real – it is indeed a pan-shot of a ride on a stationary
exercise bike.

Hence, it appears that the information about inner causal factors behind an
action is also conveyed by the point-light displays. In fact, there is efficient
information concerning a number of finer properties of the person and the actions
in patch-light displays, like the mass of an object handled by a person, the
expectations or deceptive intentions they might have concerning their mass and
the gender or identity of the person (see Runesson and Frykholm (1983) and
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Runesson (1994)).

In fact subjects perceive the weight of an object handled by a person in the
patch light experiments, even if the object itself is not visible in the movies.
The main reason they can do it is exactly the same as for seeing the size and
shape of a person’s nose or the color of the shirt in normal illumination, namely
that the information about all these properties is available in the optic array.
The only thing is that the kinematic-optic properties that specify the weight of
a box may be analytically much more complex than the ones for the size of the
nose. Therefore it is unwise to assume that the type of information such as the
color of the shirt is fundamentally simpler or more accessible than the type for
the weight of a lifted object (see Runesson and Frykholm (1983) and Runesson
(1994)).

Using the KSD approach helps us understand the sensory processing of biological
motion. Using vision and applying visual vector analysis leads us to identify
and extract the particular motion patterns such as the pendulum motions of
the ankles or knees, the rotatory motions of the wrist, translatory motions of
the shoulders and hips, etc. On the next level we then apply higher cognitive
mechanisms to categorize them and to relate the motion patterns to different
goals.

In other words, throughout life we gradually build a hierarchical perceptual
mechanism in order to first perceive the biological motions on a primary sensory
level and then relate them to the actions based on the goals they follow on higher
processing levels. As an example, when the pendulum motion patterns of the
knee and the ankles together with the rotatory motion patterns of the wrists are
identified by the principles of visual vector analysis, we use our concepts and
prior knowledge to categorize these detected motion patterns as walking. By
observing various types of walking humans, our conceptual space will become
richer so that recognizing a walking person will happen quicker and easier with
time.

Johansson’s patch-light technique has been used in later research, for example
by Giese and Lappe (2002). In order to study how actions are categorized,
they recorded subjects performing actions like walking, running, limping and
marching. After that they generated morphs of the actions recorded by creating
linear combinations of the dot positions that appeared in the recorded videos.
The morphed movies thus show actions that are mixtures of the original ones.
Then they asked the observers to categorize the morphed videos into walking,
running, limping or marching as well as to judge the naturalness of the actions.
The result shows that there are clear prototype effects in the categorizations
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(for another study of prototype features of action categorization see Hemeren
(2008)).

In another study presented in Giese et al. (2008), it was shown that the visual
representations of complex body movements can be characterized as perceptual
spaces with metric properties. They develop a measure of the similarity between
the perceptual metrics and the metrics of a physical space that is defined by dis-
tance measures between joint trajectories. They construct a mapping between
physical and perceptual spaces that preserves distance ranks (second order iso-
morphism), which provides a representation useful for the classification and
categorization of motion patterns based on their physical similarities.

To test the measure, Giese et al. (2008) performed two experiments and one
control experiment. Parameterized classes of motion patterns were created by
motion morphing, applying a method that generates new movements by linear
combination of trajectories of three prototypical gait patterns (walking, running
and marching). The perceived similarities of these patterns were assessed using
two different experimental paradigms. Based on the perceived similarities of
pairs of the motion patterns, the metrics of the perceptual space were recon-
structed by multidimensional scaling (MDS) and the recovered configurations
in perceptual space were compared to the original configuration in morphing
weight space.

4 The role of the results of actions in event descrip-
tions

So far, I have considered the motion patterns as the only source of information
when categorizing an action. In this section, I will investigate the roles of the
objects that may be involved in actions.

There are two main ways of describing an event. The first way focuses on
motion patterns, as described above, and thereby the manner of the action.
The second way to describe events focuses on the result of the action. With the
second approach, other sources of information than motion patterns are utilized
in event description. This new information contains changes of the objects or
other entities involved in the performance of the actions.

To have a better understanding of the two approaches for recognizing the actions,
first we should have a closer look at different types of actions. In the action world
there are ones that only express a particular manner without any involvement
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from other entities such as objects. For example in the action wave, based on
how it is performed, there are rotatory and translatory motions of the wrists
and arms, which are performed to satisfy a goal such as greeting or attracting
someone’s attention. No other entity is involved in completing the action wave
and as a consequence nothing is changed in the environment by doing this action.

On the other hand take the action push performed by using a hand. In this
case, based on how the action is performed, there is a translatory motion of the
hand that applies the force in a particular direction to another entity such as
a cup. Here performing the action push is completed only by having another
entity that is involved in it. Therefore there will be a change in the environment
as a consequence of doing the action push, such as a move in a cup.

Here I distinguish both the groups of actions described earlier. The first group
could be named manner actions. They only express a manner without a partic-
ular detectable resulting state in the environment. The second group is named
result actions, which are identified by a change of an object that is represented
as a resulting state.

In other words, to understand an event, we usually build links between inten-
tions, actions and consequences. Events can be described in terms of their causes
and effects. Causes and effects are understood in terms of transfer or exchange
of physical quantities in the world, such as energy, momentum, impact forces,
chemical and electrical forces (Lallee et al. (2010)). There is also nonphysical
causation, such as forcing someone to do something or to make a decision. This
mental type of causation is understood by analogy with the physical forces. The
causes involved in an event are typically described by manner verbs, while the
effects are described by result verbs (Warglien et al. (2012) and Mealier et al.
(2016)).

Although the dynamic forces are not directly perceivable, our visual experiences
are very efficient in extracting the shape, position, direction, velocity and ac-
celeration of a moving object. This means that our perceptual mechanism can
immediately extract the forces involved in an action in accordance with Ru-
nesson’s KSD principle. As humans we normally utilize our vision as a resource
of information to interpret the causal relationships between entities in the world,
but auditory or haptic information can also be a complement.

In another study presented in Marocco et al. (2010), experiments are performed
where actions result in changes in an object or other entities. In their study a
simulated iCub humanoid robot learns an embodied representation of actions
through the interaction with the environment as well as linking the effects of its
own actions with the properties of the object before and after the action.
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Experiments testing recognition of actions involving an object are presented in
papers II and III. In the experiments illustrated in paper III a hybrid hierarch-
ical architecture is implemented, which is capable of recognizing the actions
performed as well as identifying the object involved in the action performance.
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Chapter 2

Action recognition

1 Introduction

Motion perception and action recognition are cognitive processes that play im-
portant roles in different aspects of the lives of humans and other animals includ-
ing communication, mind reading, prediction and intention reading of others.
By perceiving the actions of others we usually interpret them as intentional and
we use this knowledge for a better understanding while interacting with others.
For example, an arm wave could be interpreted as a greeting whereas pointing
to a person, thing or location could attract attention towards another entity.

Recognizing an action is necessary in order to select a reaction that is suitable for
the specific condition. For instance, consider that one has an appointment for a
job interview with the boss of a company. The applicant arrives at the office and
the boss extends his hand to greet the applicant. What if the applicant does
not recognize the action and the intention behind it or what if the applicant
shows no reaction or even worse he/she reacts in the wrong way (for example,
scratches his/her head)?

Our perception of the actions performed by others can even be crucial for our
survival. For example, encountering dangerous behavior from a person or an
animal requires an immediate and suitable reaction. There are many other
examples that show the importance of action recognition and categorization for
humans and other living organisms.

In this chapter, I will investigate action recognition in a more technical and
systematic perspective. The first question is why we need artificial action recog-
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nition systems. There are indeed several applications for these systems including
video surveillance, human-computer interaction, video retrieval, sign language
recognition, robotics (social robotics), health care, video analysis (for example,
sports video analysis) and computer games.

2 Input for the action recognition systems

The data representing the peripheral input space of the action performed is an
important part of an action recognition system. Another question is what types
of data should be used as the input to the system. This will be determined by
the sensors utilized to collect the action dataset. For any types of sensors, the
data consists of movies representing actions. The movies of actions can have
different lengths since different actions can be performed during different time
intervals.

