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Abstract

In the paper we address the problem of change of belief state of a ratio-
nal agent. In our representation of belief state both beliefs and disbeliefs
are taken into account. On the belief part, the starting point is the AGM
theory [1, 5, 6]. On the disbelief part, we build a counterpart of the AGM
model starting with the rejection consequence Cn' introduced in [2, 4].
Next we investigate changes of pairs of sets of formulae representing belief
states.
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1 Introduction

Since antiquity, logic and epistemology have traditionally dealt with the ’pos-
itive’ dimensions of knowledge and reasoning, to the detriment of what one
might call the 'negative’ dimensions. The focus has been on what is known,
believed, conjectured, perceived as true, rather than that which is rejected as
false. And logic is usually presented as a theory about infering true conclusions
from true premises; only rarely is it considered as a theory about how to reject
new propositions on the basis of old [2, 4, 8, 9, 14, 11, 12, 13, 15, 16, 17]. Even in
probabilistic reasoning, the concept of evidence against a hypothesis is usually
reduced to the notion of evidence in favour of its formal negation, rather than
treated as a separate primitive concept in its own right.

The traditional approach may have a certain appeal when dealing, say, with
scientific knowledge encoded by sets of empirical laws. It appears much less
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convincing when other forms of human knowledge and reasoning are taken into
account. In many everyday contexts we act, react and plan on the basis of
rejected propositions. We reason from given disbeliefs to further disbeliefs, or,
say in deontic contexts, from one set of prohibitions to another. Often this
occurs in direct and unmediated fashion, without the conscious intervention of
'positive’ beliefs, the formal negations of propositions, and so on.

Given the importance of 'negative’ propositional attitudes, like rejection and
disbelief, it seems worthwhile to consider the formal reconstruction and analysis
of these types of concept. The present paper is a first attempt to consider the
problem of revising disbeliefs as a process analogous to but formally independent
from the process of belief revision. We approach the subject in two stages. In the
first we consider postulates governing the expansion, contraction and revision
of disbeliefs, and operations that satisfy these postulates. This analysis may
be applied whenever it seems useful or indeed preferable to formalise a given
topic, context or problem area directly in terms of a disbelief system. But
here, on the whole, we expect results to be rather analogous to those obtained
for standard approaches to belief revision, such as AGM. The second stage is
somewhat more ambitious. Here we consider 'mixed’ systems, where beliefs and
disbeliefs are each represented explicitly and independently in one framework.
Now the revision process may apply to one or other of the two components,
and it may apply in such a way that both components are affected, e.g., a
simple and consistent expansion of beliefs may nevertheless require a contraction
of disbeliefs, if the total system is to remain coherent in the sense that no
statements are both believed and disbelieved concurrently.

An excursion into the field of disbelief change will have scant value if, ulti-
mately, the 'negative’ dimensions simply collapse, boolean style, into a trivial
mirror of their ’positive’ counterparts. On the contrary, we hope to be able
to express more subtle distinctions of (dis)belief change, precisely by including
a non-redundant, disbelief component. There seem to be at least two ways of
achieving this objective. One would be to apply a nonclassical underlying logic
where the notion of rejection is appropriately handled as a distinct item inde-
pendent from acceptance. An alternative, followed here, is to take a largely
classical approach to the underlying logic, but to relax the relations between
belief and disbelief; in particular we do not assume formal connections between
the acts of retracting a belief and asserting the corresponding disbelief, nor be-
tween expanding the set of beliefs by adding a proposition and expanding the
set of disbeliefs by adding the negation of that proposition. Indeed, where be-
liefs and disbeliefs of an agent obtain as outcomes of an aggregation algorithm,
they may be to some extent independent from each other. Such situations can
happen when information comes from several (or more) different sources or an
agent is a collective one.!

1For instance, if an agent is a group of other agents.



Example 1.1 Consider a group of k experts (or sources of information). Let
a represent a piece of information. Suppose that m of k experts state that o
holds, while n of them state that o does not hold. Nobody may state that o holds
and does not hold simultaneously. However, some of the experts may have no
opinion of a, i.e., m+n < k.

The fraction of positive (resp., negative) answers 7t (resp., 7) may be seen
as the degree of certainty of the group of experts that a holds (does not hold?).
Assume that this degree is 1 (resp., 0) for tautologies (countertautologies); and
that logically equivalent formulae are given the same degree. Let cr(a) € [0,1]
denote the degree of certainty that a holds (or the degree of credibility of o [3]).
In our case cr(a) = 7t and cr(—a) = . Clearly, cr(a) + cr(-a) < 1.

In the next step the group may arrive at an opinion about o in qualitative
terms as ’believed’ or ’disbelieved’. Suppose two numbers 0 < t; < t3 <1
are considered as threshold values for disbelief and belief, respectively.® More
precisely, a piece of information « is believed if to < cr(a) and disbelieved if
cr(a) < t1. In the remaining case where t1 < cr(a) < t2, « is neither believed
nor disbelieved.

Proposition 1.2 If 1 < t1 + t2 and « is believed, then —a is disbelieved.

Nevertheless, from the fact that « is disbelieved one cannot say whether -« is
believed or not. Moreover, if t; +t2 <1 (e.g., t1 = 0.3 and ty = 0.6), it can be
the case that « is believed (e.g., cr(a) = 0.62) and -« is not disbelieved (e.g.,
cr(—a) =0.35).

In this paper, our underlying logic will be based on the first author’s work on
rejection systems [2, 4] and we shall take an AGM-style approach to the revision
process [1, 5, 6]. Belief states of rational agents will be represented by pairs of
sets (X,Y) of formulae closed under the classical consequence operation Cn
and the rejection consequence operation Cn' [2, 4], respectively. All considered
changes of belief state will be ’small’, i.e. by a single formula. We postulate the
result of change of a belief state to be a coherent belief state whenever possible.
We hope in future work to be able to explore other ways of analysing (dis)belief
change and compare them with the present one.

The paper is organized as follows. Section 2 contains preliminaries. Sec-
tion 3 is devoted to the consequence operations Cn and Cn'. In Section 4 we
address the problem of consistency and coherence. Apart from the definitions
and properties of consistency and coherence, we give definitions of some map-
pings used later on to build our model of change of belief state, recall the concept
of consolidation [7] renamed here to b-consolidation, introduce the notions of
d-consolidation and a disjoining operation, and investigate their properties. In
Section 5 we briefly review the AGM theory. As a novelty we define the notion

2For simplicity, this may be identified with the case that —a holds.
3Clearly, threshold values may be subject to change and depend, e.g., on the considered
problem.



of b-incorporation. In Section 6 we propose a model of disbelief change. In
Section 7 we complete our model to be able to speak about changes of belief
state. In particular, we define the notions of B- and D-expansions, incorpora-
tions, revisions, and revisions, relate them to one another, and investigate their
properties. Section 8 contains brief final remarks.

