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ABSTRACT. We suggest a belief set semantics for an epistemic logic with a sequence K0, K1,
K2,... of belief operators. The key idea consists in taking a model for the language to include a
distinct “belief set” Bt for each point of time t, and to say that Ktn is satisfied in such a model iff
n0Bt. By imposing certain conditions on the admissible models we arrive at a logic which
resembles the normal modal system K45, but does not require that introspection and knowledge
generalization are instantanuous. Nevertheless, a delayed version of knowledge generalization
holds. As a first application of the logic we suggest a solution to the problem of self-knowledge
of one’s options and rationality, as discussed by Schick, 1979, and Levi, 1991. As a second
application, we define a multi-agent version of the above logic, and give an epistemically
explicit reformulation of the backward-induction argument in Vilks, 1997. We also use the
multi-agent framework to explain that common knowledge of rationality and the game need not
entail backward induction, if the players lack mutual knowledge of each other’s reasoning
processes.
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In the literature, quite different approaches have been used to model beliefs formally. In the

“belief revision” literature (e.g. Gärdenfors 1988),  an “epistemic state” is typically identified

with the set of formulas (of some formal language) which are believed by the agent under

consideration. Attention is then focused on how this belief set will (or should) change when

some new piece of information is received and the formula representing this new information

must be somehow combined with the old belief set to arrive at a new one. In this literature,

however, it is typically not made explicit that some beliefs may themselves be about beliefs. 

By contrast, epistemic logic (e.g. Fagin, Halpern, Moses, and Vardi 1995) explicitly uses a

formal language with belief operators and is thus well-suited for many applications where

beliefs about beliefs are of importance. However, with very few exceptions (e.g., Battigalli and

Bonanno 1996) the epistemic logic literature has just one belief (or knowledge) operator per

agent, and is thus unable to express (in the object-language) that something is not known now,

but is known later. Statements of this kind, however, are of central importance not only when

beliefs change through “exogenous” information, but also when beliefs change “endogenously”,

i.e. by reasoning.

In this paper, we suggest a combination of the “belief set” approach with an epistemic logic that

has a sequence K0, K1, K2,... of belief operators. The key idea consists in taking a model for the

language to include a distinct “belief set” Bt for each point of time t, and to say that Ktn is

satisfied in such a model iff n0Bt. (A somewhat similar semantics underlies the “autoepistemic

logic” of Moore, 1985, and Konolige, 1988.) By imposing certain rather perspicuous conditions

on the admissible models we arrive at a logic which  resembles K45, but does not require that

introspection and knowledge generalization are instantanuous. (For K45 and other normal

systems of modal logic cf. Chellas, 1980.)

Most of the paper is limited to the one-agent case, but we indicate the natural generalization to

the multi-agent case, and applications to game theory in the final section.
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We begin by defining the formal language: Its alphabet consists of: primitive propositions: p, q,

r, ...; connectives: ¬, v; belief operators: K0, K1, K2, K3,...

Belief operators Kt are thought of as referring to consecutive points (or periods) of time.

The well-formed formulas (wffs) are defined inductively in the usual manner: any primitive

proposition is a wff; if n and R are wffs, then ¬n, vnR, and Ktn are wffs. We write (nvR)

instead of vnR, define w, 6, and : as usual, and adopt standard bracketing conventions. The set

of all wffs is denoted by ü, the set of primitive propositions by . Given a set of wffs Sdü, we

write Kt(S):={K tn| n0S}, and ¬S:={¬n|n0S}.

A truth valuation for ü is a function w:ü6{TRUE, FALSE} such that w(¬n)úw(n) and

w(nvR)=TRUE iff w(n)=w(R)=TRUE. A wff n is a tautology, if w(n)=TRUE for all truth

valuations w, it is a tautological consequence of a set Sdü, if w(n)=TRUE for all truth

valuations w such that w(R)=TRUE for all R0S. For Sdü, the set of all tautological

consequences of S is denoted by Cn(S). 