Traditional action recognition methods use consecutive sequences of images.
Recognizing actions from image sequences taken by ordinary cameras has lim-
itations. They are, for example, sensitive to color and illumination changes,
occlusions, and background clutters.

Another method is to use range sensors, However, earlier types of sensors were
either too expensive, provided poor estimations, or were difficult to use on hu-
man subjects. For example, sonar sensors have a poor angular resolution and
are susceptible to false echoes and reflections. Infrared and laser range finders
can only provide measurements from one point in the scene. Radar systems
are considerably more expensive and typically have high power consumption
requirements. Motion capture by such sensors is expensive and more difficult
for data collection.

The advent of the cost-effective RGB-D sensors such as MicrosoftKinectTM

and AsusXtionTM added another dimension, the depth, which is insensitive to
illumination changes and provide us with the 3D structural information of the
viewed scene. Moreover, the depth cameras can work in total darkness. This
is a benefit for applications such as patient/animal monitoring systems, which
run 24/7. The new motion analysis methods based on the RGB-D data are
important consequences of this development. RGB-D data for human motion
analysis provide us with three main types of information: RGB and depth and
skeleton.

The input types adopted for an action recognition task play an important role
in developing efficient methods. Some methods function well with specific types
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of inputs, but cannot always be generalized to all of the available types. Us-
ing space-time volumes, spatio-temporal features and trajectories, human action
recognition tasks have been performed using RGB images (color images). For
instance, Schuldt et al. (2004) proposed a method that extracts the spatio-
temporal interest points and couples it with a support vector machine to recog-
nize actions. Cuboid descriptors were utilized by Dollar et al. (2005) and SIFT
feature trajectories modeled in a multi-layer system proposed by Sun et al.
(2009). Other methods to extract the spatio-temporal features from color im-
ages for recognizing human actions are proposed by Laptev et al. (2008), Bobick
and Davis (2001) and Davis (2001).

The main characteristic of RGB data is the shape, color and texture information
they provide that helps extract points of interest and optical flow. On the other
hand, depth data is insensitive to variations of illumination, color and texture
and it provides 3D structural information of the scene.

With the advent of RGB-D sensors, action recognition methods were developed
based on the depth maps, which mainly work by extracting spatio-temporal
features. In holistic approaches, the global features such as silhouettes and
space-time information are extracted. Such a methodology is utilized in several
research articles such as Oreifej and Liu (2013), Rahmani et al. (2014), Li et al.
(2010), Vieira et al. (2012),Yang and Tian (2014) and Yang et al. (2012). Other
approaches extract the local features as a set of interest points from depth
sequences (spatio-temporal features) and compute a feature descriptor for each
interest point (for more see the methods proposed by Laptev (2005), Wang et al.
(2012b), Wang et al. (2012a), Ghodrati and Kasaei (2012), Xia and Aggarwal
(2013) and Wang et al. (2014)).

The skeleton data obtained from, for example a Kinect sensor, is more robust
to scale and illumination changes and can be invariant of the camera point of
view as well as body rotation and the speed of motion. The cost-effective depth
sensors are then coupled with the real-time 3D skeleton estimation algorithm
introduced by Shotton et al. (2011). Most of the skeleton-based methods util-
ize either the 3D locations or the angles of the joints to represent the human
skeleton. By extracting the spatial-temporal features from the 3D skeleton in-
formation, such as the relative geometric velocity between body parts, relative
joint positions and joint angles in Yao et al. (2017), the position differences of the
skeleton joints in Yang and Tian (2012) or the pose information together with
differential quantities (speed and acceleration) in Zanfir et al. (2013), the body
skeleton information in space and time is first described. Then the descriptors
are coupled with Principle Component Analysis (PCA) or some other classifier
to categorize the actions. There are other methods in the literature using skel-
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eton data for human action recognition such as Chaudhry et al. (2013), Wang
et al. (2013), Miranda et al. (2012), Vemulapalli et al. (2014) and Eweiwi et al.
(2014)

At the same time, using the estimated 3D joint positions for human action re-
cognition is limited. For example, the 3D joint positions are noisy and may have
significant errors when there are occlusions such as one leg being in front of the
other, a hand touching another body part, two hands crossing, etc. The estima-
tion is not always reliable and can fail when the person touches the background
or when the person is not in an upright position (e.g. a patient lying on a bed).
Moreover the 3D skeleton motion alone is not sufficient to distinguish some ac-
tions. For example drink and eat generate very similar motion patterns for a
human skeleton. Extra input, such as information about the objects involved,
needs to be included and exploited for better recognition of the action.

In some other methods, a fusion-based feature for the action recognition is
applied, for example the method proposed by Zhu et al. (2013) in which the
spatio-temporal features and the skeleton joints are fused as complementary
features to recognize human actions. Another method that uses multi-fused
features to recognize human actions is the Human Activity Recognition (HAR)
system proposed by Jalal et al. (2017). This method fuses four skeleton joint
features together with one body shape feature representing the projections of
the depth differential silhouettes between two consecutive frames onto three
orthogonal planes.

There are neural-network-based approaches developed to solve the problem of
action recognition such as the methods developed by using the Convolutional
Neural Networks (CNN) and the ones based on the Recurrent Neural Networks
(RNN). The CNN-based models have had great success in dealing with the
image-based tasks (see Karpathy et al. (2014) and Ng et al. (2015)) and the
RNN-based methods are mainly suggested for the sequence-based tasks (see Liu
et al. (2017a)). Among skeleton-based motion recognition approaches with deep
learning are the CNN-based methods proposed by Hou et al. (2016), Wang et al.
(2015) and Liu et al. (2017a) and the RNN-based approaches proposed by Du
et al. (2015), Du et al. (2016),Veeriah et al. (2015) and Zhu et al. (2016).

There are, however, major challenges in running action recognition experiments.
Here I present three major challenges of the vision-based human action recogni-
tion. The first is intra-class variability and inter-class similarity of the actions.
In real-life recordings, the individuals perform one type of action in different
directions with different characteristics of body part movements. Furthermore,
two different actions may only be distinguishable by using very subtle spatio-
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Figure 2.1: The input space of the actions containing consecutive 3D postures of human skeleton joints.

temporal details. Second, the number of identifiable action categories is huge.
This means that the same action may have different interpretations under dif-
ferent objects and scene contexts such as the actions drink and eat. Finally,
phenomena such as occlusions, cluttered backgrounds, cast shadows, varying
illumination conditions and viewpoint changes can all modify and influence the
way the actions are perceived. Thus the sensory input and the modeling of
human actions that are dynamic, ambiguous and interact with other objects are
the most difficult aspects of action recognition tasks.

With the introduction of Microsoft Kinect, a rough skeleton of the actor per-
forming the action can be easily obtained. There are a number of benchmark
datasets of actions such as MSR datasets (Wan (2015)) that provide researchers
with different types of input space such as 3D skeleton information (see Fig. 2.1).
In my research, I made several experiments using MSR datasets of actions as
the input to my system. I also utilized the Microsoft Kinect to collect new input
datasets. The 3D positions of skeletal viewpoints were estimated from RGB and
depth images with the aid of the software libraries OpenNI and NITE to read
the sensors and extract the joint positions of detected human subjects in 3D
space.

The main reason I highlighted the role of input data in the action recognition
task is that the techniques for extracting the action data such as 3D skeleton
information, deal with the action detection problem, that is, the problem of
detecting the moving figure. This problem must be solved before the action
recognition can be initiated. Thus it is important to take into consideration
that the action detector is strictly connected to the action recognizer and it
has great influence on the action recognition performance. However, the action
detection problem is not addressed in this thesis and the main goal of this study
is to propose an approach for human action recognition by utilizing a 3D skeleton
detector.
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3 Action recognition in robotics for human-robot in-
teraction

In this section, I will briefly present some of the previous research studies of
action recognition in robotic platforms. Most studies aim at recognizing actions
represented by result verbs. For example, in Lallee et al. (2010), a new frame-
work for embodied language and action comprehension is proposed. The action
recognition system of their framework is actually a teleological representation
that uses goal-based reasoning. This study aims at presenting the advantages
of a hybrid teleological approach for action-language interaction both in theory
and through implementation results from real experiments with an iCub robot.
The experiments are based on a set of goal-directed actions such as take, cover
and give. The robot uses spoken language and visual perception as input and
generates spoken language as output.