2 Preliminaries

First, we introduce the notation used in the paper. Given a set X, let p(X)
(resp., card(X)) denote the power set (cardinality) of X. For any sets X and Y,
X —Y denotes their set-theoretical difference. Later on the same symbol will
be used in other contexts as well. As usual, ’z,y € X’ is a shortening for 'z € X
and y € X’. Given a mapping f : X — Y and a set Z C X, f|z denotes the
limitation of f to Z, viz., fN(Z xY). Instead of X x X (resp., the composition
of f with f) we shall often write X2 (resp., f2) if convenient. The parentheses
(,) will be omitted if no confusion results. The set of all natural numbers is
denoted by N as usual.

A relation < on X is a partial ordering and (X, <) is a partially ordered
set if < is reflexive (i.e., (Vz € X)z < z), antisymmetric ((Vz,y € X)((z <
yAy X z) = 2 =y)), and transitive ((Vz,y,z € X)((z R yAy X z) > 2 < 2)).
If < is also connected ((Vz,y € X)(z <y Vy = z)), then it is called a total
ordering and (X, <) is a totally ordered set. An element z € X is called <-
mazimal (resp., =-minimal)* in (X, =) if (Vy € X)(z <y = = = y) (resp.,
Yy e X)(y 2z =z =1y)).

Given a partially ordered set (X, C), define a product inclusion C on the set
(p(X))? as follows:

(X1,Y1) C (X2, Y3) iff X1 CXoANY1 C Y, (1)

(X1,Y1) is called a subpair of (X»,Y2). It is easy to show that C is a partial
ordering on (p(X))2.

In a natural way we generalise the set-theoretical union U (resp., intersection
N) to an operation L (resp., M) to deal with pairs of sets:

(X,Y)U(2Z,T) = (XUZYUT)
(X,Y)N(2,T) = (XnZYnNT) (2)

Let m; denote the projection function onto the i-th variable (: = 1,2). Thus
for any sets X; and elements z; € X;, m; : X1 x Xo = X; and m;(z1, 22) = ;.
For any Z C X7 x Xy, m;7(Z) is the image of Z given by m;:

Wf(Z) = {iE € X; | (3(.’[11,1’2) (S Z)'/Tz'(z'l,.'L'Q) = .’L'} (3)

4Usually the prefix ’<’ is omitted if it is known from the context.



Clearly, 7;7 (X1 x X») = X;.

In our approach we use the language of the classical propositional logic
(PC for short) to formalise and investigate the notions of beliefs, disbeliefs,
and change of belief state. Thus information, beliefs, and disbeliefs are uni-
formly represented by formulae of the PC language. Propositional variables
(resp., formulae) are denoted by p, g (the lowercase Greek letters a, 8, v) with
sub/superscripts if needed. The propositional connectives of our language (and
the meta-language if no confusion arises) are denoted by A, V, —, <, and —,
and have the usual meaning. We use 0 (resp., 1) to abbreviate p A —p (resp.,
pV —p). FOR denotes the set of all formulae formed according to the usual
rules. For any set of formulae X, we define =X as follows:

=X ={-a|a€ X} (4)

Notice that -0 = (.
By a selector we mean a mapping & : p?(FOR) — *(FOR) such that for
any family of sets of formulae X, the following conditions are satisfied:

() ¢ X
§X)=0 iff X=90 ()

The notion of selector may be generalised to the case of pairs of families of sets
of formulae as follows. A p-selector (’p’ for ’product’ or ’pair’) is a mapping
7 : (p?(FOR))? = (p2(FOR))? such that for any families of sets of formulae X;
(1 = 1,2), the following conditions are satisfied:

(X, &) L (AL, Ab)
(X, X)) =0 iff X =0 (6)

3 Operations Cn and Cn’

In this section we recall general properties of consequence operators. Apart
from the well-known classical propositional consequence operator Cn, we also
consider a propositional rejection consequence Cn' [2, 4].

The notation (Y, ) € r is used to indicate that Y is a finite set of premises
and « is the conclusion of an inference rule r. For any set of inference rules
R and any set of formulae X, a syntactical consequence operator CN may be
defined as follows [10]:

CN°(R,X) = X
CN"" (R, X) = CN"(R,X)U{a|(3re R)(3Y CCOCN"(R,X))(Y,a)€r}
CN(R,X) = |J CN"(R X) (7)

neN



Proposition 3.1 For any set of inference rules R and sets of formulae X, Y,
we have that:

X C CN(R,X) (reflexivity)
IfXCY, then CN(R,X)CCN(R,Y). (monotonicity)
CN(R,CN(R,X)) C CN(R,X) (idempotence)
CN(R,X) = |J{CN(R,Y)|Y C X A card(Y) < Xo}

(compactness)

Thus, C'N satisfies the Tarski postulates for a consequence operator.

Proposition 3.2 Let R be a set of inference rules and X a family of sets of
formulae. (1) If (X, C) is totally ordered, then we have that:

CN(R,|JX) = {CN(R,X)| X € X}
(2) If for each X € X, CN(R,X) = X, then we have that:

CN(R,(X) =X
O

We shall consider two inference rules: the modus ponens rule MP :
and the rejection rule Rej introduced in [2, 4] to formalise the notion of rejection
consequence.” Let o — 3 = =(a — 3). Rejis defined schematically as Rej :
W and understood as follows: If 8 and a— 3 are rejected, then « is rejected
as well.

Two consequence operators will be considered: the classical one denoted
by Cn and the rejection consequence operator Cn' [2, 4]. Let X be a set of
formulae, Az denote a sound and complete set of axioms of PC, and Sb(Ax)
the set of all substitution instances of Az. Operators Cn and Cn' are defined
by the following equations:

a, a—=f
B

On(X) = CN({MP},Sh(Az)U X) (8)
Cn'(X) = CN({Rej},~Cn(0)UX) (9)

Cn(D) is the set of all PC tautologies. It turns out that Cn'(§) = {a | ~«a €
Cn(d)}, i.e., it is the set of all PC countertautologies. Henceforth C will denote
Cn or Cn'. We say that a set of formulae X is C-closed (or is a C-theory) in
case C(X) = X. A pair of sets of formulae (X,Y) is closed if X is Cn-closed
and Y is Cn'-closed. When speaking of beliefs and disbeliefs, Cn-closed (resp.,

5For other formalisations of rejection inference see, e.g., [9, 14, 15, 16, 17].



Cn'-closed) sets of formulae will be referred to as belief (disbelief) sets, and
closed pairs of sets of formulae will be called belief states as well.
Below we recall some useful properties of Cn and Cn'.%

Proposition 3.3 For any set of formulae X and formulae o, B, and v, the
following conditions hold:

Ifa+ B €Cn(D), then aeCn'(X) iff B€Cn'(X).
Ifae Cn'(X) or Be Cn'(X), then aApe(Cn'(X).
Ifa € Cn/(X) or =B € Cn'(X), then a—p€ Cn'(X).
avpeln'(X) iff o,B€eCn(X)
(X)

a—-peCn(X) iff -B--aelCn(X)
O
Operators Cn and Cn' are closely related.
Proposition 3.4 For any set of formulae X, we have that:
C(X) = C(==X)
-Cn(X) C CTL'(—!X)
-Cn/(X) C Cn(=X)
O

Hence for any formula a, a € Cn/(X) iff —a € Cn(—X).
Where X is finite, A X (resp., V X) denotes a conjunction (disjunction) of
all formulae of X.

