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ABSTRACT. We suggest a belief set semantics for an epistemic logic with asequence K, K,

K,,... of belief operators. The key idea consists in taking a model for the language to include a

distinct “belief set” B for each point of time t, and to say thapks satisfied in such a model iff

¢€B,. By imposing certain conditions on the admissible models we arrive at a logic which
resembles the normal modal system K45, but does not require that introspection and knowledge
generalization are instantanuous. Nevertheless, a delayed version of knowledge generalization
holds. As a first application of the logic we suggest a solution to the problem of self-knowledge
of one’s options and rationality, as discussed by Schick, 1979, and Levi, 1991. As a second
application, we define a multi-agent version of the above logic, and give an epistemically
explicit reformulation of the backward-induction argument in Vilks, 1997. We also use the
multi-agent framework to explain that common knowledge of rationality and the game need not
entail backward induction, if the players lack mutual knowledge of each other’s reasoning
processes.
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1. INTRODUCTION

In the literature, quite different approaches have been used to model beliefs formally. In the

“belief revision” literature (e.g. Gardenfors 1988), an “epistemic state” is typically identified
with the set of formulas (of some formal language) which are believed by the agent under
consideration. Attention is then focused on how this belief set will (or should) change when
some new piece of information is received and the formula representing this new information
must be somehow combined with the old belief set to arrive at a new one. In this literature,

however, it is typically not made explicit that some beliefs may themselves be about beliefs.

By contrast, epistemic logic (e.g. Fagin, Halpern, Moses, and Vardi 1995) explicitly uses a
formal language with belief operators and is thus well-suited for many applications where
beliefs about beliefs are of importance. However, with very few exceptions (e.g., Battigalli and
Bonanno 1996) the epistemic logic literature has just one belief (or knowledge) operator per
agent, and is thus unable to express (in the object-language) that something is not known now,
but is known later. Statements of this kind, however, are of central importance not only when
beliefs change through “exogenous” information, but also when beliefs change “endogenously”,

I.e. by reasoning.

In this paper, we suggest a combination of the “belief set” approach with an epistemic logic that
has a sequence,KK,, K,,... of belief operators. The key idea consists in taking a model for the
language to include a distinct “belief set’ Br each point of time t, and to say thatpHKs
satisfied in such a model iffeB,. (A somewhat similar semantics underlies the “autoepistemic
logic” of Moore, 1985, and Konolige, 1988.) By imposing certain rather perspicuous conditions
on the admissible models we arrive at a logic which resembles K45, but does not require that
introspection and knowledge generalization are instantanuous. (For K45 and other normal

systems of modal logic cf. Chellas, 1980.)

Most of the paper is limited to the one-agent case, but we indicate the natural generalization to

the multi-agent case, and applications to game theory in the final section.
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2. THE FORMAL LANGUAGE AND BASIC SEMANTIC DEFINITION

We begin by defining theformal language: Its alphabet consists of : primitive propositions. p, q,

r, ...; connectives: ); belief operators: K K, K,, K,...

Belief operators Kare thought of as referring to consecutive points (or periods) of time.

The well-formed formulas (wffs) are defined inductively in the usual manner: any primitive
proposition is a wff; ifp andy are wffs, then ¢, Aey, and K¢ are wifs. We write ¢/\y)
instead of\@y, defineV, -, and- as usual, and adopt standard bracketing conventions. The set
of all wifs is denoted by, the set of primitive propositions ldy. Given a set of wffs &, we

write K(S):={K,p| S}, and -S:={-o|peS}.

A truth valuation ford is a function w#~{TRUE, FALSE} such that w(¢)=w(p) and
w(pAP)=TRUE iff w(p)=w(y)=TRUE. A wif ¢ is a tautology, if wg)=TRUE for all truth
valuations w, it is a tautological consequence of a set, & w(@)=TRUE for all truth
valuations w such that W{=TRUE for all ¢¢S. For S, the set of all tautological

consequences of S is denoted by Cn(S).

Definition 1. A model M=(v,(B)) for & consists of a function #-{TRUE, FALSE} and a
sequence B B,, B,,... of sets B-¥.

The set Bis thought of as consisting of those formulas that are believed at time t.

Definition 2. The model M=(v,(B) satisfies the wffp, symbolically M=¢, according to the

following conditions:
Foree®, M= ¢ iff v(9)=TRUE,
M = = iff not: M=,
M = e\ iff M=¢ and M=,
M = Ko iff ¢eB, (for €N).
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Definition 3. A wff is valid in some class C of models, if it is satisfied by all MeC.

It is easily seen that a wff is valid in the class of al modelsiff it is a tautology. However, by

defining narrower classes of models, we arrive at more interesting notions of validity.

3. A SPECIAL CASE: DELAYED INTROSPECTION

In the remainder of we consider a particular class of models.

