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Coherentist Contraction

Sven Ove Hansson

1. Introduction

Coherence is one of the epistemic ideals most often referred to in the

belief revision literature, not least since the treatment of coherence in

Peter Gärdenfors’s seminal book Knowledge in Flux. The purpose of the

present paper is to investigate what can be meant by performing a

contraction coherently.

A minimal requirement is that contraction should be coherence

preserving, i.e. if the original belief state was coherent, then the

contraction outcome should also be coherent. Consider the following

simple example: I presently believe that a colleague in Buenes Aires has

read the letter that I wrote to him two weaks ago (α). Furthermore, I

believe that I posted the said letter after I wrote it (β). There are various

ways in which my belief state may be contracted, i.e. so changed that my

set of beliefs is reduced to a subset of the original set of beliefs. It holds

for all coherent belief states that I can arrive at through contraction that if

α is retained, then so is β. Obviously, there are ways in which I can be

brought to coherently believing α but not β, but these involve the

acquisition of some new belief (such as the belief that a friend brought a

copy of the letter on a trip to Argentina, etc.).

The example shows that not all subsets of my current belief set can

be arrived at through coherentist contraction, and this simple insight will

be our starting-point for formal developments. The properties of the

coherent subsets of the belief set are discussed in Section 2 and, based on

that, a series of postulates for coherentist contraction are introduced in

Section 3. In Section 4, surprising connections between coherentist

contraction and “foundationalist” models of belief change are reported,
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and in Section 5 some philosophical implications of these connections are

discussed. The proofs are left out in this version of the paper.

2. Coherent subsets of the belief set

Our basic apparatus will include a language L that is closed under truth-

functional operations and a consequence operator Cn with the usual

properties. (Hansson 1999, p. 26) Furthermore, we will assume that the

original belief state is represented by a consistent and logically closed set

K of sentences. We will assign to K a set C of logically closed subsets of

K, that represent the coherent subsets of K. The outcome of coherentist

contraction should be an element of C.

As was indicated above, our main concern is coherence

preservation. Therefore, we can assume that K is coherent, or in other

words:

K ∈  C (coherent origin)

Following tradition in belief revision theory, we may assume that only

logically true sentences are immune against contraction. Then C must

satisfy the following postulate:

If α  ∉  Cn(ø), then there is some X such that α  ∉  X ∈  C.

Equivalently:

 ∩C ⊆  Cn(ø)

A stronger requirement is that Cn(ø) be among the coherent sets. To have

no contingent beliefs at all seems to be a coherent, although unproductive

option. We then have:

Cn(ø) ∈ C (coherent void)
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The term “coherent void” was used by Olsson (1997) for a related

property.

Since the original belief set K is coherent, we should expect its

coherent parts to be coherent in combination. Let X be the belief set

consisting of my beliefs about human evolution and Y that consisting of

my beliefs about religion. X and Y are both subsets of my belief set K.

Assuming that K, X, and Y are all coherent, we can reasonably expect the

combination of X and Y to be coherent.

Since we use belief sets to represent coherent belief states, the

coherent “combination” of X and Y referred to here must be represented

by a belief set, namely Cn(X∪ Y). The following notation is convenient:

Definition D1: X ê∪ Y = Cn(X∪ Y)

We can use it to express the property discussed above as follows:

If X, Y ∈  C, then X ê∪ Y ∈  C. (ê∪ -closure)

The corresponding property for intersection immediately suggest itself:

If X, Y ∈  C, then X∩Y ∈  C. (∩-closure)

Contrary to X∪ Y, X∩Y is logically closed if both X and Y are so.

Therefore, no operation analogous to ê∪  needs to be introduced.

Due to the logical closure of belief sets, ∩-closure is more plausible

than it might first seem to be. The following may at first seem to be a

counterexample: In my present (coherent) state of belief, I believe that

my American friend Andy has Swedish ancestors (α). I also believe both

that Andy’s mother has Swedish ancestors (β) and that his father has

Swedish ancestors (δ). Hence, α, β, and δ are all elements of K. It is

reasonable to assume that there is some coherent subset X of K in which

α and β are both elements but not δ, and also some other coherent subset
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Y in which α and δ are both elements but not β. Then X∩Y contains α
but neither β nor δ, which seems incoherent. However, due to the logical

closure of X and Y, X∩Y contains β∨δ . It is perfectly coherent to believe

in α  and β∨δ  but neither in β nor δ.