Theorem 3.5 For any sets of formulae X, Y, a finite set of formulae Z, and
formulae a, B, we have that:

a€eCn(Xu{B}) iff a-pB€eCn(X)
Ifa & B €Cn(@), then C(XU{a})=C(XU{B}).

cniA\Z) = Cn(2)
on(f\/Zh) = ({Cnl{a}) |ae 2}
ch({\Zh) = ({Cw'(eh)|ae )
o\ 7) = ()

6For more details on properties of Cn’ a reader is referred to [4].



4 Consistency and coherence

Let us recall that C' denotes Cn or Cn'. A set of formulae X is C-consistent
if C(X) # FOR; otherwise it is C-inconsistent. Let Cons(X) (resp., Cons' (X))
iff X is Cn-consistent (Cn'-consistent). A pair of sets of formulae (X,Y) is
consistent in case Cons(X) and Cons'(Y); otherwise it is inconsistent.

Some results regarding consistency are presented below.

Theorem 4.1 For any sets of formulae X, Y and a formula «, the following
conditions hold:

C(X)=FOR iff (Aa)(a,—ae€ C(X))
Cons(X) iff Cons'(=X)
C(XU{-a}) # FOR iff adC(X)
Cn(X)NCn'(Y)=0 iff Cons(XU-Y)

Notice that Cons(X) (resp., Cons' (X)) iff 0 ¢ Cn(X) (resp., 1 € Cn'(X)).

We slightly change the definition of the mapping L given in [1] to allow
X La={X}if a € Cn(D). We also attach the subscript *b’ for ’belief’. Thus,
L14: p(FOR) x FOR — ?(FOR) is a mapping defined as follows:

{Y|Y C X is mazimal s.t. a € Cn(Y)} if a & Cn(0)

X Lya= { {X} otherwise

(10)

Clearly, if @ ¢ Cn(X), then X 1, a = {X}. According to the definition,
X 14 0 is the family of all C-maximal C'n-consistent subsets of X. A mapping
L4: p(FOR) x FOR + ©*(FOR) is defined in a similar way:

{Y|Y C X is mazimal s.t. « ¢ Cn'(Y)} ifa & Cn'(D)

X laa= { {X} otherwise

(11)
Note that if o ¢ Cn/(X), then X L; a = {X}. Moreover, X L, 1 is the family
of all C-maximal Cn'-consistent subsets of X.
Some basic properties of L, and L4 are given below.

Proposition 4.2 For any set of formulae X and formulae o, 8, we have that:

FOn(X)=X, then (VY €X Lya)Cn(Y)=Y.
FOn'(X)=X, then (VY €X Lga)Cn'(Y) =Y.

Ifae BeCn®), then X lya=X1pBand X lga=X 140.
IfCn(X)=X, then (X Lpa)N(X Ly 8) CX Ly (aAP)

C (X Lya)U(X Ly B).

Ifen'(X)=X, then (X lga)N(X LgB) CX 1g(aVp)



C (A liag)uX Lgp).
X 1p0#0 and X 141#0
X 1, 0={X} ff Cons(X)
X 141={X} iff Cons(X)

O

The notion of consolidation (renamed to b-consolidation here) was proposed
by Hansson [7]. Roughly speaking, it is an operation of making a given set of for-
mulae Cn-consistent. Given a selector & (cf. (5)), a partial-meet b-consolidation
generated by £ is a mapping ®§ : p(FOR) — p(FOR) defined as follows:

O5(X) = €(X L50) (12)

By Proposition 4.2, ®§(X ) is a Cn-consistent belief set whenever X is a belief
set.

Similarly, a partial-meet d-consolidation generated by £ is a mapping @’j; :
©(FOR) — p(FOR) defined as follows:

O5(X) =[é&X La1) (13)

Let us note that where X is a disbelief set, ®§(X ) is a C'n'-consistent disbelief
set.

We can distinguish two limiting cases. If £ is the identity function, id,
®i? and ®¥ are called the full-meet b- and d-consolidations, respectively. On
the other hand, if £ selects a single set, the generated partial-meet b- and d-
consolidations are called mazi-choice b- and d-consolidations, respectively.

In the case of pairs of sets of formulae, the notion of consistency can be too
weak. For instance, a belief state (X,Y) may be consistent according to the
formal definition although X NY # (). This means that there is a formula both
believed and disbelieved, contrary to the intuition.

Example 4.3 Let X = Cn({p,p = q}) and Y = Cn'({q}). In this case,
ge XNY.

Therefore we introduce a notion of coherence which is more appropriate for
our purposes. A pair of sets of formulae (X,Y) is called coherent if Cn(X) N
Cn'(Y) = 0; otherwise (X,Y) is incoherent. By Theorem 4.1, (X,Y") is coherent
iff Cons(X U —Y"). Henceforth we shall denote the set of all coherent pairs of
sets of formulae by Coh:

Coh = {(X,Y) C FOR? | Cons(X U-Y)} (14)

Mappings L7, 17: (p(FOR))?> x FOR — p((p(FOR))?) defined below are
generalisations of the mappings 1, and L4, respectively, to the case of pairs of



sets of formulae.

{(Z,T) C(X,Y) | (Z,T) is mazimal s.t.
(X,Y) J_i’a:{ (Z,T) € Cohna & Cn(2)} if o & Cn(0)
{(X, )} otherwise
(15)
{(Z,T)C(X,Y) | (Z,T) is mazimal s.t.
(X,Y) J_Saz{ (Z,T) € CohAa & Cn'(T)} if a & Cn' ()
{X,Y)} otherwise
(16)

Thus, (X,Y) L¥ a (resp., (X,Y) L% a) is the set of all C-maximal coherent
subpairs (Z,T) of (X,Y) such that o ¢ Cn(Z) (resp., a ¢ Cn/(T)) if «a is
not a tautology (countertautology); and it is {(X,Y)} otherwise. In particular,
(X,Y) L? 0 or, equivalently, (X,Y) L5 1 is the set of all C-maximal coherent
subpairs of (X,Y).

Proposition 4.4 For any sets of formulae X, Y, a formula a, and i € {b,d},
we have that:

If (X,Y) is closed, then (Z,T) is closed for each (Z,T) € (X,Y) L? «
Ifa < e Cn(®), then (X,Y)L1Pa=(X,Y) 1?4
(X,v)y170 # 0
X,Y)LL0={(X,V)} iff (XY
If (X,Y) € Coh, then (X,Y) 1} a=(X Lya)x{YV}
(X,Y

and ) Lha={X}x (Y Lqa).

