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Abstract

A gualitative counterpart of Kalman filtering oposed, which igontrasted with updating

operations based amaging in thesense of LewisFiltering and updating are defined and
compared in the framework of possibility theorysyxtactic counterpart of qualitative filtering
(and updating) is outlined in the setting of possibilistic logic.

1. Introduction

Since the pioneeringvork of Alchourron, Gardenforsand Makinson(1985), and the
publication of the seminal book on "Knowledge in Flux" by Gardenftb®88), therehasbeen

an important and increasing interest in the modelling of beleinge. Progressivel\pasic
distinctions have been emerged between various types of belief change: revision of beliefs by an
input information in a statievorld vs. update of beliefs in a dynamiworld (Katsuno and
Mendelzon,1991), revision by an input held asertain and prioritarys. revision by an
uncertain information (Darwiche arfearl, 1997 Boutilier etal., 1998; Dubois andPrade,
1997a), revisiorvs. focusing on a class o&ference (Dubois andrade, 1997b)revision of
beliefs vs. revision of preferences (Ryan and Williams, 1997; Benferh&f 4999).What is
noticeable is that theshstinctions can benade invarious representational settings provided
that these frameworks, whichight be symbolic or numerical (L&ombé, 1994Dubois and
Prade, 1998b), are rich enough for enabling the expression of these distinctions.

Another important aspect with respecthelief revision isthe epistemic entrenchment
underlying any well-behaved revision process, which should obey Alchourron, Géardenfors and
Makinson (AGM)postulatesSince an epistemic entrenchment relation is closely related to a
necessity measure in tkense of possibility theory (Dubois aRdade, 1991)the framework
of possibilistic logic (Dubois, Lang, Prade, 1994) enables us to en\nséigkrevision both at



the syntactic level of a possibilistic logic base, and in an equivalent manner, at the slewelntic
of a possibility distribution rankinthe interpretations. In this approade ordering on which
therevision is based igxplicitly associatedvith the formulas and is revised ithe revision
process.This view is also advocated Biilliams (1994) in herrelated approactvased on
adjustments.

The present papeshould be understood in thgeneral perspective, where different
types of belief change operations have been investigated both at the semantic and at the syntactic
level. A qualitative counterpart of &ell-known "updating” methodKalman filtering (briefly
recalled in Section 2), is introduced in Section 3 and compared to updating basedjiog
in Sections 4 and 5, ithe setting of possibilitgheory. Then a syntactic counterpart of these
machineries is outlined in Section 6.

2. Kalman filtering

Kalman filtering is thebasis of well-known updatingechniques irsystemsengineeringe.g.,
Bar-Shalom andrortmann, 1988), ithe case of an evolvingystem when eventgre dated.
The ideaunderlying Kalman filteringnamely atwo-steps procedure involvingrediction and
revision, can be of interest in othesettings. Recently, Castel, Cossand Tessier(1998),
Cossart and Tessier (1999veproposed to transposkese ideas in a symbolic settifay a
situation assessment problem. Let us first consider the probabilistic framework.

We only give hereghe basic principles owhich Kalman filtering ishbased.Let Q be a
set of possiblevorlds. It isassumedhat thereexists a prediction functionduchthat f(wy) =

ux+1, Whereuy [Q is the state at time t of a consistent system ang i the resulting state at
time t + 1.Knowing the probability distribution gon thesystemstate atime t, theprevision
(forecast distribution) at t + 1 is givendnby R(f-Y(w)) where fiw) = {w' : w = f(w")}. Let
A be an input information available &ime t+1, the updated state #itne t + 1 could be
computed using Bayes rule as

Pre1(w) = R(fYw) | A) = R(FHw) n A) / B(A). (1)

Thus this type of updating is decomposed into a prediction step followed by a revision
step. The underlying idea is that the prediction of the next step at t+1 pervaded with uncertainty
is improved by taking into account the observation A.



3. Possibilistic filtering

A brief background on possibility theory is first given irbalief changeperspective, before
proposing a possibilistic counterpart of (1).