The properties of C that we have now introduced combine into an

algebraic structure:

Definition D2: Let K be a consistent and logically closed set. C is

a ê∪− semi-lattice for K if and only if it is a set of logically closed

subsets of K such that:

(1) Cn(ø) ∈  C (coherent void),

(2) K ∈  C (coherent origin), and

(3) For all X, Y ∈  C, X ê∪ Y ∈  C (ê∪ -closure).

Furthermore, if it also satisfies

(4) For all X, Y ∈  C, X∩Y ∈  C (∩-closure),

then it is a ê∪∩ -lattice for K.

Due to the cognitive limitations of actual epistemic agents, we can

realistically assume that C is finite, i.e. has a finite number of elements.

For the same reason, we may assume that each element of C has a finite

representation.

Definition D3: Any subset C of P(L) is

 (1) finite if and only if it has a finite number or elements.

(2) finitely representable if and only if for each X ∈  C there is

some finite set X’ such that X = Cn(X’).

(3) finitistic if and only if it is both finite and finitely representable.

If the language L is finite, then C is finitistic. On the other hand, C may

be finitistic without L being finite.
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3. Postulates for coherentist contraction

The purpose of introducing the set C of coherent subsets of K was that all

contraction outcomes should be elements of C. This requirement amounts

to the following postulate for coherentist contraction:

K÷A ∈  C (coherence)

Here, A is a subset of L. In the terminology of Fuhrmann and Hansson

(1994), ÷ is a multiple operation on K; by this is meant that it takes

subsets of L, rather than elements of L, as inputs. Given that the elements

of C are logically closed subsets of K, it follows from the coherence

postulate that two of the basic Gärdenfors postulates (Alchourrón et al

1985, Gärdenfors 1988) are satisfied, namely inclusion (K÷A ⊆  K) and

closure (K÷A = Cn(K÷A)).

Another elementary property of contraction operators is lacking. It

remains to ensure that A is absent from K÷A whenever this is possible.

To express this we have use for the following notation:

Definition D4: X k ∃  Y if and only if there is some y ∈  Y such

that X ky.

The postulate can now be expressed as follows:

If ∩C ª∃  A, then (K÷A) ª∃  A. (success)

The antecedent of this postulate is equivalent with: “If there is some X ∈
C such that X ª∃  A”. Furthermore, if C satisfies coherent void, then it is

equivalent with “If ø ª∃  A”.

The outcome of coherentist contraction should be determined by the

requirements of coherence. When writing this, I believe that this year’s

Cristmas Eve is a Friday (α) and that this year’s Christmas Day is a

Saturday (β). All coherent subsets of my belief set have either both α and

β as elements or neither of them. With respect to coherentist contraction,
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these two beliefs stand or fall together. Therefore, contraction by α and

contraction by β should be have a uniform treatment, i.e. K÷{α} = 
K÷{β}. This argument can be generalized into the following postulate:

If it holds for all X ∈  C that X k∃  A if and only if X k∃  A’, then

K÷A = K÷A’. (symmetry)

Finally, coherentist contraction should be conservative, i.e. it should

avoid unnecessary losses of information. The postulates introduced up to

now are compatible with the mutilating operation ÷ such that for all A,

K÷A = Cn(ø). An obvious, but rather strong version of the conservativity

criterion consists in requiring that K÷A be inclusion-maximal among

those elements of C that do not imply any element of A:

If K÷A ⊂  X ∈  C, then K÷A ª∃  A and X k∃  A. (maximality)

Maximality is quite demanding. In particular, it does not allow for ties

between equally plausible maximal elements of C. Presently I believe that

Annie is Mary’s daughter (α) and also that Beata is Mary’s daughter (β).

Suppose that I find reasons to doubt that Mary has two daughters, and as a

result of this I give up my belief in α&β. The resulting new belief set

may contain at most one of α and β. Now suppose that my original

reasons for believing α were exactly as strong as those for believing β, so

that I have no non-arbitrary way of choosing only one of them to be

retained after contraction. I will then have to give up both of them. The

resulting belief set K÷{α&β} will not satisfy our maximality postulate.

More precisely, there will be some X such that K÷{α&β} ⊂  X ∈  C, X ª

α&β , and α  ∈  X, and similarly there will be some Y such that K÷{α&β}

⊂  Y ∈  C, Y ª α&β , and β ∈  Y. The reason why K÷{α&β} is not

replaced by its proper superset X can be explained in terms of the

competitor Y and the fact that X∪ Y k α&β . The weakened form of the

maximality postulate runs as follows:
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 If K÷A ⊂  X ∈  C, then there is some Y ∈  C such that K÷A ⊆  Y ª∃

A and X∪ Y k∃  A. (weak maximality)

4. The surprising connection

The most influential model of belief contraction is partial meet

contraction, that is part of the AGM model (Alchourrón et al 1985). It

takes K÷α to be the intersection of a selection (the “best”) of the maximal

consistent subsets of K that do not imply any element of α. The following

series of definitions introduces partial meet contraction in a slightly more

general way than the original AGM publication, since it employs sets

rather than single sentences as contraction inputs. (For a systematic

treatment of this generalization, see Fuhrmann and Hansson 1994.)