O

Given a (possibly incoherent) belief state, we may want to transform it into a
coherent one. For this purpose we introduce the notion of disjoining operation
playing a similar role as consolidation. A disjoining operation is a mapping
® : (p(FOR))? — (p(FOR))? such that for any sets of formulae X, YV, the
following postulates are satisfied:

(©1) 6(X,Y) E(X,Y)

(©2) (X, Y)Eo 0o (X,Y)

(®3) (X,Y)C o(X,Y) iff (X,Y) € Coh.
(®4) If (X,Y) is closed, then ®(X,Y) is closed.

Proposition 4.5 For any disjoining operation ® and sets of formulae X, Y,
O(X,Y) € Coh. O



Hence, ®(X,Y) is a coherent belief state whenever (X,Y") is a belief state.
A partial-meet disjoining operation @7 : (p(FOR))? — (p(FOR))?, gener-
ated by a p-selector 7 (cf. (6)), is defined as follows:

O7(X,Y) = ((m'r((X,Y) L} 0),( =3 7((X,Y) L1} 0)) (17)

Intuitively, 7 selects some C-maximal coherent subpairs of (X,Y) which form
a set Z. Next, we take the pair (X1,Y7), where X; = N7 (Z) and Y =
N7 (Z), as ©"(X,Y). Notice that (X;,Y;) € Coh.

Two particular cases are worth distinguishing. If 7 is the identity function
id, ®'¢ is referred to as the full-meet disjoining operation. On the other hand,
if 7 always selects a single pair of sets of formulae, ®" is called a maxi-choice
disjoining operation.

Proposition 4.6 Any partial-meet disjoining operation is a disjoining opera-
tion, i.e., it satisfies the postulates (©1)~(®4). ]

If the result of disjoing is to be C-maximal, a supplementary postulate may
be formulated as follows:

(©5) (V(U,W)C (X,Y))((U,W) € CohAO(X,Y) C (U,W))
= (U, W) = 0(X,Y)) (18)

One can see that maxi-choice disjoining operations satisfy (®5) but the full-meet
disjoining operation does not.

A mapping ||: (p(FOR))? x FOR ~ p((p(FOR))?), being in some sense
‘orthogonal’ to L} and L%, is defined as follows:

{(Z, T)CE(X,Y) | (Z,T) is mazimal s.t.
(X,Y)||la=<{ (ZU{a},T) € Coh} if a & Cn'(0)
{(X,Y)} otherwise
(19)
In words, (X,Y) || « is the set of all C-maximal subpairs (Z,T) of (X,Y") such
that (Z U{a},T) is coherent if a is not a countertautology; and it is {(X,Y)}
otherwise.

Proposition 4.7 For any sets of formulae X, Y and a formula o, we have
that:

If (X,Y) is closed, then (Z,T) is closed for each (Z,T) € (X,Y) || a.
Ifa+ peCn(®), then (X,Y)|a=(X,Y)| 8.
(X,Y) |1 0
(X,Y) [|[1={(X,Y)} (X,Y) € Coh

IS N



In general, (X,Y) || @ cannot be defined as (X,Y) L? —a, (X,Y) LY a or
(X Lp ma) x (Y L4 a) as shown in the example below.

Example 4.8 Let X = {p}, Y = {-(p = ¢)}, and a = ~q. One can easily see
that (1) Cons(X U-Y), (2) Cons(X U {a}), and (8) Cons({a} U-Y). On the
other hand, (4) —=Cons(X U{a}U-Y) and (5) a & Cn'(0). X L, ~a = {X}
by (2, Y Laa=1{Y} by (3), (X,¥) L ~a = {(X,V)} = (X,Y) 1% a by (1)
and Proposition 4.4, and (X,Y) € (X,Y) || @ by (4) and (5). In summary, we
have that:

((XY) [[a) (X, Y) Ly =) U((X,Y) L5 @) U((X Ly ) x (Y La@))) =0

5 Belief change

In this section we recall the AGM operations of belief change (i.e., expansion,
contraction, and revision) [1]. For the sake of uniformity, these operations will
be presented as b-expansion (+;), b-contraction (—;), and b-revision (xp), re-
spectively. We also define a general form of belief incorporation, b-incorporation
(op) following the idea of Hansson [7].

Given a belief set X and a formula «, representing a piece of information, two
major situations of change of belief state can be distinguished. First we believe
a and try to incorporate it into X. Secondly, we stop believing a and try to
remove it from X. The main postulate for belief change is that the result has to
be a C'n-consistent belief set. The second form of belief change may be formally
described as a b-contraction of X by a. The first one may be formalised as a b-
incorporation being a composition of a b-consolidation defined in the preceding
section and the b-expansion. If we also require the result of incorporating «
into X to contain a (a rule known as the priority-to-novelty principle), the
belief change may be realised by a b-incorporation of a particular kind called
b-revision.

5.1 b-expansion and b-incorporation

By a b-ezpansion we mean a mapping + : p(FOR) x FOR — o(FOR) defined
as follows:
X +pa=Cn(XU{a}) (20)

Notice that the results of b-expansion are always belief sets. Unfortunately, X +
«a may or may not be C'n-consistent. Therefore not every case of incorporation
of a belief into a belief set may be realised by the b-expansion.

As observed by Hansson [7], incorporation of « into X proceeds in two
steps if no priority is given to a just because it is a new belief. First, X is
expanded with a. Next, the result is consolidated appropriately. A mapping
realising such a change may be defined as follows. Given a selector & (cf. (5))



and the generated partial-meet b-consolidation @,‘E (cf. (12)), a partial-meet b-
incorporation generated by £ is a mapping o§ : p(FOR) x FOR — p(FOR)

defined as follows:
X o} a=@5(X +p ) (21)

The result of b-incorporating « into X, written X og a, is a C'n-consistent belief
set whenever X is a belief set. It may or may not contain «. For pairs (X, a)
such that —a € Cn(X) or, in other words, Cons(X U{a}), b-incorporation takes
the form of b-expansion. As in the case of b-consolidation we can distinguish
two limiting cases. If ®§ is the full-meet (resp., a maxi-choice) b-consolidation,
the corresponding mapping og is referred to as the full-meet (a mazi-choice)
b-incorporation.

5.2 b-contraction

Consider a belief set X and a formula a. According to the definition of a belief
set, all tautologies are believed forever. Thus if « is a tautology, we cannot
successfully remove it from X. In the remaining case a is to be removed from
X (possibly with some other formulae) if we stop believing it. As postulated
before, the obtained belief set should be Cn-consistent. Moreover, it should
not contain a. Such a change of X can be formalised as a b-contraction of X
by a. In detail, a b-contraction is a mapping —p : p(FOR) x FOR — o(FOR)
such that for any set of formulae X and formulae «, 3, the following rationality
postulates are satisfied [1]:

—p1) If Cn(X) = X, then Cn(X —p a) = X —p a. (closure)
p2) X —p o C X (inclusion)

p3) If a & Cn(X), then X —y a = X. (vacuity)

vd) If o & Cn(0), then a & Cn(X —p ). (success)

»5) If a < B € Cn(D), then X —y o = X — 3. (preservation)

(
(
(
(
(
(

—6) If Cn(X) = X, then X C (X —p @) +4 a. (recovery)

X —p a denotes the result of b-contracting X by a.