3.1. The possibility theory setting

Possibility theory provides a framework fancertainty modelling, whichan be numerical or
remain qualitative, anavhich departs from probability bthe use of maxitive (rather than
additive) law and the existence of a dual paimasures for assessitige uncertainty. See
Dubois and Prade (1998a) fordetailed overview of possibility theoryThe possibilistic
approach enriches theowledge representation provided e pure logical settingfrom the
point of view ofexpressiveness. Instead of viewingpeief state as a flatet Q of mutually
exclusivestates,one adds @omplete partiabrdering ontop, according to which some states
are considered as more plausible tlhers (Dubois andPrade, 1988; Zadel978). A
cognitive state can then be modelled by a possibility distribmitimat is, a mapping fror@ to

a totally ordered set V containing a greatest element (denoted 1) andedeleasit(denoted 0),
typically the unit interval V = [0,1]. However any finite, mrfinite andbounded,chain will do
as well. This approach is also close to Spohn (1988)'s well-ordered partitions, see (Dubois and
Prade, 1991).

A consistent cognitive stateis such thatw) = 1 for somew, i.e., atleast one of the
states is considered as completely possibfe. iim such a casris said to be normalized. Here
consistency can be a matter of degree. A cognitive sttesaid to beartially inconsistent if
0 < max fi{w) : W} < 1. Whenm(w) > m(w') thenw is a more plausible state thasi.
When there is one staig) [ Q such thatt(wy) = 1, and(w) = 0 if w # wg, T corresponds to

a completecognitive state. Converselythe vacuouscognitive state iexpressed byhe least
specific possibility distribution o, i.e., Ter(w) = 1, [d . It corresponds tthe state ofotal

ignorance. A possibility measufgis associated with a possibility distributimmnamely:
[1(A) = supy@ T(w).

Possibility measures thus satisfy the following characteristic decomposition property:

[1(ADB) = max(1(A), [1(B)).



Necessity measures N are defined by duality, namely
N(A) = 1 -T](-A)
and N(AnB) = min(N(A), N(B)).

3.2. Possibilistic revision

The three basitorms of belief dynamics described yardenfors (1988)pamelyexpansion,
contraction and revisionan easily be depicted in the possibilistamework.Only expansion
and revision are now recalled. The expansitg of a cognitive stater uponlearning thesure

fact A makes full sense when A is fully consistent with the prior cognitive state descrilbed by
that is, if (o O A, M(w) = 1. The expansiort™, in the consistent case is defined as:

@ , Tt A () = Min(a (), () 7

where |4 is the characteristic function of the subset A. If the input A is not fully consistent with
(O A, (w)<1) then one considethat expansion yields an absubelief stateTtt s (w) =

0, [ . The result of an expansion, that stems from receiving new information consistent with a
previously available cognitive state describedrbyis another possibility distributiont™ 5 that

is more restrictivettt 5 < ), and thus more informative than

In a case of inconsistency thfe inputwith the cognitivestate, a revision proceszkes
place. It consists in transformirntipe cognitive statat into a possibility distributiontt* 5

obtained by revisingt with input A. This new possibility distribution is obtained lbgting 1o 5
=11- | A) wherat(: | A) denotes the qualitative possibilistic conditioning defined by

Mw|A) = 1ifw) = [1(A), ® OA

=m(w) if Mw) <[](A), w OA (3)
=0ifw OA.

It hasbeenshown (Dubois andPrade, 1992)hat when definingm* 5 asmi(- | A) the
associated revisioprocess * satisfieall AGM postulates which underlies any well-behaved
belief revision (Gardenfors, 1988). Note that (2) only requiresrdimal scale. In anumerical
setting conditioning may be defined by:



mw | A) :lzll(((:;,mﬂ A (4)

= 0 otherwise,

which is a particular case of Dempster rule of conditioning (Shafer, 1976).

3.3. Filtering in the possibilistic framework

Let us now give the possibilistic counterpart of Kalman filtering in gense of (1).Other
counterparts of the Kalman filtering ideas have been recprijyosed irthe possibility theory
framework by Delplanque eil. (1997) in goroblem of underwatemobotics,and by Nifle and
Reynaud (1997) for the recognition of fuzzily described temporal scenarios.

Let f be a prediction functiondg) = w41, Wherewy, is the state dme t. Knowing the
possibility distributiorTg on the system state at time t, the prevision (forecast distribution) at t +
1 is given inw by [T«(f~4w)), where [1i(f-Yw)) = max {m(w'): wOf-Yw)}, and[1(0) = O.

Let A be aninput information available dime t + 1, theupdated state d@ime t + 1could be
computed using the possibilistic revision process defined above (2) namely:

g (@) = M) | A) = mag, 1) TR | A). (5)

Note thatrg, ; is always normalized (ifi is). In the above formula, it would be possible
to replacet(w' | A) by a more generalxpression in case of amcertain observatio(A, o).