'HILQLWLRQ��� A model M=(v,(Bt)) for ü consists of a function v:6{TRUE, FALSE} and a

sequence B0, B1, B2,... of sets Btdü.

The set Bt is thought of as consisting of those formulas that are believed at time t.

'HILQLWLRQ��� The model M=(v,(Bt)) satisfies the wff n, symbolically M»n, according to the

following conditions:

For n0 ,  M » n  iff  v(n)=TRUE,

M » ¬n  iff  not: M»n,

M » nvR  iff  M»n and M»R,

M » Ktn  iff  n0Bt      (for t0Þ).



4

'HILQLWLRQ��� A wff is  valid in some class C of models, if it is satisfied by all M0C.

It is easily seen that a wff is valid in the class of all models iff it is a tautology. However, by

defining narrower classes of models, we arrive at more interesting notions of validity.
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In the remainder of  we consider a particular class of models.

'HILQLWLRQ��� A model is said to be

(a) propositionally closed iff Bt=Cn(Bt) for all t,

(b) with perfect memory iff BtdBt+1 for all t,

(c) with delayed positive introspection iff Kt(Bt)dBt+1 for all t,

(d) with delayed negative introspection iff ¬Kt(ü(Bt)dBt+1 for all t.

The class of all models which have all of the properties (a) through (d), will be denoted by C0.

Next we specify an axiomatic system that turns out to be sound and complete w.r.t. C0. This

axiomatic system AX has PRGXV�SRQHQV as its sole rule of inference, and the following six

axiom schemes:

(A1) n, whenever n is a tautology,

(A2) Ktn, whenever n is a tautology,

(A3) Ktn v Kt(n6R) 6 KtR,

(A4) Ktn 6 Kt+1n,

(A5) Ktn 6 Kt+1K tn,

(A6) ¬Ktn 6 Kt+1¬Ktn.

7KHRUHP��� (Soundness and completeness.) 

A wff of ü is a theorem of AX, iff it is valid in C0.
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3URRI� Soundness is straightforward. For completeness, it suffices to show that for any maximal

AX-consistent set Fdü there is a model M such that R0F iff M»R. (Fagin, Halpern, Moses, and

Vardi, 1995, pp. 48-54.)

Let F be a maximal AX-consistent set. To define the appropriate model M=(v,(Bt)), let

v(R)=TRUE iff R0F for R0 , and define Bt:={n0ü|Ktn0F}. As F is maximal AX-consistent,

it is easy to check that M is propositionally closed, and has perfect memory, and both kinds of

delayed introspection. Moreover, M»R iff R0F. This completes the proof. (

An important difference between AX and K45 is that the rule of epistemization (or “knowledge

generalization”) does not hold in AX. However,  AX does have a “delayed” version of it: Every

AX-theorem n is believed from that time t onwards, at which all K-operators which appear in

n either have #t-1 or appear within the scope of such an operator. To state this formally, we

recursively define sublanguages üt of ü as follows:

'HILQLWLRQ��� ü0 is the smallest subset of ü which contains cK0(ü), 

and is closed with respect to applications of  ¬ and v;

for t$1: üt is the smallest subset of ü which contains üt-1cK t(ü),

and is closed with respect to applications of  ¬ and v.

With this definition we can express “delayed” epistemization as follows:

7KHRUHP���� If n0üt and AX|n, then AX|K t+1n.

3URRI�  We exploit completeness of AX w.r.t. the class of all propositionally closed models with

perfect memory, positive and negative introspection. In this proof, we write »n for validity w.r.t

this class. Assume that for some model M=(v,(Bt)) of this class M»K t+1n does not hold for

n0üt. This implies that nØCn(BtcK t(Bt)c¬Kt(ü(Bt)). By definition of Cn this implies that there

is some truth valuation w such that w(n)=FALSE, but w(n)=TRUE for all

R0BtcK t(Bt)c¬Kt(ü(Bt). Define v’: 6{TRUE, FALSE} to be the restriction of w to , i.e.