In our approach partial-meet contractions [1] are presented as partial-meet b-
contractions. A partial-meet b-contraction generated by a selector £ is a mapping
—‘g : 9(FOR) x FOR — p(FOR) defined as follows:

X—gazﬂﬁ(X 1y ) (22)

In general, selector & chooses some maximal ¥ C X such that a is not Cn-
derived from Y if « is not a tautology; and ¢ yields {X} otherwise. In the next
step, we take the intersection of all selected sets as X —§ a. It turns out that

partial-meet b-contractions are b-contractions as well [1].



Theorem 5.1 Any partial-meet b-contraction is a b-contraction, i.e., it satis-
fies the postulates (—p1)—(—46). |

Along the standard lines, two cases of partial-meet b-contractions can be
distinguished. If ¢ is the identity function id, then —i? is called the full-meet
b-contraction. In this case X —i% a = (X Ly a). If £ always selects a single
set, then the generated partial-meet b-contraction —g is called a mazi-choice
b-contraction.

In [1] two supplementary postulates for contraction are proposed. They are
satisfied by some classes of partial-meet contractions only. In our notation the
postulates take the following form. Let X be a Cn-closed set of formulae and
a, 8 be formulae.

(=67) (X =) N (X = B) C X —p (@A D)
(—68) X —p (e AB) C X —p a whenever a &€ X — (a A f)

5.3 b-revision

In this section we consider the case of incorporation of a believed formula «
into a belief set X under an additional condition? that o has to be in the
obtained belief set. This particular kind of b-incorporation is called b-revision
(or, simply, revision [1, 5, 6]). Formally, by a b-revision we mean a mapping
xp 1 P(FOR)x FOR — p(FOR) such that for any set of formulae X and formulae
a, B, the following rationality postulates [5] are satisfied:

xp1) Cn(X xpa) = X xp

¥p2) a € X %«

x33) X*xpaCX +pa

(

(*62)

(%63)

(%p4) If ~a ¢ Cn(X), then X +4 o C X *p .
(x5) If a > B € Cn(D), then X %, o = X % 3.
(x66)

*x,6) X %, a = FOR iff ~a € CTL(@)

The result of b-revising X by « is written as X *ya. b-revisions by a may produce
Cn-inconsistent belief sets only if « is a countertautology. In the remaining
case, X x, a is a Cn-consistent belief set containing «. Let us notice that b-
revisions take the form of b-expansion for pairs (X, a) such that ~a ¢ Cn(X)
or equivalently Cons(X U {a}).

The notions of b-contraction and b-revision are interrelated. Let £ be a
selector and —§ the generated partial-meet b-contraction. By a partial-meet

"The already mentioned priority-to-novelty principle.



b-revision generated by £ we mean a mapping *§ : 9(FOR) x FOR — p(FOR)
defined as follows:

X *g a=(X —g ) +p a (the Levi identity) (23)

Where —g is the full-meet (resp., a maxi-choice) b-contraction, the correspond-
ing *g is called the full-meet (a mazi-choice) b-revision generated by &.

Proposition 5.2 Mapping *g defined above is a b-revision, i.e., it satisfies the
postulates (xp1)—(*46). O

On the other hand, given a partial-meet b-revision *g, the mapping —; defined
below is a b-contraction.

X—pa=XnX *g —q) (the Harper identity) (24)

Like in the case of b-contraction, two additional postulates for b-revision are
proposed in the AGM theory. Let X be any set of formulae and « be a formula.

(x7) X5 (aANB) C (X xpa)+s
(x8) If =8 & X *p a, then (X #p ) +p 8 C X * (@ A B).

6 Disbelief change

In this section we define and investigate counterparts of the AGM operations
and b-incorporation for the case of disbelief change, viz., d-expansion (+4),
d-contraction (—g4), d-revision (x4), and d-incorporation (og).

Consider a disbelief set X and a formula « representing a piece of informa-
tion. As before, two general cases of disbelief change are distinguished. First we
disbelieve o and try to incorporate it into X. In the second case we stop disbe-
lieving o what results in trying to remove it from X. As previously, the main
postulate says that the result have to be a C'n'-consistent disbelief set. Changes
of the second kind can be formalised as d-contractions of X by «. Changes
of the former one can be realised by d-incorporations, i.e. compositions of d-
consolidation and d-expansion. If we additionally require that o is a member
of the obtained disbelief set (the priority-to-novelty principle), the changes can
be realised by particular d-incorporations called d-revisions.

6.1 d-expansion and d-incorporation

By a d-ezpansion we mean a mapping +4 : p(FOR) x FOR — o(FOR) defined
as follows:
X +4a=Cn'(X U{a}) (25)



Let us notice that the result of d-expanding X with a, X +4 a, is a disbelief
set. It may or may not be Cn'-consistent. Therefore incorporation of « into
a disbelief set X, where the only requirement is that the result should be a
Cn'-consistent disbelief set, proceeds in two steps: (1) d-expansion of X with
a and (2) d-consolidation of the resulting set. Given a selector £ (cf. (5))
and the generated partial-meet d-consolidation @3 (cf. (13)), a partial-meet d-
incorporation generated by £ is a mapping og : p(FOR) x FOR — p(FOR)
defined as follows:

X o§a=05X +40) (26)

If X is a disbelief set, the result of d-incorporating « into X, written X og a,
is a Cn'-consistent disbelief set. As in the case of b-incorporation, it may or
may not contain «. For pairs (X,«) such that —~a & Cn/(X) or, in other
words, Cons'(X U {a}), d-incorporation takes the form of d-expansion. Along
the standard lines, two cases of d-incorporation are distinguished. If @5 is the
full-meet (resp., a maxi-choice) d-consolidation, the corresponding mapping og
is called the full-meet (a mazi-choice) d-incorporation.

6.2 d-contraction

Consider a disbelief set X and a formula a. Since all countertautologies are
always disbelieved by the definition of a disbelief set, we cannot effectively
remove « from X if a is a countertautology. If we stop disbelieving a non-
countertautology «, we try to remove it from X, possibly with some other
formulae. The result should be a Cn'-consistent disbelief set not containing c.
Such a change of X may be realised by a d-contraction of X by a. Formally, a
d-contraction is a mapping —4 : p(FOR) x FOR — o(FOR) such that for any
set of formulae X and formulae «, 3, the following postulates are satisfied:

(—ql) HCn/(X) =X, then Cn/(X —ga) =X —q .
(—42) X —gaCX

(—43) If & & On/(X), then X —ga = X.