One of the central functions of language is to coordinate cooperative activities
(Tomasello (2008)). Therefore the embodied language comprehension frame-
work proposed by Lallee et al. (2010) is designed to connect language construc-
tions to the actions. Their framework uses the sub-components of the actions
to generate relations between the initial enabling states and the final resulting
states, so-called state-action-state triples, which refer to the world states before
acting, during acting and after acting. Their method makes it possible to use
grammatical categories including causal connectives (e.g., because, if-then) in
order to enrich the set of state-action-states that are learned. To create such
a link between language and action, a neurally inspired system is constructed.
The system first develops an action recognition system that extracts simple per-
ceptual primitives from the visual scene, including contact or collision, and then
composes these primitives into templates for recognizing actions like give, take,
touch and push.

In the experiments by Lallee et al. (2010), an iCub robot first learns from a
human performing physical actions with a set of visible objects in its field of
view, such as covering (and uncovering) one object with another, putting one
object next to another, and briefly touching one object with another. If the
robot has not seen an action before, it asks the human to describe it. The iCub
learns the action description (e.g., object-1 covered object-2) and generalizes
this knowledge to examples of the same action performed on different objects.
The robot can also learn the causal relation between an action and the resulting
change of state, for example object-1 covers object-2 and so object-2 disappears
but it still exists beneath the object-1. In this scenario, actions are performed
that cause changes in the final states, in terms of appearance and disappearance
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of the objects and so the robot should detect these changes and determine their
cause. If the robot based on the knowledge gained from past experiences does
not know the cause then it asks the human for clarification about the cause.

Based on the experiment described here, the robot is able to learn for each
action what is the enabling state of the world, which must hold for that action
to be possible, and what is the resulting state that holds once the action has
been performed. As an example if you want to take object-1 then object-1
must be visible. Therefore the state object-1 visible enables the action take
object-1 and is the enabling state. On the other hand if you cover object-1
with object-2 then object-1 is invisible. Therefore the state object-1 invisible
is the resulting state. This is analogous to the humans that tend to represent
actions in terms of goals states that result from the performance of an action.
Neurophysiological evidence of such a goal-specific encoding of actions has been
collected from monkeys (Shariatpanahi and Ahmadabadi (2007)). The evidence
suggests that the same action (grasping) can be encoded in different manners
according to different goals (grasping for eating/grasping for placing).

An important aspect of this area of research is that the meanings of the lin-
guistic expression are derived directly from sensory-motor experience, following
embodied language processing theories. Embodied theories hold that mental
simulations of the observed action are sufficient to interpret actions, while tele-
ological theories hold that this is not sufficient. According to these theories, a
generative, rationality-based inferential process is also at work in action under-
standing. Integrating insights from both motor-rich (simulation, embodiment)
and motor-poor (teleological) theories of action comprehension is attractive as
they provide different angles of the same problem.

One of the limitations of a perceptually based system is when an action causes
an object to be occluded, for example when the object is moved behind another
object (Lallee et al. (2010)). The visual disappearance of the object is totally
different from the case when the object physically disappears, yet both result
in a visual disappearance. The ability to keep track of objects when they are
hidden during the action performs, so-called object constancy, is one of the
signatures of core object cognition, which claims that human cognition is built
around a limited set of core systems for representing objects, actions, number
and space (see Spelke (1990) and Spelke and Kinzler (2007).

Kalkan has developed another robotic system that can create concepts represen-
ted by verbs in language (Kalkan et al. (2014)). They build on the assumption
that verbs tend to refer to the generation of a specific type of effect (result) in
the world rather than a specific type of action. In this study the robot tries to
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form the concepts through interaction with the world while human uses them in
order to achieve easier communication with the robot. Concepts are crucial for
recognizing instances of objects. It means that to decide whether an entity is a
dog, we need to have a concept of dogs. Since action concepts are analogous to
objects, the same principle can be applied in the case of action recognition.

There are different views on the formation of concepts: (1) The classical rule-
based view considers categories to have strict boundaries and assumes that mem-
bership of a category is based on satisfying the common properties as necessary
and sufficient rules. For example if the color of the exemplar is YELLOW and
the appearance of it is LONG then it is categorized as banana; (2) the prototype-
based view (Rosch (1975)) assumes no tight boundaries between categories but
a prototype (the best representing the category) that is used to judge the mem-
berships of other items; and (3) The exemplar-based view determined by the
exemplars of the categories stored in the memory (Nosofsky et al. (1992)) in
which any item is classified as a member of a category if is sufficiently similar
to one of the stored exemplars of the category. (4) The theory of conceptual
spaces where concepts are represented as convex regions in geometrically struc-
tured spaces (Gärdenfors (2000)). This theory will be presented in greater detail
later.

It has been argued that the classical view is not used in human categorization,
but the evidence is unclear as to whether humans use prototypes or exemplars
for generating concepts (Minda and Smith (2001), Nosofsky and Zaki (2002)
and Gärdenfors (2000)). It might be that we use different types of representa-
tions and create hybrid representations for different categorization tasks (Rosseel
(2002)).

Affordances are inherent values and meanings of things in the environment that
can be perceived and linked to the action possibilities offered to the organisms
(Gibson (1979)). For example a chair affords sit-ability to a human whereas it
also provides hide-ability and claw-ability to a cat.

In the experiments presented in Kalkan et al. (2014), the robot has been equipped
with a set of behaviors (such as push left, push right, push forward, pull, top-
grasp and side-grasp) in an environment with a set of objects of varying sizes and
shapes, and the robot interacts with the objects to discover what they afford.
There are different interactions between the robot and the objects including sev-
eral interactions with the objects placed at different positions and in different
orientations. Three types of features, including surface features, spatial features
and object presence, are extracted from the objects before the execution of a
behavior (initial features) and after the behavior (final features).
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Then the difference between the final and initial features is used as the effect
features. For example, if the robot applies a push-right behavior on an object,
leading to a displacement towards the right, the user verbally provides moved
right to the robot. The effect set is generated using a set of verbs: no-effect,
moved-left, moved-right, moved-forward, pulled, grasped, knocked, and disap-
peared. The robot categorizes the effects of its behaviors and represents them
with prototypes. They represent an effect prototype using labels ‘+’, ‘-’, ‘0’, ‘*’,
corresponding to increase, decrease, no-change and unpredictable-change in the
feature element, respectively. As an example of no-effect, all feature elements
are represented by label ‘0’. They proposed that the effect prototypes corres-
pond to the verb concepts. However, since Kalkan et al. (2014) only consider
the effects of actions, the robot only learns result verbs.

The experiments presented in Stramandinoli et al. (2012) were intended to show
that the meaning of higher-order concepts is obtained from the combination of
basic sensorimotor concepts. Their network receives the action primitive words,
which form the linguistic description of the higher-order word. For example in
description Give is Grasp and Push and Release, Give is the higher-order word
and Grasp, Push and Release are the action primitive words. In the next step,
the motor outputs corresponding to the action primitive words are computed by
the network and stored one after another by keeping the corresponding temporal
sequence of motor activations based on the linguistic description. As an example
the sequence Grasp and Push is different from the sequence Push and Grasp.
Finally, the network receives as input the unknown higher-order word and as
target outputs the sequence of motor outputs calculated during the previous
activation phase. A back-propagation technique is utilized to the new-formed
training set.

The basic grounding words utilized by Stramandinoli et al. (2012) are Push, Pull,
Grasp, Release, Smile, Frown and Neutral. The first Higher-order Grounding
(HG1) are: Give is Grasp and Push and Release, Receive is Push, Grasp and Pull
and Pick is Grasp and Pull and Release. The second Higher-order Grounding
(HG2) are: Accept is Receive and Smile, Reject is Give and Frown and Keep is
Pick and Neutral.