See Dubois and Prade (1997a) for conditioning by an uncertain input.

More generally, one may consider a famity{ w [ Q} describing a transitiomraph,
hence generalizing f as a fuzzy relationsRehthat pr(w,w') = m,(w") is the plausibilitythat
w' follows w, and then compute thmage of the cognitive state pertaining to the initial state

through the fuzzy relation R (prediction) and revise the so-obtained prediction iopulhehat
is, in the timed setting, compute the updated possibility distribafign

Ti+1 (W) = maxg, min(mg(w | A), T(w)) - (6)

Note thatrg, is normalized provided thab, w' such thatg(w)=1 andr,(w)=1.



4 - Updating

In the following, updating precisely refers tthe befief change operatiowhich aims at
restoring uptodate views of the world in a dynammrld whenreceivingnew information. At

the theoretical level probabilistic imaging belongs to this type of operation. We then consider its
possibilistic counterpart.

4.1 Probabilistic imaging

Another path in the problem of probabilistbhange, which departs both frazonditioning and
filtering, is the onefollowed by Lewis (1976). Assumethat theset Q of possible states
possesses a distance measure and is such that for any Sfateand any set Al Q, there is
a single stateos in A defined as the closest stateuto Then the principle of minimal change
upon learning that some event’AQ has occurred can be expressed as an advaotate the
probability weight ofeach state that becomespossible to the closest stafeat is made
possible by the inpuilhe input is here at the sanewel of generality as thgrior probability,
and the translation ofvorlds expressethat the current stateas changed, and nttat our
previous beliefs about it were wrong. This updating rule can be formally expressed as

0w O A, Pa(®) = Tor w=wy PO). (7)

This rule is called 'imaging' becausgip the image of p on A obtained byoving the
masses pg) for w DA to wy O A, with the natural convention thaiy = w if w OA. This rule
actually comes from the study of conditional logics (Harper et al., 1981), anthetasited by
the study of the probability of a conditionalsach logics. Iturned outthat computingsuch a
probability led to imaging and not to the usual conditional probability.

The imaging rule has been generalized by Gardenfors (1988) to theleasthe set of
states in A closest to a given stateontains more than one element. I[tA(] A is thesubset
of closest states from, p(w) can beshared amonghe various stateso’ [1 A(w) instead of
being allocated to anique state. Clearlyinstead of sharing pf) amongw' [0 A(w), a less
committed update is to allocatewp)(to A(w) itself (and none of itsubsets). Irthat case the
imaging process produces laasic probability assignmer(Shafer, 1976) inthe sense of
Dempster(1967)'s view of belief functions. But thistype of update is not consistent with
Bayesian probabilities because the result of imaging is a family of probalslitibutions, and
not a unique one.



Note that imaging carturn impossible states injeossible onesi.e., one may have
pa(w) > 0 while p¢o) = O for somaw, e.g., ifwy is suchthat p(wy) = 0. As a consequence a

sure fact B a priori, i.e., such that P(B) = 1 may become uncertain,j(B), 1. This is not

the casewith Bayesian conditioning. In order to preserve this kind of monotorpcibperty,
oneidea (see Gardenfors, 1988) is bwild Py as the image of P on A S where S =

{w| P@) > 0} is the support of P. However, agth the Bayesiamule, P(A) = 10 Pp = P;

this isthe probabilisticversion ofthe succesgostulate ofKatsuno andviendelzon(1991) for
updating. In factall postulates of Katsuno arMendelzonhold or have a natural counterpart

for probabilistic cognitive states, except the postulate which exprésgate conjunction of B

with the result of an updating by A entails the result of the updating by the conjunction of A and
B (see, e.g., Léa Sombé, 1994).

4.2 Possibilistic imaging

It is easy to definghe possibilistic counterpart tioewis' imaging since this type obelief
change is based on mappiegchpossiblestate to the closest otigat accommodates the input
information. As abovedefinefor anyw [ , and non-empty set Al Q the closest state to
wwhere A is truethatis, wherewa O A. Then the imaget’s of a cognitive statet in A is

such that

TCA (W) = MaXy: W=0p mw) if w' O A
=0ifw OA. (8)

If there is more than one stabg closest taw, then the weightt(w) can be allocated to
each of the closest states forming the sei)Adnd the above imaging rule becomes

TCA(W) = MaX: WwoA(w) TM(W)  if 0 OA
=0ifw OA. 9)

Note that 5 is normalized ifrt is normalized. Definindd , A(w) precisely as €' |
(W) =[1](A) }, which does not depend an, thent®s =T11(- | A), i.e., we recovethe revision
based on conditioningClearly in thissetting, we sedhat possibilistic imaging formally

subsumes the AGM revision. However thik is somewhat artificial. Indeed imagirogn be
envisaged in a dynamic perspectivewhich A(w) representshe statesvhere A is truethat



most plausibly followw. Clearly A() depends orthe currentsystemstatew. Then input A
warns the agent that a change in that system state has occurred.