(—q4) If a & Cn' (D), then a ¢ Cn'(X —4 ).
(—ab) Ha+ B €Cn(), then X —ga=X —4 .
(—ab) I Cn/(X) = X, then X C (X —gq ) +4 c.

The result of d-contracting X by « is denoted by X —; a. Like in the AGM
framework, the postulates for d-contraction may be given special names, viz.,
closure for (—41), inclusion for (—42), vacuity for (—43), success for (—44),
preservation for (—45), and recovery for (—46).



A partial-meet d-contraction generated by a selector £ is a mapping —‘3 :
p(FOR) x FOR — p(FOR) defined as follows:

X -Sa=)éX Laa) (27)

In a general case £ selects some maximal Y C X such that a ¢ Cn/(Y) if a is not
a countertautology; and £ yields {X} otherwise. Next we take the intersection

of all the selected sets as X —3 o.

Theorem 6.1 Any partial-meet d-contraction is a d-contraction, i.e., it satis-
fies the postulates (—41)—(—46). O

Like in the AGM theory we can distinguish two limiting cases: the full-
meet d-contraction and the maxi-choice d-contractions. The partial-meet d-
contraction generated by id, —éd, is called the full-meet d-contraction. In this
case X =i o = (X Lq ). On the other hand, if £ always selects a single set,
—‘3 is called a maxi-choice d-contraction.

We can formulate two additional postulates for d-contraction, (—47) and
(—48), which correspond to the postulates (—;,7) and (—38), respectively. They
are satisfied by some classes of d-contractions only. Let X be any disbelief set

and «, 8 be formulae.
(=a7) (X —aa)N(X =4 B) CX —g(aVp)
(—a8) X —g(aVPB) C X —ga whenever a & X —q (aV f)

6.3 d-revision

Now we consider the case of incorporation of a disbelieved formula « into a
disbelief set X under an additional requirement that « is in the resulting disbelief
set (the priority-to-novelty principle). This kind of d-incorporation is called d-
revision. In detail, a d-revision is a mapping *4 : p(FOR) x FOR — p(FOR)
such that for any set of formulae X and formulae a, 3, the following postulates
are satisfied:

xq1) Cn'(X xga) = X x4«

*32) a € X %4 «
*¥33) X xqa C X +5a

(

(*42)

(*a3)

(x44) If ~a & Cn'(X), then X +40a C X 4 a.
(x45) If o 3 B € Cn(D), then X xg o = X %4 B.
(*a6)

x46) X xqa = FOR iff a € Cn(0).



The result of d-revising X by « is written as X *4 a. Clearly, for pairs (X, a)
such that —a ¢ Cn'(X) (i.e., Cons'(X U {a})) d-revisions coincide with the
d-expansion. The notion of partial-meet d-revision is defined similarly to that
of partial-meet b-revision. Given a selector £ and the generated partial-meet d-
contraction —g, by a partial-meet d-revision generated by £ we mean a mapping
*g : 9(FOR) x FOR — p(FOR) defined as follows:

X+ a=(X-§a)+ia (28)

Where —g is the full-meet (resp., a maxi-choice) d-contraction, the correspond-
ing mapping *3 is called the full-meet (a mazi-choice) d-revision.

Proposition 6.2 Mapping *3 defined above is a d-revision, i.e., it satisfies the
postulates (xq1)—(x46). O

On the other hand, any partial-meet d-revision determines a corresponding d-
contraction. Let us define a mapping —g : p(FOR) x FOR — p(FOR) as follows:

X —ga=Xn(X*-a) (29)

Proposition 6.3 Mapping —, defined above is a d-contraction, i.e., it satisfies
the postulates (—41)—(—46). O

Like in the case of b-revision, we can formulate supplementary postulates
satisfied by some classes of d-revisions. Let X be any set of formulae and a be
a formula.

(*a7) X xq(aV B) C (X *q ) +a
(%48) If =8 ¢ X x4, then (X #50) +4 8 C X x4 (a V ).

7 Change of belief states

Let us recall that by belief states we mean closed pairs of sets of formulae, i.e.,
a pair (X,Y) is a belief state if X is Cn-closed (X is a belief set) and Y is Cn/'-
closed (Y is a disbelief set). A belief state (X,Y") is consistent just in case X is
Cn-consistent and Y is Cn/-consistent. Clearly, consistency does not guarantee
disjointness of X, Y. In other words, it can be the case that a belief state (X,Y)
is consistent and nevertheless there is a formula a believed and disbelieved
concurrently (cf. Example 4.3). In our opinion, such a situation is possible but
abnormal. In this paper we are interested in the case of coherent belief states
where belief and disbelief sets are disjoint. According to the definition, (X,Y) is
coherent iff Cn(X)NCn/(Y) = 0. The last equation is equivalent to X NY = §.
Thus, we postulate the result of doxastic change of belief state to be a coherent
belief state whenever possible.



As previously, we consider small changes, i.e. by a single formula represent-
ing a piece of information. We can distinguish two major types of change of
belief state: incorporating and removing a formula. Given a belief state (X,Y)
and a formula a, we may want to incorporate a into X (resp., Y) since we be-
lieve (disbelieve) it. If we stop believing (disbelieving) «, we shall try to remove
it from our belief (disbelief) set X (resp., Y). We do not require that believing
a should imply disbelieving —a, or vice versa. As shown in Example 1.1, the
notions of belief and disbelief may be quite independent from each other in the
case of collective (dis)beliefs or where information comes from several different
sources. In the definitions below we use the prefixes 'B’ and "D’ for ’belief’ and
‘disbelief’, respectively.

7.1 B-, D-expansions and B-, D-incorporations

B- and D-ezpansions are mappings @y, ®q : (p(FOR))? x FOR — (p(FOR))?,
respectively, defined as follows:

X, YVora=(X+p0,Y) and (X,Y)®ga=(X,Y +40a) (30)

Note that if (X,Y) is a belief state, the result of B-expanding (X,Y") with «,
(X,Y) @ a, is a belief state as well; and similarly for D-expansion. Clearly,
(X,Y) ®p @ and (X,Y) @4 a may or may not be coherent.

If coherence of the resulting belief state is the only requirement to be ful-
filled, incorporation of a formula into a belief state can be realised by B- and
D-incorporations which are compositions of disjoining operations with the B-
and D-expansions, respectively. Given a disjoining operation ®, B- and D-
incorporations are mappings ;,e4 : (p(FOR))? x FOR ~ (p(FOR))?, respec-
tively, defined as follows:

(X, Y)epa=0(X,Y)®pa) and (X,Y)esa=0((X,Y) @4 a) (31)

The result of B-incorporating (resp., D-incorporating) « into a belief state
(X,Y), written (X,Y) ey a (resp., (X,Y) o4 ), is a coherent belief state. For
pairs ((X,Y), a) such that (X U{a},Y) € Coh (resp., (X,Y U{a}) € Coh), B-
incorporations (D-incorporations) coincide with the B-expansion (D-expansion).