Among other systems for the action recognition in robotics is the computational
architecture called HAMMER (Hierarchical Attentive Multiple Models for Ex-
ecution and Recognition) proposed by Demiris and Khadhouri (2006). In this
system, the motor control systems of the robot are organized in a hierarchically
distributed manner to be used in first competitive selecting and executing an
action and second perceiving an action when performed by a demonstrator. The
HAMMER provides a top-down control of attention during action perception.
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A content-based control of goal directed attention during action perception is
also proposed by Demiris and Khadhouri (2008). The attended focus to the
relevant body parts of the human performer is used as the input resources and
applied to solve the action perception problem. Moreover the attention mech-
anism is augmented with another component that considers the content of the
hypotheses requests to the content reliability, utility and cost.

The proposed method in Lallee et al. (2010) uses the language for action recogni-
tion through verbal interactions of the human agent with the robot in which the
robot will comprehend the actions from their cause and effect relations. Kalkan
et al. (2014) uses the concepts and the similarities of the action concepts with
the objects for action recognition problem. Stramandinoli et al. (2012) used
the language for building the higher-order concepts from the combination of the
basic sensory motor concepts. These approaches utilized the language (Lallee
et al. (2010)), the concept (Kalkan et al. (2014)) or both of them (Stramandinoli
et al. (2012)) for action recognition. They considered a primary assumption that
the verbs tend to refer to the generation of specific types of effect in the world
rather than specific type of action.

In fact their assumption is valid only in regard to the result verbs and not the
manner verbs like wave. All of the approaches mentioned earlier in this section
using a human-robot interaction platform performed the experiments with the
actions that result in a change in the world, such as moving an object, and thus
they didn’t consider a wide rage of other actions with no resulting effect in the
world such as point, wave, bend, walk, run, and nod.

The action recognition architecture proposed in this study has dealt with both
groups of actions. The studies of actions, which express a manner during their
performance (like waving) with no resulting change in the world are presented
in papers I, II, IV, V and VI and the studies with the actions having a res-
ulting effect in the world are presented in paper II and paper III. Later in the
following chapter I will describe the uniqueness and advantages of my proposed
architectures in more detail.
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Chapter 3

Proposed action recognition
method

1 Introduction

In this chapter I will describe the neural network algorithms used to implement
the action recognition architectures. These algorithms are inspired by the neural
mechanisms of the brain involved in cortical representations and reorganizations.
Therefore I will start with a section explaining briefly the characteristics of the
neurological functions of the cortex, in particular the topological representations
of the peripheral input space. It is important to mention that for the aims of
this thesis I have utilized the input data represented in the visual system. In
fact among all modalities visual system plays significant role for representing
and recognizing the actions, while the neural network techniques presented in
this research are also applicable for other types of input space represented by
other modalities such as the auditory input.

In the next sections I will elaborate how the mathematical components of the
neural network algorithms implement a simple but useful model mimicking these
cortical mechanisms. The main neural network components of the action recog-
nition architecture implemented for the aims of this research are self-organizing
maps and growing grids neural networks.
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2 Cortical representations of the peripheral input
space

Studies on the human nervous system show that peripheral input reaches the
cortex via the thalamus from thalamocortical axons arising from appropriate
thalamic nuclei. The cortex receives and processes peripheral input data in
a parallel way, which results in computational parallelism (Obermayer et al.
(1990)). The sensory cortex is made up of six layers. It seems that there is a
preferred vertical flow of information from peripheral input space to the sensory
cortex through the cortical layers. This path starts from Layer IV and goes to
Layer II/III, followed by Layer V and Layer VI (Bolz et al. (1989)).

In addition to the vertical flow of information from peripheral input space to the
cortex, there is a horizontal inter-connectivity between different cortical regions.
These lateral interactions integrate the information from the neighboring regions
of the cortical map (Buonomano and Merzenich (1998)) and from the specific
or distal cortical zones. The horizontal inter-connectivity seems to have a major
role in cortical map reorganizations. Developing novel receptive fields and other
emergent response properties after peripheral input influences in the cortical
regions is of great relevance to connections between neighboring cortical areas.

An important feature of the sensory cortical areas of touch, vision and hearing
is that they represent their corresponding sensory epithelial surfaces in a topo-
graphic manner. The topographic mapping of the peripheral sensory input space
in the somatosensory cortex reveals itself when the neighboring cortical areas
respond to the neighboring skin sites. As an example, neighboring cortical re-
gions represent the peripheral input space from the adjacent fingers (Gazzaniga
et al. (2014)).

The cortical representations in adult animals are not static but are continuously
modified throughout life. This means that plastic changes occur in these cortical
regions as a result of the influences of peripheral input. The cortex can allocate
areas to represent the particular input space that is mostly used. This results
in plasticity that occurs at two levels – first at the synaptic level and then
in higher neuronal organizations. The synaptic plasticity (Hebbian plasticity
(Hebb (1949))) refers to an increase in the synaptic strength between neurons
that fire together. At a higher level of neural organization, the Hebbian-based
learning rules refer to the condition in which the peripheral inputs that fire in
close temporal proximity are more likely to represent the neighboring areas of
the peripheral sensory cortex.
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An example of this cortical plasticity in adult animals is the results of the digit
amputation in adult monkeys described in (Merzenich et al (1984)). Around
two to eight months after the amputation most of the cortex area that responds
to the amputated digit(s) in control animals now respond to the adjacent digits
or the subjacent palm in the amputated animals. This shows that there is an
expansion of cortical representation for parts of the input space that are used
most (non-amputated areas adjacent to the amputated ones).

3 Artificial neural networks inspired by the nervous
system

It is important that an artificial architecture that has been developed to sim-
ulate cognitive process is biologically plausible. Algorithms that resemble the
biological systems, such as the nervous system in humans and animals, help us
to better understand these biological mechanisms. Only then will it be pos-
sible to implement optimal experiments that function similar to the biological
systems.

Based on what has been mentioned about the cortical regions of the brain,
the self-organizing maps (SOM) proposed by Kohonen (1988) can be shown
to possess some of the features that are essential for the architecture of the
brain. Among these features are the layered and topographic organization of the
neurons, lateral interactions, Hebb-like synaptic plasticity, and the capability of
unsupervised learning. Another important feature of the self-organizing maps
is their ability to generate low-dimensional representations of high-dimensional
input spaces.

In the following sections I will describe the two different models of self-organizing
neural networks in greater detail. I will elaborate the mechanisms used by these
networks in order to develop a model that possesses all of the features mentioned
earlier.

Kohonen feature map

A two-dimensional self-organizing map consists of 2D lattice with a fixed number
of neurons and a fixed topology represented by the number of rows and columns
(see Fig. 3.1). Each one of the neurons of the map is fully connected to each
receptive field of the input layer. This resembles the computational parallelism
in the brain (Obermayer et al. (1990)). Each neuron has a specific topological
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Figure 3.1: The self-organizing feature map (SOM). The SOM consists of a 2D lattice of neurons with fixed size represented
by the number of rows and columns. There is a vertical flow of information through the connections to the input
space and a horizontal inter-connectivity simulated by a neighborhood function such as a Gaussian function.
As shown in the 2D lattice of neurons by moving to the center of the Gaussian function the activity gets
stronger (darker neurons). Thus the neurons that are further distant than the central neuron (winner) receive
less activation.

position (determined by the number of a row and column and represented as x
and y coordinate of the lattice) and contains a vector of weights of the same
dimension as the input vectors. If each input vector has N dimensions then each
neuron will also contain a corresponding weight vector of the same N size.

The horizontal inter-connectivity (lateral interaction as shown in Fig. 3.1) between
the neurons of the map is implemented by utilizing a neighborhood function such
as a Gaussian function centered at the neuron with the largest response to an
input signal (winner neuron). For each input signal the winner, which is the
neuron of the map with the nearest features to the input vector, is selected and
then its weight vector together with its topological neighbor’s weight vectors
are updated and moved towards the input signal. By applying this mechanism,
the topological neurons neighboring the winner will receive partial excitation
depending on their distance to the winner and at the same time the rest of the
map outside this neighboring region will be inhibited.

After several adaptation steps the network will learn the structure of the input
space and nearby regions of the trained map will respond to similar input data.
The result is a topographic mapping of the input space.