It is easy tacheck that the abowgpdating rule defined b{8) satisfiesall postulates of
Katsuno and Mendelzof1991)'supdates (see Duboibjoral andPrade, 1998). Katsuno and

Mendelzon(1991) have provedhatany change operatidhat obeysall postulates involves a
proximity structure oif, that is, a family {<,, w [ Q} of partial ordering relations, where"

<, W means tha" is closer thamw' to w. In a dynamic system perspectivestate is the state
of a dynamicsystem and {5, w O Q} represents gartial transitiongraph wherew" <., '

means thatw" is a more plausible successoithanw'. Then A¢w) gathersall states in Athat
are minimal in the sense of,<

It has beershown in (DuboisPupin andPrade, 1995)hatadding one more postulate
the proximity structure of is a family {<.,, w [ } of completepreordering relationghat

can be equivalently represented by a familg,{ w O Q} of qualitative possibility
distributions.Then themost plausible states in ®eachablefrom wform the set Ap) = {w'
OA, T(w) =[](A)} where [, is the possibility measure associatedtg Defining Ry as
the relation that to eadah assigngts closest neighbours &) in A, the above update formula

(8) is nothing buZadeh(1965)'sextension principlehat characterizes the fuziayjage of the
fuzzy set whose membership functiomidNamely, ifit= pe then

TCA = BRp0F

with uRA(w,w') =1if w O A(w) and LkA(u),w‘) = 0 otherwise and %6,:((0') =
max,, min(T(w), uRA(w,oo')). In other words, the uncertainty on the initisdystemstate is

propagated over tthe next state via the input-dependent prediction reldiesed on the
transition graph.

More generally, using #éamily {m,, w [0 Q} describing a transitiorgraph, we may
compute the image of the cognitive state pertaining to the initialtetaeghthe fuzzy relation
{m,, w0 Q} (prediction) and revise theo-obtained prediction bthe input, thatis, in the
timed setting, compute the updated possibility distributieq

€Tl (W) = mav, min(Ty(w), T,(w)) (prevision);



T 1(W) = éMuq(00 | A) (revision).

This can be viewed as a generalized form of update. Notérthats normalized providethat
[, w' suchthat Tg(w)=1 and1,,(w')=1. However, ifwand w' aresuchthat T(w) = 1 and
T, (W) = [1(A) thenTrp(w') = 1 whileTg,1(w) < 1 if there existso" A such that€g, 1 (w'")
> &Tg4+1(w'). This situation occurs if the transitiondd (from a highly plausiblestate different
from w) is more plausible than the transition fromto w'. This type of update operati@an be
encountered in other settings (Cordier and Siegel, 1993), (Cordier and Lang, 1995 ).

5. Filtering vs. imaging

We first highlightthe differences between imaging and Kalnfidiering, and then weshow
how formally imaging can be encoded as a Kalman-like filtering.

5.1. Basic differences

Clearly, filtering and imaging use equations presenting some similarities in order to compute the
new cognitive state after learning some new evertidweverthere are severdifferences. In
Kalman filtering, any prediction function can beed,and it does not depend ¢ime event A.
However, inimaging the distance is atrong constraint since ifwA then the closest
interpretation ofv in A is witself.

Moreover, inimaging nopossibleinitial state in A (p@) > 0and wA) is deemed
impossible after Avas occurredsince the revised prediction functiog fiepends on A and is
such that £(w) = wpaUA. Imaging thuscomesdown inthe probabilistic setting to computing
pa(w) = R(fa~w)) for all w DA , and does natequire any normalization sinces@®) = 1.
Moreover, in imaging, we always havei[] A, T°a(w) = 0. This is not necessarily trusing

filtering.