Given a p-selector 7 (cf. (6)), a partial-meet B-incorporation (resp., D-
incorporation) generated by 7 is a mapping e; (resp., o7) defined by (31), where
® = ©". The mapping i? (resp., ¢i¢), generated by the identity function id,
is called the full-meet B-incorporation (D-incorporation). Where ®7 is a maxi-
choice disjoining operation, the corresponding mappings e; and e}, are referred
to as maxi-choice B- and D-incorporations, respectively.

7.2 B- and D-contractions

Consider a belief state (X,Y) and a formula a. If « is a tautology (resp.,
countertautology), there is no way to remove it from X (resp., Y) to obtain a



belief state (Z,T) such that a & Z (resp., a ¢ T') by the definition of a belief
(disbelief) set. In the remaining cases, if « is not longer believed (disbelieved), it
is to be removed from X (resp., Y'), possibly together with some other formulae,
in such a way that a cannot be derived from the obtained belief (disbelief) set.
Such a change of (X,Y") can be formalised as a B-contraction (D-contraction)
of (X,Y) by a. More precisely, B- and D-contractions are mappings Sy, Oy :
(p(FOR))?x FOR — (p(FOR))?, respectively, such that for any sets of formulae
X, Y and formulae a, 3, the following postulates are satisfied:

(epl) If (X,Y) is a belief state, then (X,Y) 6 a is a belief state.

(©42) (X,Y)epaC (X,Y)

(043) f a € Cn(X) and (X,Y) € Coh, then (X,Y) 0p a = (X,Y).

(&pd) If a & Cn(D), then a & Cn(m ((X,Y) Sp @)).

(©55) If a «» B3 € Cn(D), then (X,Y)6pa = (X,Y) 64 8.

(06) If Cn(X) = X and (X,Y) € Coh, then X C 71 (((X,Y) ©p @) ®p ).
(e41) If (X,Y) is a belief state, then (X,Y) ©4 « is a belief state.

(642) (X,Y)64aC (X,Y)

(643) fa g Cn'(Y) and (X,Y) € Coh, then (X,Y)O04a=(X,Y).

(e4d) f a g Cn'(0), then a € Cn'(m2((X,Y) 64 @)).

(045) If a + B € Cn(D), then (X,Y)o4a=(X,Y)O48.

(646) If Cn/(Y) =Y and (X,Y) € Coh, then Y C my(((X,Y) ©4 @) Bq ).

(X,Y)oepa and (X,Y) 64 a denote the results of B- and D-contracting (X,Y)
by a, respectively.

A simple form of B-contraction called a weak B-contraction can be easily
defined by means of b-contraction; and similarly for D-contraction. Given a
b-contraction —, and a d-contraction —;, weak B- and D-contractions are map-
pings Spuw, Odw : (P(FOR))? x FOR — (p(FOR))?, respectively, defined as
follows:

(XJY) Obw O = (X b a)Y) and (XJY) Odw @ = (XJY —d a) (32)

Note that if (X,Y) is a belief state, then both (X,Y") 64y @ and (X,Y) S40 @
are belief states. Similarly, if (X,Y’) is coherent, then both (X,Y) &4, a and
(X,Y) ©44 a are coherent.

Theorem 7.1 Any weak B-contraction (D-contraction) defined by (32) is a B-
contraction (D-contraction), i.e., it satisfies the postulates (©p1)—(S6) (resp.,
(©41)~(©46))- O



Where —; (resp., —q) is a partial-meet b-contraction (d-contraction), i.e., —p =
—‘g (resp., —q = —fi) for some selector &, the corresponding weak B-contraction
egw (D-contraction efiw) is referred to as a weak partial-meet B-contraction
(D-contraction) generated by &.

When applied to incoherent belief states, weak B- and D-contractions may
give incoherent results. Therefore these kinds of contractions are useful as long
as coherent belief states are considered. Now we define stronger versions of the
above mappings which will always produce coherent pairs of sets of formulae.
Partial-meet B- and D-contractions generated by a p-selector 7 are mappings

7,67 : (p(FOR))? x FOR — (p(FOR))?, respectively, defined as follows:

X, V)eja = (a7 7((X,Y) 1} a),( 73’ 7((X,Y) 1} a)) (33)
X, V)oqga = ((a77((X,Y) 15 a),( ' 7((X,Y) 15 a)) (34)

Thus in the case of partial-meet B-contraction, 7 selects some maximal coherent
(X1,Y1) C (X,Y) such that @ € Cn(X1). In the next step, we take the families
Z; (1 = 1,2) of the i-th elements of the chosen pairs, respectively. That is,
Z; = np7((X,Y) L} a). Finally, we take () Z1,() 22) as the result of B-
contracting (X,Y) by a, viz., (X,Y) ©] a. In the case of D-contraction we
proceed similarly.

Partial-meet and weak partial-meet B- and D-contractions are closely related
for coherent pairs of sets of formulae.

Theorem 7.2 Leti be b ord in the case of B- and D-contractions, respectively.
(1) For every weak partial-meet B-contraction egw (resp., D-contraction egw),
there is a partial-meet B-contraction ©] (D-contraction ©7) such that

T —_ ¢
Silconx FOR = S{|Cohx FOR

and (2) for every partial-meet B-contraction 8] (resp., D-contraction ©7), there
is a weak partial-meet B-contraction egw (D-contraction efiw ) such that the
above equation holds. i
To prove the above theorem we apply Proposition 4.4.

Theorem 7.3 Any partial-meet B-contraction (resp., D-contraction) is a B-
contraction (D-contraction), i.e., it satisfies the postulates (©p1)—(©6) (resp.,
(©41)~(©46) ) o

Yet stronger forms of B- and D-contractions obtain if we replace "L} o’ and
1P o’ by ’|| ma’ and ’|| o’ in (33) and (34), respectively. Strong partial-meet B-
a.nd D-contractions generated by 7 are mappings ©7_, 67, : (p(FOR))*x FOR
(p(FOR))?, respectively, defined as follows:

(X,Y) e, o (7 (X,Y) || =a), (72 7((X,Y) [| ~a))  (35)
(X,Y) 6], a (=7 (X, V) [ @), ()72 (X, Y) || @) (36)



In the case of strong partial-meet B-contraction (resp., D-contraction), 7 se-
lects some maximal (X;,Y;) C (X,Y) such that (X; U {-a},Y1) € Coh (resp.,
(X1,Y1 U{—a}) € Coh). Next we proceed as in the case of partial-meet B- and
D-contractions, respectively.