Definition D5: (Alchourrón and Makinson 1981) Let B and A be

sets of sentences. The set B⊥  A (“B remainder A”) is the set of sets

such that X ∈  B⊥  A if and only if:

(1) X ⊆  B,

(2) X ª∃  A, and

(3) There is no set X’ such that X ⊂  X’ ⊆ B and X’ ª∃  A.

Definition D6: (Alchourrón et al 1985) Let K be a belief set. A

selection function for K is a function γ such that for all sets A of

sentences:

(1) If K⊥ A is non-empty, then γ(K⊥ A) is a non-empty subset of

K⊥ A, and

(2) If K⊥ A is empty, then γ(K⊥ A) = {K}.

Definition D7: (Alchourrón et al 1985) Let K be a belief set and

γ a selection function for K. The partial meet contraction on K that

is generated by γ is the operation ~γ such that for all sets A of

sentences:

K~γA = ∩γ(K⊥ A)
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An operation ÷ on K is a partial meet contraction if and only if

there is a selection function γ such that for all sets A of sentences:

K÷A = K~γA.
~γ is a maxichoice contraction if and only if for all A, γ(K⊥ A) has

exactly one element.

An alternative approach to belief change is belief base dynamics based on

partial meet contraction. (Hansson 1994) In this approach, the selection

function operates on a belief base B for K. (Any set B such that Cn(B) =

K is a belief base for K.) Definitions D6-D7 can be used here as well; we

just have to replace the belief set K by a belief base (arbitrary set of

sentences) B in the definitions. In addition, we can define the (derived)

operation on a belief set K that is based on a partial meet contraction on

some base B for K:

Definition D8: (Hansson 1993) An operator ÷ for a belief set K

is a base-generated partial meet contraction if and only if there is a

belief base B for K and an operator ~γ of partial meet contraction

for B such that for all sets A of sentences: K÷A = Cn(B~γ A).

It is commonly assumed that the original AGM framework, which applies

partial meet contraction directly to the belief set, represents a coherentist

view of belief change whereas the belief base approach corresponds to

foundationalist epistemology. (See references in Hansson and Olsson

1999.) Against this background, it is surprising to find that the two

algebraic structures for coherent subsets of the belief set that we

introduced in Section 2 both correspond exactly to belief base structures:

Definition D9: B⊥ ∃  = {X | X ∈  B⊥ A for some A}

Theorem T1: Let K be a consistent and logically closed set. Then

the following four conditions on a set C are equivalent:

(1) C is a finitistic ê∪− semi-lattice on K.
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(2) C = {Cn(X) | X ∈  B⊥ ∃ } for some finite base B of K.

(3) C = {Cn(X) | (∃ W)(X = ∩γ(B⊥ W))} for some finite base B of

K and selection function γ for B.

(4) C = {Cn(X) | (∃ W)(X = ∩(B⊥ W))} for some finite base B of

K.

Theorem T2: Let K be a consistent and logically closed set. Then

the following four conditions on a set C are equivalent:

(1) C is a finitistic ê∪∩ -lattice on K.

(2) C = {Cn(X) | X ∈  B⊥ ∃ } for some disjunctively closed finite

base B of K.

(3) C = {Cn(X) | (∃ W)(X = ∩γ (B⊥ W))} for some disjunctively

closed finite base B of K and selection function γ for B.

(4) C = {Cn(X) | (∃ W)(X = ∩( B⊥ W))} for some disjunctively

closed finite base B of K.

A belief base B is disjunctively closed if and only if it holds for all

sentences α and β that if α, β ∈ B, then α∨β  ∈ B.

But there is more to come. Not only C, but also the contraction

operator ÷ can be connected to belief base structures. The following four

theorems show that coherentist contraction, as defined in Section 3,

coincides with base-generated partial meet contraction.

Theorem T3: Let K be a consistent and logically closed subset of

L, and let ÷ be a multiple operation on K. Then the following two

conditions are equivalent:

(1) There is a finitistic ê∪− semi-lattice C for K such that for all A

⊆  L:

(a) K÷A ∈  C (coherence)

(b) If ∩C ª∃  A, then (K÷A) ª∃  A. (success)

(c) If it holds for all X ∈  C that X k∃  A if and only if X k∃  A’,

then K÷A = K÷A’. (symmetry)
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(d) If K÷A ⊂  X ∈  C, then K÷A ª∃  A and X k∃  A.