v’(R)=w(R) for all R0 . Clearly, the model M’:=(v’,(Bt)) is still of the relevant class, and to
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complete the proof we just have to show that M’»¬n. To do so, we show that for any R0üt we

have M’»R iff w(R)=TRUE. This is clear for R0 . If R=K P for some #t, we have that M’»R

iff P0B . If P0B , then R0K (B ) and hence w(R)=TRUE. If  PØB , i.e. P0ü(B , then

w(¬K P)=TRUE, hence w(R)=FALSE. Assuming that R=¬P or R=PvT, and that M’»T iff

w(T)=TRUE has already been proved for those T0üt which are shorter than R, it is

straightforward to conclude that, for any R0üt, we have M’»R iff w(R)=TRUE. As

w(n)=FALSE, it follows that M’ does not satisfy n. Thus n cannot be valid in the relevant class

of models, and by the soundness of AX, it cannot be an AX-theorem. (

One can apply delayed epistemization to the axioms of AX to get, e.g., AX | Kt+1 ( Ktn v

K t(n6R) 6 KtR ); AX | Kt+2 ( Ktn 6 Kt+1n ). One can also prove AX | Kt+1 ( Ktn 6 n ).

���$1�23(1�352%/(0

If M=(v,(B t))0C0 , we have:

Cn(BtcK t(Bt)c¬Kt(ü(Bt)) d Bt+1.

An interesting subclass of C0 models is defined by requiring (for all t) that

Cn(BtcK t(Bt)c¬Kt(ü(Bt)) = Bt+1.

In models with this property, all belief changes are due to reasoning. An open question is the

following: Is it possible to axiomatize validity with respect to this subclass of models? If so,

what does the axiom system look like?

���$1�$33/,&$7,21�72�5($621,1*�$%287�&+2,&(��
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There is a certain tension between three assumptions which are often made in Game Theory.

When a player reasons about how to play a given game , it seems natural to assume (1) that

initially he considers all moves of  as possible, and (2) that the players have knowledge from

which they can deduce, and thus know on reflection that some moves will not be taken.

Moreover, it is standard practice in both epistemic logic and Game Theory to (3) identify “the
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agent considers n as possible” with “the agent does not know ¬n” (e.g., Hintikka, 1962; Lenzen,

1980; Binmore, 1992; Fagin et al., 1995; Samet, 1996; Dekel and Gul, 1997).

The tension between these assumptions arises even in the one-agent case (see Schick, 1979, and

Levi, 1991), and we want to argue in this section that the tension even turns into a formal

inconsistency, as long as standard „static“ epistemic logic is used for modelling belief.

Consider an agent who has to choose between action 1 and action 2, whereof he prefers the

former. Let a1 stand for “the agent takes action 1”, a2  for “the agent takes action 2”, and a1 a2

for „the agent prefers a1 to a2“ (we assume this to be a primitive wff of our language). We can

then describe the situation by the following formula S:

(S) (a1wa2) v ¬(a1va2) v (a1 a2)

Should we expect a rational agent to choose action 1, whenever he is in situation S?  If the agent

might not know how to carry out action 1, or if might be convinced that he is physically unable

to carry out action1 (none of which is precluded by S being satisfied), the answer depends on the

notion of rationality we want to employ. A mild notion of rationality would require only that a

most preferred action among those considered possible (by the agent) must be carried out. In

accordance with (3) above, and using „K“ as a belief operator, we could express the assumption

that both actions are considered possible by the agent by the following formula P:

(P) ¬K(¬a1) v ¬K(¬a2) 

A mild condition of rationality could then be expressed by the formula R:

(R) S v P 6 a1

Obviously, SvPvR tautologically implies a1, and it is an easy exercise in modal logic to show

that this formula SvPvR is consistent in, for instance, the normal system K45. However, it is

just as easy to see the following:
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2EVHUYDWLRQ��� P v K(SvR)  is inconsistent in K45 (and a fortiori in S5).