The version of self-organizing maps (SOMs) implemented in my thesis applies
the following mathematical equations. The map consists of an I × J grid of
neurons and each neuron nij is associated with a weight vector wij ∈ Rn with the
same dimensionality as the input vectors. All the elements of the weight vectors
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are initialized by real numbers randomly selected from a uniform distribution
between 0 and 1.

At time t each neuron nij receives an input vector x(t) ∈ Rn. The net input
sij(t) at time t is calculated using the Euclidean metric represented by Eq. 3.1.
Then the activity yij(t) at time t is calculated by using the exponential function
shown by Eq. 3.2. The parameter σ is the exponential factor and the role of
this function is to normalize and increase the contrast between highly activated
and less activated areas. The neuron wn with the strongest activation (winner
neuron) is selected by using Eq. 3.3.

Then the weights wijk of the neurons are adapted by Eq. 3.4 in which the
term 0 ≤ α(t) ≤ 1 is the adaptation strength, α(t) → 0 when t → ∞ and the

neighborhood function Gijwn(t) = e
−
||rwn−rij ||

2σ2r (t) is a Gaussian function decreasing
with time. The rwn and rij of the Gaussian function are the location vectors
of neurons wn and nij respectively and σr sets the neighborhood radius, which
covers the whole map at the beginning and decays with time.

sij(t) = ||x(t)− wij(t)|| (3.1)

yij(t) = e
−sij(t)

σ (3.2)

wn = argmaxijyij(t) (3.3)

wijk(t+ 1) = wijk(t) + α(t)Gijwn(t)[xk(t)− wijk(t)] (3.4)

Growing grid networks

In the Kohonen feature map described above, the network is constructed from
a pre-determined number of neurons represented by a fixed number of rows and
columns. A more flexible implementation of self-organizing neural networks are
the growing grid networks (Fritzke (1992)) that I will describe in this section.

In order to make a precise representation of the topology of the input space, a
priori knowledge about the space is required. Constructing this knowledge re-
quires a comparatively demanding computational task, especially in more real-
istic experiments. If the algorithm applies some effective heuristics to guide
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Figure 3.2: The growing grid network. The growth phase on the left shows the expansion of the neural map by an insertion
of a complete row or column of neurons in the neighborhood of the most activated areas representing the input
given. The right part shows the fine-tuning phase in which the algorithm continues learning with a fixed size
and a fixed topology by a decaying learning rate.

the development of what the architecture represents in the input space, then
a more accurate topological representation of the input space can be reached
(Blackmore and Miikkulainen (1993)). The algorithms for growing grids and
the growing cell structures meet these requirements.

The growing grid network structure proposed by Fritzke meets these require-
ments (see Fritzke (1992) and Fritzke (1996)). Such growing networks been
applied to a classification problem (see Fritzke (1991)), to a combinatorial op-
timization problem (see Fritzke and Wilke (1991)), to a problem of surface
reconstruction (see Ivrissimtzis et al. (2003)) and also to the touch perception
in a robotic task (see Johnsson et al. (2008)).

The growing grid is an incremental version of self-organizing feature maps with
a number of neurons that increases during the learning process, but with a fixed
topology. The learning in the growing grid occurs in two phases: the growth
phase and the fine-tuning phase. The learning starts with the growth phase
in which the map begins with a lattice of rectangular shape of size 2 × 2 (see
Fig. 3.2) in which each neuron is associated with a weight vector of the same
dimensionality as the input vectors. In addition to that, each neuron has a local
counter value that counts the number of times at which the neuron has the
largest response to the input signals during the adaptation step.

At the start of the growth phase, the input vector x(t) ∈ Rn is received by each
neuron of the map. The net input sij is calculated by applying the Euclidean
metric (shown in Eq. 3.5) to the input vector x(t) and the corresponding neuron
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weight vector wij(t). The activity of each neuron yij is extracted by applying an
exponential function (shown in the Eq. 3.6) to the net input sij . The parameter
σ is the exponential factor used to normalize and increase the contrast between
highly activated and less activated areas.

The neuron wc that is most similar to the input vector x(t) is detected by
applying Eq. 3.7 and its local counter variable is then incremented by one (see
Eq. 3.8). The weight vectors wij associated with wc and the neurons in its
direct topological neighborhood are updated by using Eq. 3.9). The learning
rate α is a constant variable and is not a function of time for the growth phase.

sij(t) = ||x(t)− wij(t)|| (3.5)

yij(t) = e
−sij(t)

σ (3.6)

wc = argmaxijyij(t) (3.7)

LCwc = LCwc + 1 (3.8)

wijk(t+ 1) = wijk(t) + α[xk(t)− wijk(t)] (3.9)

wc1 = argmaxijLCij (3.10)

wc2 = argmaxpq||wwc1
(t)− wpqk(t)|| (3.11)

After the network has received a number of input vectors, a new row or column
will be inserted. The parameter λ determines the time of a new insertion. The λ
should not be too small because the net grows too fast before being sufficiently
adapted to the input space and it should not be too large because the net grows
slowly due to the lack of inserted neurons to the areas of the map that represent
more of the input space and require a higher resolution.

When the λ criterion is met then the neuron wc1 with the largest local counter
value is detected (see Eq. 3.10). Among its direct topological neighbors, the
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neuron wc2 with the furthest distance to it is extracted (see Eq. 3.11). If both
of the neurons wc1 and wc2 are in the same row, then a new column is inserted
between them and the weight vectors of the neurons in the new column are
interpolated by the weight values of the neurons in the neighboring columns.
Similarly, when the neurons wc1 and wc2 are in the same column, a new row is
inserted between them and the weight vectors of the neurons in the new row are
interpolated by the weight values of the neighboring rows.

After the insertion is completed, the local counter value LC and the λ is reset.
The growth phase continues until a performance criterion is met. Then the fine-
tuning phase starts in which there will be no new insertion of rows or columns.
The network will continue processing using the fixed size neural net achieved
from the growth phase while the learning continues with a decaying adaptation
rate. By applying several tuning steps, the network parameters will be regulated
based on the input space and the learning will be accomplished.

4 Architecture

For the aims of this research I implemented several developments of the hier-
archical SOM architecture, which is based on the self-organizing maps and the
growing GG architecture, which is based on the growing grids networks. The
SOMs are used for the network architectures developed in papers I to V of the
thesis. The GG networks are used for the network architecture developed in
paper VI of the thesis.

I will describe different components and layers of the basic SOM and GG archi-
tectures in the following sections. The basic architectures are built up of five
processing layers among which there are three learning layers of neural networks.
The common layers in both architectures are the preprocessing layer and the
ordered vector representation layer.

4.1 Input data and preprocessing

The datasets utilized for running the experiments of this research are collected
with the aid of Kinect sensors. The 3D joint positions of a human skeleton are
extracted from the RGB image and the screen depth map of the Kinect by using
the software libraries OpenNI and NITE. As a result, the body of the action
performer is detected and the 3D information of its joints is extracted. There
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Figure 3.3: The body of action performers have different distances to the camera which results in different scales of the
bodies. All body postures are scaled into a unique size to remove this effect

are different amounts of information available in the input space in different
experiments represented by the number of detected joints.

The preprocessing layer executes several functions including ego-centered co-
ordinate transformation, scaling, attention filtering and extraction of dynamics.
These functions are either cognitive functions such as attention and dynamic ex-
traction inspired by human behavior in performing the same recognition tasks,
or they are implemented to overcome experimental challenges such as having
different viewpoints or distances towards the action performer. The functions
implemented to preprocess the peripheral input data will be described in the
next sections.

Scaling

If the action performer is placed at different distances related to the camera,
then there will be a difference in the scale of the input data, which is not de-
sirable because it could result in important spatio-temporal differences between
different action sequences and thereby decrease the performance of the recogni-
tion system. Fig. 3.3 shows that when the same performer moves towards the
camera its spatial trajectory is recorded with different scales.