While A(w) is a subset of A itheimaging, the value of the predictiofunction, and
more generallyyy, does not depend on A when filtering. Instead of selecting),Afeneralized
filtering considers the familyr,, w O Q} describing the transition graph, as a fuzzy relation R
such that g(w,w’) = 1,(w).



It is clear thatrg,q in (4) differs fromrty in (8) because thegorrespond talifferent
strategies. Usingr’ s theassumed transition froreach statevis always supposed to be the
most plausibleone(s)gathered in Ag), and the intrinsic plausibility ofhis transition is not
considered. Usingg.q, transitionsthat arenot themost plausiblenescompatiblewith A are
considered viayy and lead to possible final states that are neglected by imaging. theniveo
approaches ardifferent. However it is obvioushat imaging makesense for answering
guestions abouhe nextmost plausiblestate,while the prediction/revision approach is more
adapted to the handling of trajectories in the transigiaph,and is the counterpart in the
possibilistic setting of Kalman filtering.

5.2. Imaging as a particular case of filtering
This subsection explainsow imaging can be encodedking filtering. It is based on the
following three remarks:

- There is no restriction on the function f in Kalman-lfkeering. Hence, adistance measure
used inimaging can be encodesing someparticular kind offunctions. Indeedlet A be a
subset ofQ and let some distance d which giveor each interpretationwits closest
interpretationw' in A. Then for each A, and for each d, we defigg in the following way:

[ , fa d (W) = W wherew' is the closest interpretation doin A. (20)

- As it is said above, in imaging, we always hdsg] A, 1°a(w) = 0.
This is in general not true itme filtering framework. However, usingquation(10), we can
easily check that:

@0 A, [(f1ad (@) =0
since [0 A, f-1a g(w) = namely, from (10),for anw, fa ¢ (w) always belong to A.

- Now in filtering, when somevent B isobserved atime t+1, thenall the possibility degrees
TR(w) wherew[B are not taken into accounttine computation ofg.;. This is due tdhe fact

that 141 usesthe conditioning orrg. However, inimaging all the degrees inr; are used
independently ifw belongs or not tdhe new information. Therefore, in order tecover
imaging using filtering, we should take B as a tautology.



On thebasis ofthe abovepoints, the following proposition showformally how to
recover imaging using Kalman filtering:

Proposition Let A be asubset ofQ, 1 be a possibility distributiorLet fa g be theprevision
function as defined in (10), given some distance d. Then we have:

(D, T°A(W) = T (w)
wheretg,1(w) = [(fa,dYw) | T) andT is a tautology.

The converse does not hold. This is mainly due to the strong assumption imposed by the
distance where A then the closest interpretationfin A is w itself. Then, assume that we

have a prediction function f and a formula A different from a tautolbgyB aformula where
its models are the set of interpretationsuch thatrg..1(w) > 0 (B is necessarily different from
tautology). In order to recovdiltering using imaging, one shoulet B as theinput in the
imaging. Now,the aboveproposition does not holdecause should satisfyd B, fa(w) =
w, which in general does not hold.

6. Syntactic filtering

Filtering (and updating) have been definedh& semantidevel. In this section we
provide their syntacticounterparts. We firsfjive a compact representation ofpassibility
distribution by means of possibilistic knowledge bases.

6.1. Background on possibilistic logic
A possibilistic knowledge base is made up of a finite set of weighted formulas

>={(®, &), i=1,n}

whereg, is understood as a lower boundtbe degree of necessity §ff. Formulas withzero

degree are not explicitly represented in khewledge base (only beliefs whigte somewhat

accepted by the agent are explicithpresented)The higher theweight, the more certain the
formula. The weightsa; are hence viewed asnstraints on possibility distributionsideed,

each pair ¢, &) imposesthat the inducedpossibility distribution 1t should satisfy:
1-max {Mw) : w°@ } = a. LetZ>5j be the set of formulas with weight at least equa).to

A possibilistic knowledge basg is said be consistent if its classical knowledigese,
obtained by forgetting the weights, is classically consistent. We denote by



Inc(X) = max{aj :Z>5j is inconsistent}
the inconsistency degreedfInc(}y) = 0 means tha>gj is consistent for al.