Definition 4. A model is said to be

(a) propositionally closed iff B,=Cn(B,) for al t,

(b) with perfect memory iff B<B,,, for al t,

(c) with delayed positive introspection iff K,(B,)<B,,, for dl t,

(d) with delayed negative introspection iff #&\B,)<B,,, for all t.

The class of all models which have all of the properties (a) through (d), will be denotgd by C

Next we specify an axiomatic system that turns out to be sound and complete wiittisC
axiomatic system AX hamodus ponens as its sole rule of inference, and the following six

axiom schemes:

(A1) ¢, whenevem is a tautology,
(A2) K, whenevem is a tautology,
(A3) K A K(o-1¥) - K,

(Ad) Ko - Ky,

(AS) Ky - KiiKio,

(AB) -Ko - K, ;7Kp.

Theorem 1. (Soundness and completeness.)

A wif of & is a theorem of AX, iff it is valid in £
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Proof. Soundnessis straightforward. For completeness, it sufficesto show that for any maximal
AX-consistent set Fc< thereisamodel M such that yeF iff M=y. (Fagin, Halpern, Moses, and
Vardi, 1995, pp. 48-54.)

Let F be a maximal AX-consistent set. To define the appropriate model M=(v,(B,)), let
V(U)=TRUE iff yeF for ye®, and define B;:={ pc<L|K ,peF}. AsF is maximal AX-consistent,
it is easy to check that M is propositionally closed, and has perfect memory, and both kinds of
delayed introspection. Moreover, M= iff YeF. This completes the proof. ©

An important difference between AX and K45 is that the rule of epistemization (or “knowledge
generalization”) does not hold in AX. However, AX does have a “delayed” version of it: Every
AX-theoreme is believed from that time t onwards, at which alogerators which appear in

¢ either have<t-1 or appear within the scope of such an operator. To state this formally, we

recursively define sublanguagésof & as follows:

Definition 5. <, is the smallest subset @fwhich containsbuK (),
and is closed with respect to applications of -/and
for t>1: <, is the smallest subset @fwhich contains{, ,uK(<),

and is closed with respect to applications of -/and

With this definition we can express “delayed” epistemization as follows:

Theorem 2. If pe<, and AX-@, then AX-K,,,¢.

Proof. We exploit completeness of AX w.r.t. the class of all propositionally closed models with
perfect memory, positive and negative introspection. In this proof, wexwriter validity w.r.t

this class. Assume that for some model M=(y)(Bf this class MK,,;¢ does not hold for
@ed,. This implies thap¢ Cn(BuUK,(B)u-K,(L\B,)). By definition of Cn this implies that there

IS some truth valuation w such that @FALSE, but w(p)=TRUE for all
PeBuUK(B)u-K(L\B,). Define v 0-{TRUE, FALSE} to be the restriction of w t®, i.e.
V'(P)=w(y) for all yed. Clearly, the model M":=(v’,(B) is still of the relevant class, and to
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complete the proof we just have to show that-Mip. To do so, we show that for apy<, we
have M=y iff w(§)=TRUE. This is clear foyc®. If ¢=K_x for somer<t, we have that M:{s
iff xeB,.. If xeB,, then ¢yeK (B,) and hence W()=TRUE. If x¢B., i.e. xe¥\B,, then
w(-K_x)=TRUE, hence wjf)=FALSE. Assuming thafj=-y or y=x/\w, and that M=w iff
w(w)=TRUE has already been proved for thased, which are shorter thaw, it is
straightforward to conclude that, for anyc¥,, we have M=y iff w({y)=TRUE. As
w(@)=FALSE, it follows that M’ does not satisfy. Thuse cannot be valid in the relevant class

of models, and by the soundness of AX, it cannot be an AX-the@em.

One can apply delayed epistemization to the axioms of AX to get, e.g- KX ( K A
K(@-1) - K ); AX - Ko ( K - Ki,19 ). One can also prove AXK,,; (K¢ - ¢).

4. AN OPEN PROBLEM

If M=(v,(B,))eC, , we have:
Cn(BuK(By)u-K(L\By)) = B..;.
An interesting subclass of,@odels is defined by requiring (for all t) that
Cn(BuK(Byu-K(L\By) = B,
In models with this property, all belief changes are due to reasoning. An open question is the
following: Is it possible to axiomatize validity with respect to this subclass of models? If so,

what does the axiom system look like?

5. AN APPLICATION TO REASONING ABOUT CHOICE:

THE PROBLEM OF SELF-KNOWLEDGE OF OPTIONS AND RATIONALITY

There is a certain tension between three assumptions which are often made in Game Theory.
When a player reasons about how to play a given dgameeems natural to assume (1) that
initially he considers all moves dfas possible, and (2) that the players have knowledge from
which they can deduce, and thus know on reflection that some moves will not be taken.