To overcome this experimental effect the scale sizes of all Kinect skeleton pos-
tures performing different action sequences are transformed into a unique size.
In this condition the input data will be invariant of varying distances to the
camera. To this end let us assume that each posture of the actor’s body is com-
posed of 3D information of a certain number of skeleton joints. The adjacent
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Figure 3.4: The body of the action performers having different orientations to the camera. Turned to left (A), forward
direction (B) and turned to the right (C). The coordinate system for all body postures are transformed into an
ego centered coordinate system placed at the joint stomach of the body, built from the joints stomach, right
hip and left hip (D)..

joints are connected to one another by a linear rigid line called link. This means
that if each skeleton posture is represented by N joints, there are in total N − 1
links connecting these joints. I considered a standard value corresponding to
each skeleton link for all posture frames of all action sequences. As an example
the length of the link connecting the joint shoulder to the joint elbow is re-scaled
to a fixed value for all action sequences by using the start joint of the link (the
shoulder), its slope and the corresponding standard value.

Ego-centered coordinate transformation

One of the main conditions that may occur in running the action recognition
experiments is when there is a change in the viewpoint of the observer. This is
the same as the condition when the action performers have different orientations
in relation to the camera while being recorded. Fig. 3.4 shows three simple
examples of different orientations towards the camera when the camera is fixed
in a reference frame. These examples are turning to the left, forward and turning
to right, which is shown in the Fig. 3.4 part(A), part(B) and part(C) respectively.

In order to overcome this condition and make the input data invariant of the
orientation of the performer, I developed an ego-centered coordinate transform-
ation. This means that all action sequences from the input data are transformed
into an ego-centered coordinate system in order to be represented by one fixed
coordinate system.

The new coordinate system is called an ego-centered coordinate system because
its origin is located in the joint Stomach of the performer. The three joints
Stomach, Left Hip and Right Hip are utilized to build the axis of the new right-
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handed coordinate system as shown in the Fig. 3.4 part(D).

First the point PS , which is the projection point of the joint Stomach on the
line connecting the joints Right Hip and Left Hip is calculated. The Z-axis is
calculated by connecting point PS to the joint Stomach. The Y-axis is directed
by the vector connecting the point PS to the joint Left Hip. Finally the X-
axis is calculated by making a 3D cross product (vector product) of the vectors
connecting the point PS to the joint Left Hip and the vector connecting point
PS to the joint Stomach.

Finally the origin of the new reference coordinate system is translated from the
point PS to the joint Stomach. All the joints 3D information is transformed into
this new coordinate system.

Role of Attention

Attention is defined as focusing the mind on one of many objects or subjects that
may simultaneously stimulate the mind (James (1890)). There are many differ-
ent types of attention including feature-based, object-based, temporal, spatial,
bottom up and top-down attention (Gharaee et al. (2014)). From the action
viewpoint, attention refers to having an active observation instead of processing
the entire input space, which uses a shift of attention as a means to have an
active perception (Gharaee et al. (2014)), for example by focusing on a moving
arm instead of on the whole body.

Attention is necessary since the limitations of time and processing power makes
it necessary to apply a method based on the conscious selection of the input
information and then use the selected information to perform an action such
as making a decision or making a recognition (Shariatpanahi and Ahmadabadi
(2007)). Moreover, the conscious selection of the input information helps to
improve the efficiency of a system performance by reducing the processing of
the input space to the most salient features. This is similar to visual sensors in
humans in which online processing cannot process the entire input information
for a space because of limitations in visual field, time, and processing power
(Shariatpanahi and Ahmadabadi (2007)).

Learning how to control attention to a perceptual subspace while learning a
specific task results, first, in saving time and processing power and, second,
in improving the performance of the learned task (Gharaee et al. (2014)). To
this end, I have implemented a manual determination of the salient joints for
the set of actions in the preprocessing layer of the architecture. This resembles
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the condition in which the agent sets the focus of attention to the most salient
parts of the body involved in performing the action and then uses this selected
information to complete the task of recognizing that action.

It seems that humans apply a similar mechanism for recognizing the actions
performed by others. As an example, when we observe a person waving to
greet somebody by lifting the arm, our attention is mainly focused on the arm
involved in performing the action wave and in ignoring other parts of the body
such as the legs.

Applying orders of dynamics

Next, I turn to how the action categories can be modeled. Here I built on the
theory of conceptual spaces. As Gärdenfors defined it, a conceptual space is built
up from geometrical representations based on a number of quality dimensions
(see Gärdenfors (2000)). Examples of the quality dimensions are temperature,
weight, brightness, pitch and the spatial dimensions height, width and depth.
We perceive the spatial dimensions of height, width and depth as well as bright-
ness by our visual sensory system, pitch by the auditory system, temperature
by thermal sensors and weight by the kinesthetic sensors. There are also many
quality dimensions that are of an abstract character.

What Gärdenfors means by geometrical representation can be clarified by a
domain involving our color perception. Our cognitive representation of the color
can be described by three dimensions hue, saturation and brightness. The first
dimension hue starts from red via yellow, goes to green and blue and back again
to red, which generates a circle. The second dimension saturation ranges from
grey with zero intensity and increases to greater intensities, which is isomorphic
to an interval of the real line. The last dimension brightness ranges from white
to black and so resembles a linear dimension with end points.

The color domain as a subspace of our perceptual conceptual space is often
illustrated by a color spindle, which is shown in Fig. 3.5. There, brightness is
shown on the vertical axis, saturation is shown as a distance from the center of
the spindle and finally hue is represented by position alongside the perimeter of
the central circle.

A conceptual space can be defined as a collection of quality dimensions. The
dimensions can be correlated in various ways such as the ripeness of the fruit
being correlated with its color. It is not possible to provide a complete list of the
quality dimensions involved in the conceptual spaces of human cognition. We
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Figure 3.5: The color spindle

know that some of the dimensions are innate and partly hardwired in the nervous
system such as color, pitch and space. Other dimensions are learned, which
results in the expansion of the conceptual space by new dimensions during our
development. There are other types of dimensions such as culturally dependent
dimensions and dimensions introduced by science.

The question regarding the action categories is what dimensions they are based
on. According to the conceptual spaces theory of Gärdenfors, we can represent
actions by the force patterns that generate them. The forces represented by the
brain are psychological constructs and not necessarily the scientific dimension
introduced by Newton. According to this theory, the information that our senses
such as vision receive by observing the movements of an object or an individual
is used by our brain to extract the underlying force patterns in an automatic
way. According to Runesson’s KSD principle, this information is available in
our optic array in the same way as the information about other properties like
the color or shape of an object.

Thus by adding the force dimensions to a conceptual space we gain a basic
tool to analyze the dynamic properties of actions and other types of motion.
To represent the action by the force patterns generated the action, I calculated
and applied the orders of dynamic. An action can be represented by both the
kinematic and the dynamic characteristics visible in the movements of an object
or an individual. These characteristics can be determined from the movements
of the joints and the skeleton parts and so can be extracted from the skeletal
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information.

From the 3D position of the skeleton joints I calculated the first-order dynamics,
which represents the velocity of the corresponding joint, as well as the second
order of dynamics, representing the acceleration of the joints. As we know from
Newton’s law, the second order of dynamic representing the acceleration vector
has the same direction as the force vector and the magnitude of the force vector
is inversely proportional to the mass of the moving object.

Thus by applying the first and second orders of dynamic as the input, one can
extend the input space to contain more information about the action. Some
of this information represents the force patterns. As a result, the system will
receive richer information about the dynamic and kinematic properties of the
actions and may use this information for recognizing the actions. I investigated
the effects of including first- and second-order dynamics in paper IV.

4.2 The role of different layers of the architecture

In this section I will describe how different layers of the hierarchical action
recognition architectures are connected. As represented in Fig. 3.6, the system
is composed of five main processing components. Among them are three layers
of neural networks, one layer preprocessing and one layer of ordered vector
representation.

The first-layer neural network, which can be a SOM or a GG layer, receives
the preprocessed input data from actions as a series of consecutive 3D posture
frames. Each posture frame elicits activation in the first layer neural map and
by connecting these consecutive elicited activations a pattern vector is generated
for each action sample.

Series of activations are received by the ordered vector representation layer to
create time invariant pattern vectors of key activations. The consecutive activa-
tions will be represented as a unique action pattern. Then the generated action
patterns will be sent to the second layer neural network.