The formula  PvK(SvR) just seems to express that the agent considers both actions possible,

that he knows them to be mutually exclusive and collectively exhaustive, and that he also knows

about his own preferences and rationality. Thevertheless, because of the instantanuous negative

introspection of K45, his beliefs allow him to deduce - and he therefore believes - that ¬a2. But

this plainly contradicts ¬K(¬a2), which is assumed in P.

One might perhaps regard this problem as an argument against negative introspection. However,

even in the weakest “normal” system K, which has no introspection axioms, a similar difficulty

arises: The formula SvRvP v K(SvRvP) is inconsistent in K, while it just seems to express an

innocuous implication of the common knowledge assumptions typically used in game theory.

Thus, difficulties of this sort seem hard to avoid in a static epistemic logic which has the

distribution axiom and instantanuous “epistemization” as a rule of inference.

The source of these difficulties seems to lie in the fact that (at least) two slightly different

notions of  belief are needed in theorizing about choice and rationality: One the one hand, one

needs the LQLWLDO beliefs of the agent which he holds before he has carried out all his reasoning,

and on the other hand, one needs his beliefs DIWHU he has drawn all the relevant conclusions from

his initial beliefs. An epistemic logic with just one belief operator (per agent) simply lacks the

formal means required to represent these different stages of the reasoning process.

By contrast, our logic AX developed above allows one to resolve the problem in a very direct

way. Define the wffs P0 and R0 to be the result of simply replacing the operator K by K0 in P and

R respectively. It is then easy to see the following.

2EVHUYDWLRQ��� P0 v K0(SvR0)  is consistent in AX.

Moreover,  P0 v K0(SvR0) implies (in AX) K1(¬a2)vK1(¬K0¬a2): On reflection, the agent knows

he will not take action 2, but remembers that he previously considered it possible that he would.
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As a second application, we define a multi-agent version of the above logic, and indicate how

to give an epistemically explicit reformulation of the backward-induction argument in Vilks

(1997). We also use the multi-agent framework to explain that common knowledge of

rationality and the game need not entail backward induction, if the players lack mutual

knowledge of each other’s reasoning processes. We limit ourselves to the four-legged version

of the much-discussed Centipede Game (see, e.g., Aumann, 1998) as an example (and

accordingly to two agents).

The formal language used now, ü’, differs from ü only by having a sequence K0
i, K1

i, K2
i,... of

belief operators for each agent i. Definitions 1 and 2 carry over directly to the two-agent case:

'HILQLWLRQ��
� A model M=(v,(Bt
i)) for ü’ consists of a function v:6{TRUE, FALSE} and, for

each agent i0{I, II}, a sequence B0
i, B1

i, B2
i,... of sets Bt

idü’.

'HILQLWLRQ��
� The model M=(v,(Bt
i)) satisfies the wff n, symbolically M»n, according to the

following conditions:

For n0 ,  M » n  iff  v(n)=TRUE,

M » ¬n  iff  not: M»n,

M » nvR  iff  M»n and M»R,

M » Kt
in  iff  n0Bt

i      (for t0Þ, i0{I,II}).

The class of models in the sense of Definition 1', where both (v,(Bt
I)), and (v,(Bt

II)) belong to C0,

will be denoted by C0'. An axiomatization of validity in C0' is analogous to AX above, and we

denote it by AX’. 

To describe the (four-legged) centipede, let ü’ be such that A:={a1,d1,...,a4,d4}d , and

B:={n iR| n0A, R0A, i0{I,II}} d , with the interpretation that, e.g., a2 stands for “at the second

decision node, player 2 moves across”, d3 stands for “at the third decision node, player 1 moves

down”, d1 Id2 stands for “player I prefers d1 to d2", etc.
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The rules of the four-legged centipede can now be expressed by the following formula:

(G) (a1v¬d1va2v¬d2va3v¬d3va4v¬d4) w (a1v¬d1va2v¬d2va3v¬d3v¬a4vd4)

w(a1v¬d1va2v¬d2v¬a3vd3v¬a4v¬d4) w (a1v¬d1v¬a2vd2v¬a3v¬d3v¬a4v¬d4)

w (¬a1vd1v¬a2v¬d2v¬a3v¬d3v¬a4v¬d4),

and the players’ preferences satisfy (at least):