Moreover, it is standard practice in both epistemic logic and Game Theory to (3) identify “the
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agent considers ¢ as possible” with “the agent does not knag! fe.g., Hintikka, 1962; Lenzen,
1980; Binmore, 1992; Fagin et al., 1995; Samet, 1996; Dekel and Gul, 1997).

The tension between these assumptions arises even in the one-agent case (see Schick, 1979, and
Levi, 1991), and we want to argue in this section that the tension even turns into a formal

inconsistency, as long as standard ,static* epistemic logic is used for modelling belief.

Consider an agent who has to choose between action 1 and action 2, whereof he prefers the
former. Let a stand for “the agent takes action 1), far “the agent takes action 2”, ang-a,
for ,the agent prefers, @o g“ (we assume this to be a primitive wff of our language). We can

then describe the situation by the following formula S:

(S) @vay) N ~(a/ \a) N (a-a)

Should we expect a rational agent to choose action 1, whenever he is in situation S? If the agent
might not know how to carry out action 1, or if might be convinced that he is physically unable
to carry out action1 (none of which is precluded by S being satisfied), the answer depends on the
notion of rationality we want to employ. A mild notion of rationality would require only that a
most preferred action among those considered possible (by the agent) must be carried out. In
accordance with (3) above, and using ,K* as a belief operator, we could express the assumption

that both actions are considered possible by the agent by the following formula P:

(P) ~K(=a) N “K(-&)

A mild condition of rationality could then be expressed by the formula R:

(R) SAP- &

Obviously, S\P/\R tautologically implies gand it is an easy exercise in modal logic to show

that this formula SP/\R is consistent in, for instance, the normal system K45. However, it is

just as easy to see the following:
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Observation 1. P A K(SAR) isinconsistent in K45 (and afortiori in S5).

The formula PAK(SAR) just seems to express that the agent considers both actions possible,
that he knowsthem to be mutually exclusive and collectively exhaustive, and that he also knows
about hisown preferences and rationality. Thevertheless, because of the instantanuous negative
introspection of K45, his beliefs allow him to deduce - and he therefore believes - th8uta

this plainly contradicts -K(=& which is assumed in P.

One might perhaps regard this problem as an argument against negative introspection. However,
even in the weakest “normal” system K, which has no introspection axioms, a similar difficulty
arises: The formula/SRAP A K(SARAP) is inconsistent in K, while it just seems to express an
innocuous implication of the common knowledge assumptions typically used in game theory.
Thus, difficulties of this sort seem hard to avoid in a static epistemic logic which has the

distribution axiom and instantanuous “epistemization” as a rule of inference.

The source of these difficulties seems to lie in the fact that (at least) two slightly different
notions of belief are needed in theorizing about choice and rationality: One the one hand, one
needs thénitial beliefs of the agent which he holds before he has carried out all his reasoning,
and on the other hand, one needs his belfgishe has drawn all the relevant conclusions from

his initial beliefs. An epistemic logic with just one belief operator (per agent) simply lacks the

formal means required to represent these different stages of the reasoning process.
By contrast, our logic AX developed above allows one to resolve the problem in a very direct

way. Define the wifs Pand R to be the result of simply replacing the operator K pink and

R respectively. It is then easy to see the following.

Observation 2. Py N\ Ko(SARy) is consistent in AX.

Moreover, RN Ky (SA\R,) implies (in AX) K,(=a)/\K,(-K,-&,): On reflection, the agent knows

he will not take action 2, but remembers that he previously considered it possible that he would.
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6. AN APPLICATION TO REASONING ABOUT GAMES:

BACKWARDS INDUCTION IN THE CENTIPEDE

As a second application, we define a multi-agent version of the above logic, and indicate how

to give an epistemically explicit reformulation of the backward-induction argument in Vilks

(1997). We aso use the multi-agent framework to explain that common knowledge of
rationality and the game need not entail backward induction, if the players lack mutua
knowledge of each other’s reasoning processes. We limit ourselves to the four-legged version
of the much-discussed Centipede Game (see, e.g., Aumann, 1998) as an example (and

accordingly to two agents).

The formal language used now, differs from< only by having a sequencg KK/, K.',... of

belief operators for each agent i. Definitions 1 and 2 carry over directly to the two-agent case:

Definition 1'. A model M=(v,(B)) for &’ consists of a function ®@-{TRUE, FALSE} and, for
each agentHl, 11}, a sequence B, B/, B, ,... of sets B’
Definition 2'. The model M=(v,(B)) satisfies the wffp, symbolically M=¢, according to the
following conditions:

Forpe®d, M= ¢ iff v(9)=TRUE,

M = —¢ iff not: M=,

M = e\ iff M=¢ and M=,

M = K/lo iff eB,  (for €N, ic{lI1}).