The second layer neural network, which again is either a SOM or a GG layer,
receives the action pattern vectors and categorizes them into action categories.
Based on how differently one action is performed there may be several sub-
clusters representing the same action, which makes the classification task more
complicated.

Finally, the third layer of the architecture, which is a one-layer supervised neural
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Figure 3.6: The multi-layer action recognition architecture

network, labels the clusters/sub-clusters shaped by the second layer neural map
with the action labels. Any new test action sample that is received by the
architecture with trained weights will be assigned an action label, if it elicits the
area of the neural map in the proximity of the corresponding action cluster/sub-
clusters.

I tried to propose an action recognition architecture which has several features
and among them are its biological inspiration from the living organism, partic-
ularly the human, in performing the same action recognition task. Using the
three layers of neural network in hierarchical action recognition architecture in-
troduces a semi-supervised learning model (Ding et al. (2017)), which resembles
the human learning process in which the training samples are often obtained suc-
cessively. In this way the observations arrive in sequence and the corresponding
labels are presented very sporadically. Moreover the self-organizing maps and
growing grid networks have other important features such as topographic organ-
ization of the neurons, lateral interactions, Hebb-like synaptic plasticity, and the
capability of unsupervised learning.

Another important feature of my proposed architectures is their ability to gen-
erate low-dimensional representations of high-dimensional input space. The
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system receives spatio-temporal input data of action sequences from large num-
ber of posture frames and produce action pattern vectors, which represent the
spatial as well as the temporal information of the action sequences.

Most of the methods for action recognition utilize the pre-segmented and labeled
datasets of actions (see Li et al. (2010), Liu et al. (2017b), Wang et al. (2012a),
Yang and Tian (2012), Shotton et al. (2011) and Oreifej and Liu (2013)), while
online recognition of actions is crucial in real-time experiments with unsegmen-
ted sequences of actions. In paper V, I presented the developed online action
recognition architecture utilized in performing experiments on unsegmented se-
quences of actions.

The deep learning approaches for action recognition such as the CNN-based and
RNN-based systems have certain features and among them is that these neural
networks are not biologically inspired. Moreover working with deep learning
techniques requires to train the large number of deep network’s parameters
with a big input data. While in many tasks such as medical tasks we don’t have
access to a big amount of input data or it is too expensive to produce it.

Many of the proposed approaches for the action recognition in a robotic platform
utilize as their input space only the result actions, the actions result in a change
in the surrounding environment of the observer such as a move in an object (see
Lallee et al. (2010), Kalkan et al. (2014) and Stramandinoli et al. (2012)). The
action space is wide and also includes the actions merely expressing a manner
without having a change in any entity existing in the surrounding environment
of the observer such as the actions wave, jogging and point. The proposed action
recognition architecture of this thesis deals with both groups of actions. The
actions without involvement of another entity are recognized in the experiments
presented in papers I, IV, V and VI and the result actions are considered as the
input of the system presented in paper II and III.

In the following chapter I will explain how the architectures are developed to
implement different experiments in online real time mode with unsegmented
action sequences. The more detailed descriptions of different experiments are
available for the reader in my research articles.
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Chapter 4

Segmenting actions

1 Introduction

One of the main purposes of developing an action recognition system is that is
can be used in several kinds of applications such as video surveillance, health
care system or human-robot interaction. However, for such applications the
system must function online in real time. This means that the system has to be
capable of dealing with unsegmented and unlabeled input sequences of actions.
In paper V, I presented the results of experiments I have performed for online
recognition of unsegmented actions, using an extended hierarchical architecture.

The segmentation problem arises in case of receiving a continuous stream input
data of actions. This means that it is not announced to the system when an
action starts or when it ends. Consequently, the system has to determine these
conditions on its own. In this chapter, I will investigate how the system can
be made capable of recognizing actions from an unsegmented input data in
realistic experiments. I will also compare this to what is known as human event
segmentation tasks.

Our daily activities are goal-driven and these goals are indirectly utilized by
our perceptual mechanisms. The goals provide major causal constraints on
our behavior as well as on how our actions are segmented. One possibility
for someone trying to comprehend a series of events is to monitor the goals
and sub-goals of the actors in the events and to segment activity into events
corresponding to the goal units. This idea individuates actions in terms of
the actor’s intentions, while the goals covary with other information in human
activities that change over time.
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The goals of an actor are normally internal features and not visible to the ob-
server, while the features such as the actor’s movements, changes in the objects,
people and locations are directly visible to the observer and they can reliably
be related to the internal goals. Thus the correlations among these features can
lead and govern the event comprehension where the observer tracks the physical
movements and visible features until a change is detected and sets the event
boundary at the point where a greatest change is identified.

This proposal of utilizing changes in perceptual features for event segmentation
faces two main problems. The first problem comes with what is considered
as a change in the stimuli features; in a case of tracking, for example, the
position of an object over time when a change occurs whenever the object moves.
While if we take the velocity as the stimuli feature, then a constant motion is
considered as no change. The second problem is when the change theory does
not explain how the segmentation interacts with other components of perception
and thought such as attention, memory and planning.

In the following section, I will first describe a theory regarding event perception
in humans and then I will explain how this might lead us to explore possible
solutions in dealing with the same problem in artificial systems.

2 Event segmentation theory

In this section, I will describe the Event Segmentation Theory (EST) suggested
by Radvansky and Zacks (2014). When we are observing daily activities, we
constantly face lack of information, for example concerning the goals of actions.
For the goals of other people, the lack of information is due to the fact that
goals are invisible and so we are unable to observe them directly. But also
for simple perceptual features such as the location of an object, we often lack
information as a result of lack of attention, sensory limitations or occlusion. To
deal with this condition, perception is augmented with memory systems to keep
the representations of current activities that are not actively perceived.

Radvansky and Zacks call these representations working models and defined
three main properties for them. The first relates to their limited duration, in
contrast with memory representations that maintain large quantities of inform-
ation over long time intervals. The second feature of the working models is
that they represent the features of the current activity that are relevant to one’s
current goal and task. Finally, the working models are multimodal and they
integrate information of various modalities with conceptual information.
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Such working models improve the comprehension of an event by biasing the
pathway from sensory inputs to predictions in order to be protected from the
moment-by-moment changes in the sensory space. EST suggests that most of
the time working models are isolated from the input space and just store a
snapshot of the current event. However, the working models cannot be isolated
from the input space forever and there is therefore a need to establish a balance
between stability and flexibility.

EST suggests a trade-off between stability and flexibility, which is accomplished
by tracking the proximity between the prediction of the near future and what
actually is happening (extracting the prediction error). Thus the observer con-
stantly calculates the prediction error and when something unexpected happens
so that the prediction error jumps from a low value, the observer updates the
working model of the event.

Updating the working model necessitates transient opening of the inputs while
there are two main input resources. The first is the current state of the sensory
and perceptual world and the second is the long-term knowledge of the event
categories and their structures. Thus when the gates are opened, the perceptual
information interacts with knowledge representations to create a new working
model of the ongoing event. As a result of this procedure the prediction error
decreases and the gates are closed.

In current artificial systems there are two main phases in almost all cases: the
learning phase and the test phase. During the learning phase the knowledge of
the system is built and the memory system is created to maintain information
obtained over the learning period. In the test phase the knowledge represent-
ation and memory storage stops and disconnects from the sensory input and
the system is assumed to utilize the stored information and built knowledge to
face any test input space. In EST theory, however, the knowledge-based sys-
tem partly represented by the working models does not remain isolated from
the input space forever and it is updated if the prediction error jumps from a
certain value. This represents that the knowledge built so far is not sufficient
to face the current condition. Thus the EST theory might be applicable only
for the learning phase of the current artificial systems in which the knowledge
representations and the memory systems are connected to the input space and
can be updated.
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3 Segmentation model

Assume we have available continuous input data of actions, without access to a
manual segmentation process, which identifies when an action starts and when
it ends. In order to make online experiments on unlabeled input data of actions
in an artificial action recognition system, it is then necessary to model the
segmentation process.