Given a possibilistic knowledge basg, we can generate a unique possibility
distribution by associating to each interpretation,l¢fvel of compatibilitywith agent's beliefs,
i.e., with > . When apossibilistic knowledge base only consists of @renula {(¢,a)}, then
each interpretatiom which satisfiesp will have the possibility degre&(w) = 1 since it is
consistent withg, and each interpretatiomo which falsifies@ will have a possibility degree
m(w) such that the highea is (i.e., the more certaigis), the lower T(w) is. In particular, ifa
=1 (i.e.,@ is completelycertain), themm(w) = 0, namelyw is impossible Oneway torealize
this constraint is t@ssign tor(w) the degree 1 a with anumericalencoding. Therefore, the
possibility distribution associated wigw{(®,a)} is:

(DA, T pay(w) =1 if w O[]

=1-a otherwise.

where [p] denotesthe models ofp. Wheny = {(@, &), i=1,n} is ageneral possibilistic
knowledge base thedll the interpretations satisfyingll the beliefs iny will have the highest
possibility degreepnamely 1, and the other interpretations will be rankedt. the highest

belief that they falsifynamely we get (Dubois et al., 1994):

The possibility distribution associated with a knowledge Hasedefined by:

DO Ty =1 ifO@a) T, wlel
= 1-maxfyg: (@a) D> andwl@]} otherwise.

The possibility distributiomts is not necessarily normalized, howevsris normalized iff
Y is consistent. Moreover, it can be verified that:

Inc(Z) = 1- max, Tty (w).

Lastly, syntactic possibiistic inference is vegfficient with a complexity close tohe one of
classical logic.



6.2. Syntactic counterpart of conditioning
Let 3 be a possibilistic knowledge base, agdts associated possibility distribution (using the

above definition). This subsection providesyatactic counterpart of conditionings with

some observation A. This consists in constructing from a possibilistic2basel the new
information A, a new possibilistic baZsuch that:

[, T 5(w) = T (w]|A).

This is done in a very simple way: add the input A to the knowledge base with highest possible
priority (i.e., 1); compute thdevel of inconsistencyx = IncC{( A, 1)}) of the resulting
possibly inconsistent knowledge base; datidormulas with priority lesghan or equal to this

level of inconsistency. This guarantetmt the remaining beliefs aoensistent with A.More
formally, >' is defined as follows:

> '={(q, &) : (@ &)F anda >x} O {(A, 1)}
6.3. Syntactic counterpart of filtering
Let > be a knowledge base associatedrt¢usingthe abovedefinition). Given aprediction

function f and a new observation A, the new possibility distribution is computed in two steps:

i) apply conditioning oft to A. LetTt be the result of this step;
i) computerg.1 using the function f in the following way:

Th+1 (W) = MaAKy:=f(w) TH(W').
Now we are interested in constructifig such that :
T3 0q (60) =T (60) -

The first step (i) above can be eaglgne usinghe abovesubsectionLet ' be the syntactic
result of this step, with, = 1 >0,.1 >...>07 (with letag=0) as the weights used 1 and we
denote by Sbe the set of classical formulas having the weight equal ¥&We nowdescribert’



in terms of classes corresponding to the same certainty fleaelye denote C and defined as
follows:

Co=[S10...05)
Ci=[S+ 0..08] - [SO ...08], for i=1,n-1,
C,, = {countermodels of $,
where [p| denotes classical models@f
We can easily check that thg'€C encodegxactly thepossibility distribution associated ',

namely we have:
(W) =1 -a;j iff wlC; .

We are taking advantage of the compatibility of the extension prineighethe level cutting of
>'. Let us describsimilarly i1 usingthe classes ¢€s, and the function fThis can be done

very simply in the following way:

{w: T (w)=1-q;} = 1(C;j) - Dj=0,i-l f(Cj), fori=0, n-1
and
{w: Tge(w)=0} = Q - Uj=0,n-1 f(Cy),

where f(G) = {f(w) : wOC;}.
Given this representatiothe knowledge basé .1 associated tar.; can be easily

defined. Le€; be a classical formula whose modelthis set f(§) - Uj=o,i.1 f(Cj), andlet &
be a classical formulavhose models is the se® - Dj:o,n_lf(cj). Then} (41 is defined as

follows:
Yt1={(€n, D} U A{E), ai) @ i=1,n-1}
Applying the steps in a differewirder, asyntactic counterpart to updating can be easily
obtained in a similar way. See also (Dubois and Prade, 1996).
7. Conclusion

This paperhas presented a vemgreliminary investigation of the idea of filtering in the
qualitative setting ofpossibility theory and possibilistic logisetting. In spite of some



similarities, filtering and updating have beeontrastedTheir respectiveroles for situation
assessment and for acknowledging the dynamics of the world are still to be better analyzed.
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