Theorem 7.4 Any strong partial-meet B-contraction (resp., D-contraction) is
a B-contraction (D-contraction), i.e., it satisfies the postulates (©p1)—(©p6)
(resp., (©41)~(46)). O

Let (X,Y) be a belief state and « any formula. Supplementary postulates
for B- and D-contractions, respectively, may be formulated as follows:

(X,Y)©pa) N ((X,Y) 63 B) C (X,Y) &3 (A B)
X, Y)op (aApB) CE(X,Y) Op a whenever a € m1((X,Y) © (a A B))
(X,Y)©aa) N ((X,Y) 04 B8) C(X,Y) &4 (aVp)
X,Y)64(aVP) C(X,Y)S4a whenever a € ma((X,Y) ©4 (aV B))

(&7) (
(©s8) (
(647) (
(648) (
7.3 B- and D-revisions

Given a belief state (X,Y") and a formula «, we again consider the case of incor-
poration of « into the belief (disbelief) set X (resp., V) if we believe (disbelieve)
a. In this case however, we expect not only the new belief state to be coherent
but also a to be a member of the obtained belief (disbelief) set if possible (the
priority-to-novelty principle). Such incorporations can be formalised as B- and
D-revisions. B- and D-revisions are mappings ®j, ®q : (p(FOR))? x FOR
(p(FOR))?, respectively, such that for any sets of formulae X, Y and formulae

a, (3, the following postulates are satisfied:
(®p1) (X,Y) ®p a is a belief state.

(®p2) a e m((X,Y) ®pa)

(®3) (X,Y)®paC(X,)Y) @

(®p4) If (X U{a},Y) € Coh, then (X,Y)@®,a C (X,Y) ®p a.
(®65) If a < B € Cn(D), then (X,Y) ®@pa=(X,Y) ®; 8.
(2p6) (X,Y) ®pa & Cohiff a € Cn' () iff 11 ((X,Y) ® o) = FOR
(®41) (
(®42)
(®a3)
(®a4)

®q41) (X,Y) ®4 a is a belief state.
®42) a € m((X,Y) ®4a)
®43) (X, Y)®q4a L (X,)Y) P4

®q44) If (X, Y U{a}) € Coh, then (X,Y)®saC (X,Y) Q4 a.



(®45) If a v B € Cn(d), then (X,Y)®sa=(X,Y)®q 8.
(®46) (X,Y) ®@qa & Cohiff a € Cn(f) iff m2((X,Y) ®40a) = FOR

The result of B-revising (resp., D-revising) (X,Y) by « is written as (X,Y) @,
(resp., (X,Y) ®a ).

Counterparts of partial-meet b- and d-revisions can be obtained by means
of a p-selector and the mapping || given by (19). Partial—meet B- and D-
revisions generated by a p-selector 7 are mappings ®7, ®7 : (p(FOR))?>x FOR —
(p(FOR))?, respectively, defined as follows:

(X, Y)®] a=

(Cn( ﬂﬂ'l (X,Y) || @) U{a}), ﬂwQ (X,Y) || @) (37)
(X,Y)®za=
(7 7(X,Y) | =a), C' ()73 (X, V) [ ~a) U {a}))  (39)

Thus in the case of partial-meet B-revision, a p-selector 7 selects some maximal
(X1,Y1) C (X,Y) such that (X3 U {a},Y1) € Coh. In the next step, we take
the families Z; (i = 1,2) of the i-th elements of the chosen pairs, i.e., Z; =
77 7((X,Y) || @). Finally, we take (Cn([) 21 U {a}),(] Z2) as the result of B-
revising (X,Y) by a, viz., (X,Y)®}] a. In the case of partial-meet D-revision we
proceed similarly. Observe that (X,Y) ®] o (resp., (X,Y) ®7 ) is coherent if «
is not a countertautology (tautology). Moreover, (X,Y) ®; a and (X,Y) ®7 a
are belief states if (X,Y) is a belief state.

Two limiting cases of partial-meet B- and D-revisions are distinguished. ®i?
and ®fid are referred to as the full-meet B- and D-revisions, respectively. If T
always selects exactly one pair of sets, ®] and ®] are called mazi-choice B- and
D-revisions, respectively.

Proposition 7.5 Any partial-meet B-revision (D-revision) is a B-revision (D-
revision), i.e., it satisfies the postulates (®p1)—(Rp6) (resp., (R41)—(®46)). O

Like in the AGM theory, we can formulate additional postulates to be satis-
fied by some B- and D-revisions. Let X, Y be any sets of formulae and a, 3 be

formulae.
(®7) (X,Y) @ (@A B) C((X,Y) ®pa) @y B
(28) If (X,Y) ®p ) Dy B € Coh, then (X,Y)®pa) ®p BE (X,Y) ® (A B).
(®47) (X,Y) ®4(aVP) E((X,Y)®aa)®ap
(®48) If (X,Y)®q40a) ®q 8 € Coh, then (X,Y)®40a) ®afC (X,Y)®q(aVA).

Since disjoining operations do not comply with the priority-to-novelty princi-
ple in general, B- and D-revisions cannot be defined as compositions of disjoining



operations and b- and d-revisions, respectively. To see this, let ® be a disjoining
operation, x; a b-revision, x4 a d-revision, and Oy, Oq : (p(FOR))? x FOR
(p(FOR))? be mappings defined as follows:

(X, Y)Ora=060X #a,Y) and (X,Y) Qaa=(X,Y x4 a) (39)

As shown below, mappings Op and g4 do not satisfy the postulates (®;2) and
(®42), respectively.

Example 7.6 Let X = Cn(0), Y = Cn'({p V ¢}), and a = p. In this case
Xxpp=X+pp=Cn({p}). We have that XNY =0 andpVqge (X xp)NY.
After applying a disjoining operation ©, pVq & m © (X % p,Y) or pVq ¢
m2 © (X *p p,Y). Suppose that the first case holds. Thenp & m © (X # p,Y),
either. That is, p & m (X, Y)Qsp) which means that the postulate (®32) is not
satisfied by Qp. For QOq consider X = Cn({pAgq}), Y = Cn'(0), and o = p.

However, partial-meet B-revisions (resp., D-revisions) can be defined as compo-
sitions of strong partial-meet B-contractions (D-contractions) and B-expansions
(D-expansions).

Proposition 7.7 For any p-selector 7, sets of formulae X, Y, a formula «,
and i € {b,d}, we have that:

(X,Y) @] a = ((X,Y) 6f; ma) @; «

8 Summary

In our approach not only beliefs but also disbeliefs are explicitly taken into ac-
count. Indeed, belief states are represented by pairs (X,Y") of sets of formulae
of PC, where X is a belief set and Y is a disbelief set. The central problem to us
was to identify and formally describe major types of change of such belief states.
Thus, we have defined several mappings (viz., B- and D-expansions, incorpora-
tions, revisions, and contractions) corresponding to the considered changes. The
minimal requirement to be fulfilled by these mappings was the postulate that
the result of change of a belief state should be a coherent belief state whenever
possible. On the other hand, the problem of minimality of changes, being of a
great importance in general, was not of the main interest from the perspective of
the present paper. It was not our intention to discuss the question of relevance
of the AGM theory for practical applications, either. We hope to be able to
discuss these and other questions related to the problem of (dis)belief change in
future work.
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