The segmentation models that have been presented in the literature largely
depend on which sensor process is used to build the input space. When the input
data of actions consists of RGB images, action segmentation is more similar to
object segmentation in which the visual scene is perceived as consisting of a
ground that is less salient and less differentiated while there are one or more
figures that are perceived as salient components (spatial kinematics represented
by the actors bodies). In contrast, in my research I used input data of actions
consisting of consecutive postures representing the 3D skeleton information of
the joints.

As I have already discussed, actions have spatio-temporal characteristics. This
means that there is kinematic information about the actions. The temporal
information represents the time interval an action lasts as well as the temporal
order of the movements that are most significant for recognizing the actions. As
an example, assume that you lift up your arm and then push it forward. This
represents the action throw or punch while if you take the reverse path – push
back your arm and put it down – the action catch is represented.

To segment the actions, it is important to define the key postures for each
sequence of an action, which contains the main movements that are critical to
complete that action. The action is identified if these key postures represented
by the body of the actor are observed by the system. In fact, the system is
tracking the movements of the actor and is looking for these key components
to detect what action is performed. As an example, for the action scratch the
head these key components are: the arm is lifted up, the hand approaches the
head and after while the hand leaves the head. No matter how each one of
these intermediate steps is performed, if the system detects the key component
of each step the action is identified.

The technique I used for recognizing unsegmented actions in an online mode is
partly similar to the EST theory. Indeed, by applying self-organizing maps, an
automatic segmentation mechanism has been constructed.

As mentioned in section 3, the first layer of the self-organizing map architecture
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extracts the activations representing the posture frames of an action sequence.
The connections between the first and the second layer of the architecture create
the action pattern vectors by connecting unique elicited activations extracted
from the first layer self-organizing map. By setting a sliding window on the
action pattern vector of all consecutive actions the second layer self-organizing
map receives the patterns of key activations and categorizes them.

This means that when the SOM system receives initial postures of an action
performed it extracts the key activation and waits for the remaining key postures
to make a certain recognition based on the learned concepts. This is partly
similar to the EST theory, which claims that the event’s observer predicts the
near future based on his/her stored memory and knowledge and compares it
with the real future. In fact in both cases based on the initial input data as well
as the learned knowledge and memory the agent expects for the occurrence of
specific movements and if it is not satisfied then the agent consider it as the end
of an event and the beginning of a new event.

There is delay in recognizing an action, which is due to the fact that it takes
some time for the system to receive all key postures and consequently create
the corresponding key activation vector. This is compatible with experiments
with human observers since it takes time for us to recognize an action with
certainty so we wait until we receive the necessary information concerning the
key components of the action. A more detailed description of the segmentation
techniques I have utilized in SOM architecture is available in article V.
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Chapter 5

Experiments and results

1 Introduction

In this chapter I will briefly describe the experiments that have been performed
for this thesis. The details of the experiments are provided in the following
articles.

In total, the articles present six main experimental setups that have been de-
signed and implemented. The setups address different problems and angles of
the action recognition tasks. The main purpose of this thesis is to develop an
efficient action recognition framework in a robotic context. In other words, the
action recognition architectures developed aim at making the robot capable of
perceiving human actions and utilizing the perceived knowledge to build better
human-robot interaction in a social environment.

It should be clear that the action recognition architectures proposed in this re-
search can be employed in many experimental conditions that are suitable for
the goals of different applications such as gaming. Therefore, I have developed
a human action recognition method that can be used for a wide range of applic-
ations.

2 Experimental results

In the first experiments, the aim was to develop an action recognizer that deals
with actions only, without any other objects being involved. The experiment,
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presented in paper I, was implemented in an offline mode on already segmented
actions of the publicly available dataset MSR-Action3D (Wan (2015)). In dif-
ferent experiments the total number of action sequences is divided into training
and test sets in which the training sets contain 75% to 80% of action sequences
and the test sets contain the rest 20% to 25% of the action sequences selected
randomly from the whole datasets.

The test results were that 83% of the actions not included in the training set
were correctly categorized. For the second experiment, presented in paper II, I
developed an online action recognition system using the neural modeling frame-
work Ikaros (Balkenius (2001)) to run real-time experiments (see Balkenius et al.
(2010) and Balkenius (2001)). I collected two datasets of actions with Kinect
using the software libraries OpenNI and NITE to read the sensors and extract
the 3D joint positions of the action performer. I first evaluated the system in
the experiment with actions without object and achieved categorization test
accuracy of 88.6%. Then I evaluated the system in experiments with actions
including objects and achieved a categorization test accuracy of 94.2%.

In the third experiment, presented in paper III, I developed an architecture that
can also handle the information about objects by utilizing an object tracker
module of the Ikaros. To this end I developed a hybrid system with two parallel
paths for processing information of the actor and the objects. This system
could recognize what action is performed and also could identify which object
the actor acted on among the four available objects in the environment. The
action categorization accuracy was 91.1% and the object identification accuracy
was 100%.

In the fourth experiment, presented in paper IV, I extended the architecture to
be able to handle the information about the first and second orders of dynamics
of the actions performed. The merged action recognition system receives the
information of the joints 3D positions together with their first and second or-
ders of dynamic representing the velocity and acceleration of the joints. Several
experiments were performed on two datasets of actions that contain in total 20
actions. I compared the categorization accuracy with and without merging the
dynamics information. For the first dataset I achieved an improvement in accur-
acy from 83% to 88% and in the second experiment I achieved an improvement
in accuracy from 86% to 90% by application of the two orders of dynamics.

In the fifth experiment, presented in paper V, I developed a new version of the
system that is capable of recognizing unsegmented and unlabeled human actions
in an online real-time experiment. The performance of the system was evaluated
in two main experiments and I achieved a categorization test accuracy of 75%4
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and 88.74% respectively.

Finally, for the sixth experiment, presented in paper VI, a new version of ar-
chitecture was developed by implementing two layers of growing grid neural
networks. This new architecture was tested on two different datasets of actions
and compared with the architecture based on self-organizing maps. The first ex-
periments involved 10 actions and the system achieved 92.6% of categorization
accuracy while the SOM architecture only had a 90% accuracy. The second ex-
periment involved 20 actions and the system achieved a categorization accuracy
of 70.75%, which is significantly superior to the SOM architecture that only had
a 59.61% accuracy. There was also a significant increase in the learning speed
of the growing grid system compared to the SOM system.

3 Action recognition applications and future works

There are many different applications for artificial action recognition systems.
Specifically, in robotics an action recognition system can be employed in social
robotics where there is a need to interact with robots. Assistant robots in
health care applications are another application area. In general in any social
context where there is a need for interaction between a human agent and another
artificial agent, there will be a need for action recognizer frameworks.

In summary, I have designed and developed hierarchical action recognition ar-
chitectures applying self-organizing map (SOM) and growing grid (GG) neural
networks equipped with different processing layers. These architectures are de-
veloped with different applications such as the abilities to recognize human ac-
tions represented by either manner or result verbs, to identify the object involved
in the performance of the actions, to perform the online real-time experiments.
Different abilities of the architectures have been evaluated in several experiments
represented in detail in the scientific articles.

Despite all the abilities of the proposed action recognition architectures, there
are many steps to improve the system and make it applicable in running differ-
ent experiments with a wide range of actions in varying experimental conditions.
Among the many factors that can be developed are improvements of the type of
input that provides the system with data of the actions. In particular, there is
a great need for an efficient action detector that is implemented one step prior
to the action recognizer. Developing the preprocessing mechanisms could be
another future step. As an example developing an automatic attention mech-
anism that builds a salience map of the scene, and extracts the attention focus
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of the observer while the action is performed will generate a more robust action
recognition system.

Developing the system to be able to categorize a wide range of actions – with
and without involvement of other objects, or actions performed in an interaction
between two actors is another important step that should be taken in the future.
Improving the method of the action key features extractor and also the action
classifier should be considered as other important plans for building an efficient
and robust action recognition system.
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This thesis investigates solutions to 
different aspects of action recognition in 
artificial systems. To this end several 
variants of a multi-layer cognitive model 
based on artificial neural networks are 
designed and implemented. The novel 
neural network architectures are validated in 
a number of experiments with different 
types of action input. 
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