(U) (d4 IIa4) v (d3 Id4) v (d2 IId3) v (d1 Id2)

If players know the structure of the game as expressed by GvU, it seems they should, if rational,

also satisfy the following conditions (for convenience, we set d5:=a4):

(Ri,j
t) K t

i(aj:dj+1) v ¬Kt
i(¬dj) 6 ¬aj (for j=1,3, and i=I; or j=2,4, and i=II)

We will make use of 

To ensure that the BI moves cannot be ruled out a priori - on the basis of additional knowledge

the players might have - it is moreover natural to assume:
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(CPt) (¬Kt
I¬d1) v (a16¬Kt

II¬d2)v (a26¬Kt
I¬d3)v (a36¬Kt

II¬d4)

(The abbrevation „CPt“ for „conditional possibility at stage t“ has been chosen to indicate that

the BI moves are assumed to be doxastically possible conditional upon the relevant decision

node being reached.)

We will make use of

We define initial mutual knowledge of n by E0(n):= K0
I(n) vK0

II(n), and mutual knowledge at

stage t of the reasoning by Et(n):= Kt
I(n) vK t

II(n); moreover, m-th order iterated mutual

knowledge at stage t is expressed by Et
m(n):=Et(Et

m-1(n)), where, of course, Et
1(n):=Et(n). 

Now, we can express 3rd order iterated initial mutual knowledge of the game, initial rationality,

and initial conditional possibility of BI moves by

GvUvR0vCP0v E0
3(GvUvR0vCP0).

One can show (as in Vilks, 1998) that this condition would imply the BI play d1, if the K0
i-

operators were Kripkean K45-operators. In AX’, however, the formula

GvUvR0vCP0v E0
3(GvUvR0vCP0) 6 d1

is QRW valid. (Replacing R0 and CP0 by, e.g., R4 and CP4 does not alter this conclusion.) The

reason is that players’ reasoning capabilities need not be mutually known. For instance, consider

the rationality condition for the forth decison node:

(RII,4
0) K0

II(a4:a4) v ¬K0
II(¬d4) 6 ¬a4

Although E0(R0) implies that player I knows this condition to hold, and E0(CP0) implies that I
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knows  a3 6 ¬K0
II(¬d4), he cannot conclude from this that a36¬a4, as would be required for the

BI argument. The missing link here is player I’s knowledge of  K0
II(a4:a4): While it is an axiom

of AX’, and known introspectively by II from t=1 onwards, Kt
I(K0

II(a4:a4)) is not valid in C0'. 

Thus the logic AX‘ behaves quite differently from multi-agent K45: Although agents do not

have much less reasoning powers, they may doubt the logical powers of others. For somewhat

complicated perfect-information games this may well be a relevant reason why BI may fail.

The belief-set semantics developed above is flexible enough, however, to accomodate stronger

epistemic systems. To illustrate this point, we consider a particularly simple subclass of C0',

which is defined as follows:

C* := {(v,(B t
i))0C0'| æt: Bt

I=Bt
II }

It is straightforward to verify that an axiomatization of validity in C* is provided by adding to

AX’ the axiom scheme:

(*) K t
In : K t

IIn

This may be taken to express that the two agents start with the same initial beliefs, and reason

in exactly the same manner. Clearly, the models of C* are essentially the single-agent models of

C0.

For the four-legged centipede, it is now easy to verify that the formula

GvUvR3vCP3v E0(GvUvR2vCP2) 6 d1

is valid in C*, providing yet another sufficient epistemic condition for BI.

To be sure, (*) is a rather drastic simplification. However, our aim in this paper is not to

“defend” BI, but to suggest a framework for epistemic logic which can help to analyse reasoning
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about reasoning - a topic which is almost assumed away by relying on state-space models. 
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