The class of models in the sense of Definition 1', where both'jy, éd (v,(B')) belong to G,
will be denoted by ¢ An axiomatization of validity in Cis analogous to AX above, and we

denote it by AX'.

To describe the (four-legged) centipede, ¥tbe such that A:={ad,,...,a,d,}c®, and
B:={@- U] A, YeA, ic{l,ll}} <d,withthe interpretation that, e.g,,sdands for “at the second
decision node, player 2 moves acrosg’stdnds for “at the third decision node, player 1 moves

down”, d - ,d, stands for “player | prefers tb d,", etc.
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(1,1) (0,3) (4,2) (3,5)

The rules of the four-legged centipede can now be expressed by the following formula:
(S YA FA- WA To M- WACTs MA-WACTo A VAN - WASTe AT WA Te MAT-WARTo HARF-WAYs
v(al/\—-dl/\az/\—|d2/\—|ag/\d3/\—|a4/\—-d4) \Y, (al/\—ldl/\—|az/\d2/\—|ag/\—|d3/\—|a4/\—|d4)
V (ma/\d,\-a,/\~d,\ g\ 0\ a,/\1d,),
and the players’ preferences satisfy (at least):

() (dg-yay) A (dg>dy) A (dy-dg) A (dy>dy)

If players know the structure of the game as expressed by iEseems they should, if rational,

also satisfy the following conditions (for convenience, we sety:
(R)) K{(g-d.) N =K/(=d) ~ -3 (for j=1,3, and i=l; or j=2,4, and i=ll)

We will make use of

>~

t t t t
(Rl,l A RII,Z A RI,S A RII,4)

t=0

To ensure that the Bl moves cannot be ruled out a priori - on the basis of additional knowledge

the players might have - it is moreover natural to assume:
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(CP[) (_'Ktl_'dl) A (ai_’_‘Kt”_'dz)/\ (82_’_‘Ktl_‘d3)/\ (38_'_'Kt”_‘d4)

(The abbrevation ,,CPfor ,conditional possibility at stage t“ has been chosen to indicate that
the Bl moves are assumed to be doxastically possible conditional upon the relevant decision

node being reached.)

We will make use of

T
CP,:= A CP'
t=0

We define initial mutual knowledge ofby Ej(¢):= K, (¢) /K,"(¢), and mutual knowledge at
stage t of the reasoning by(@:= K/'(¢) /K/'(¢); moreover, m-th order iterated mutual

knowledge at stage t is expressed By@:=E(E™*(¢)), where, of course, p):=E (o).

Now, we can express 3rd order iterated initial mutual knowledge of the game, initial rationality,

and initial conditional possibility of Bl moves by
GAUARY\CP\ ES(GAUAR,\CP).

One can show (as in Vilks, 1998) that this condition would imply the Bl plaij the K-

operators were Kripkean K45-operators. In AX’, however, the formula
GAUAR/\CP,\ E4(GAUARY\CP,) - d,
is not valid. (Replacing Rand CR by, e.g., Rand CR does not alter this conclusion.) The

reason is that players’ reasoning capabilities need not be mutually known. For instance, consider

the rationality condition for the forth decison node:

(R||,4o Ko”(azt“azt) A _‘Ko”(_‘d4) - g

Although E(R,) implies that player | knows this condition to hold, aR(CE,) implies that |
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knows a; -~ =K,"(=d,), he cannot conclude from this that-aa,, as would be required for the
Bl argument. The missing link here is player I's knowledge gf(a¢-a,): While it is an axiom

of AX’, and known introspectively by Il from t=1 onwards,(K,"(a,~a,)) is not valid in G.

Thus the logic AX' behaves quite differently from multi-agent K45: Although agents do not
have much less reasoning powers, they may doubt the logical powers of others. For somewhat

complicated perfect-information games this may well be a relevant reason why Bl may fail.

The belief-set semantics developed above is flexible enough, however, to accomodate stronger
epistemic systems. To illustrate this point, we consider a particularly simple subclass of C
which is defined as follows:

C*:= {(v,(B/))eC,| vt: B/=B/"}

It is straightforward to verify that an axiomatization of validity in C* is provided by adding to

AX’ the axiom scheme:
™) Kip - K¢
This may be taken to express that the two agents start with the same initial beliefs, and reason
in exactly the same manner. Clearly, the models of C* are essentially the single-agent models of
CO-
For the four-legged centipede, it is now easy to verify that the formula

GAUARLCPA E(GAUAR,A\CP,) - d,

is valid in C*, providing yet another sufficient epistemic condition for BI.

To be sure, (*) is a rather drastic simplification. However, our aim in this paper is not to

“defend” BI, but to suggest a framework for epistemic logic which can help to analyse reasoning
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about reasoning - atopic which is almost assumed away by relying on state-space models.
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