(maximality)

(2) There is a finite base B for K and a maxichoice selection

function γ for B such that for all A ⊆  L:

K÷A = Cn(∩γ(B⊥ A))

Theorem T4: Let K be a consistent and logically closed subset of

L, and let ÷ be a multiple operation on K. Then the following two

conditions are equivalent:

(1) There is a finitistic ê∪∩ -lattice C for K such that for all A ⊆  L

(a) K÷A ∈  C (coherence)

(b) If ∩C ª∃  A, then (K÷A) ª∃  A. (success)

(c) If it holds for all X ∈  C that X k∃  A if and only if X k∃  A’,

then K÷A = K÷A’. (symmetry)

(d) If K÷A ⊂  X ∈  C, then K÷ ª∃  A and X k∃  A. (maximality)

(2) There is a disjunctively closed finite base B for K and a

maxichoice selection function γ for B such that for all A ⊆  L:

K÷A = Cn(∩γ(B⊥ A))

Theorem T5: Let K be a consistent and logically closed subset of

L, and let ÷ be a multiple operation on K. Then the following two

conditions are equivalent:

(1) There is a finitistic ê∪− semi-lattice C for K such that for all A

⊆  L:

(a) K÷A ∈  C (coherence)

(b) If ∩C ª∃  A, then (K÷A) ª∃  A. (success)

(c) If it holds for all X ∈  C that X k∃  A if and only if X k∃  A’,

then K÷A = K÷A’. (symmetry)

(d) If K÷A ⊂  X ∈  C, then there is some Y ∈  C such that K÷A

⊆  Y ª∃  A and X∪ Y k∃  A. (weak maximality)

(2) There is a finite base B for K and a selection function γ for B

such that for all A ⊆  L:

K÷A = Cn(∩γ(B⊥ A))
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Theorem T6: Let K be a consistent and logically closed subset of

L, and let ÷ be a multiple operation on K. Then the following two

conditions are equivalent:

(1) There is a finitistic ê∪∩ -lattice C for K such that for all A ⊆
L:

(a) K÷A ∈  C (coherence)

(b) If ∩C ª∃  A, then (K÷A) ª∃  A. (success)

(c) If it holds for all X ∈  C that X k∃  A if and only if X k∃  A’,

then K÷A = K÷A’. (symmetry)

(d) If K÷A ⊂  X ∈  C, then there is some Y ∈  C such that K÷A

⊆  Y ª∃  A and X∪ Y k∃  A. (weak maximality)

(2) There is a disjunctively closed finite base B for K and a

selection function γ for B such that for all A ⊆  L:

K÷A = Cn(∩γ(B⊥ A))

5. Conclusion

We started out to investigate coherentist contraction. We began by

identifying a set of plausible properties for the set C of coherent subsets

of the original belief set K. (Section 2.) We then combined these with a

set of plausible postulates for coherentist contraction based on C. (Section

3) The outcome of this whole exercise turned out to coincide with base-

generated partial meet contraction, that is usually seen as the epitome of

foundationalism in belief change theory. How can a coherentist

construction be equivalent with a foundationalist one? Something seems to

be wrong here.

As far as I can see, what we have to modify is the conventional

view that coherentist epistemology corresponds to belief set models and

foundationalist epistemology to models that make essential use of belief

bases. As has been argued in detail elsewhere (Hansson and Olsson 1999),

the justificatory relationships that keep a coherent belief system together
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do not have the structure exhibited by the logical relationships (induced

by logical closure) that hold between the sentences in a belief set.

Furthermore, if the coherentist interpretation of the AGM model is

taken to mean that the outcome of partial meet contraction, as applied

directly to a belief set, is always coherent, then we are forced to accept

the conclusion that all logically closed subsets of the original belief set are

coherent. The reason for this is that if K is a belief set and ~γ a partial

meet contraction on K, then for all logically closed subsets K’ of K, there

is some A such that K’ = K~γ A. (This follows Observation 3 of Hansson

1995.) This results amounts to a trivialization of coherence that seems

difficult to combine with coherentist epistemology.

Belief bases have more expressive power than belief sets. This

paper has shown that their expressive power can be used for modelling

some elementary properties of coherentist contraction. In order to obtain

more fine-tuned models of coherentist belief change, more sophisticated

tools may be needed, especially to represent justificatory relationships.
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