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0. Introduction

This paper proposes a new approach for the modelization of the dynamics of epistemic states

using partial logic. It has three parts. In the first one, we present in a nutshell the classical

Alchourrón-Gärdenfors-Makinson (AGM) dynamics of epistemic states. We put forward a

very intuitive property that any epistemic state should possess after a contraction on B (to not

contain A ⊃ B if it does not contain ¬A) and show that the AGM approach does not satisfy

this property but for trivial cases. We suggest that this problem is related to the use of

classical propositional logic.

In the second part, we briefly present a partial semantics using three truth values: the

true, the false and the undefined. Two very general constraints are introduced, that of

monotonicity of truth functions and that of maximality. A complete system is provided, and it

is shown by a "representation" theorem that it is the only one that satisfies the two

constraints.

In the third and last part, we show that using these ∨-saturated sets as epistemic states

(with an appropriate definition of expansion and contraction), we can define a dynamics of

epistemic states that satisfies all except two of the AGM postulates and that also satisfies the

property stated above. The bulk of the proofs are given in the addendum.

1. One problem with AGM

According to AGM, an epistemic state for a propositional language L, is a set K of

propositions closed under the relation of logical consequence, i.e., A ∈K iff K  A where  
is at least as strong as the relation of logical consequence in classical propositional logic. A



proposition A ∈L is said to be accepted (believed) iff A ∈K, rejected iff ¬A ∈K, and

undetermined iff A ∉K and ¬A ∉K.

1.1 EXPANSION

The expansion of an epistemic state K by A is the logical closure of the set obtained by

adding A to K. Formally K+
A  = Cn(K ∪ {A}).

Expansion functions satisfy the following postulates:

(K+1) K+
A  is an epistemic state

(K+2) A ∈ K+
A

(K+3) K ⊆ K+
A

(K+4) If A �∈K, then K = K+
A

(K+5) If K ⊆ H, then K+
A  ⊆ H+

A

(K+6) K+
A  is the smallest set satisfying (K+1) - (K+5).

We have the following representation theorem [Gär 88, p.51].

 Proposition 1: An expansion function satisfies (K+1) - (K+6) iff K+
A  = Cn(K ∪ {A}).

1.2 CONTRACTION

The contraction of an epistemic state K consists in forming a new epistemic state K–
A  which

does not contain A but is minimally different from K. The postulates are:

(K–1) K-
A  is an epistemic state

(K–2) K-
A  ⊆ K

(K–3) If A ∉K, then K-
A  = K

(K–4) If  A, then A ∉ K-
A

(K–5) If A ∈K, then K ⊆ (K-
A )+A

(K–6) If   (A ≡ B), then K-
A  = K-

B .

In order to provide a representation theorem, Gärdenfors introduces the notion of a A-

maximal subset.

Definition: K' is a A-maximal subset of K, iff
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(i) K' ⊆ K

(ii) A ∉Cn(K')

(iii) For any K" such that K ⊂ K" ⊆ Κ, A ∈Cn(K") (or, equivalently, for any B ∈ K, if B ∉ K'

then (B ⊃ A) ∈K').

Gärdenfors then shows that any A-maximal set satisfying (K–1)-(K–6), also satisfies

(K–F) If B ∈K and B ∉ K-
A , then (B ⊃ A) ∈ K-

A .

The converse is the representation theorem [Gär 88, p.77]:

Proposition 2: Any contraction function satisfying (K–1)-(K–6) and (K–F) is a function that

selects a maximal subset.

Taking maximal subsets as epistemic states after contraction raises a problem. One can

easily show the following.

Proposition 3: For any epistemic state K, any A-maximal subset K' and any B, if ∈ K, (B ⊃
A) ∈ K' or (¬B ⊃ A) ∈ K'.

If this property seems quite natural when ¬B ∈ K' or B ∈ K', it is barely acceptable

when ¬B ∉ K' and B ∉ K'. Suppose, for example, that an agent believes that it is raining in

Montréal (A) and has no idea if it is raining in New York (B). Suppose further that this agent

ceases to believe A. According to AGM, this agent still believes either (B ⊃ A) or (¬B ⊃ A).

Both are unacceptable because should this agent come to believe that B or that ¬B, he will

again believe that A. AGM were aware of that difficulty [Alc 82].

A first attempt to solve it was to take as epistemic states the intersection of all the A-

maximal sets (full meet contraction functions). But this solution is even worse because we

can show that  this intersection contains all and only the consequences of ¬A which belong to

K.

Proposition 4: For any K and any A ∈ K, if we define K-
A = ∩

i
 Xi  where the Xi  are the A-

maximal subsets, then B ∈K-
A  iff  Β ∈ K ∩ Cn(¬A).

There is in fact a very large variety of A-maximal subsets of K as it is shown by the

following lemmas.

3



Lemma 1: Let K be an epistemic state, A ∈ K and Y ⊆ K be such that Y A. There is then a

A-maximal subset X of K such that Y ⊆ X.

Lemma 2: If A ∈ K ,  A and   (B  ⊃ A) and  (¬B  ⊃ A), then there is a A-maximal

X ⊆ K  such that (¬B  ⊃ A) ∈ X and  a A-maximal Y ⊆ K such that (B  ⊃ A) ∈ Y.

The solution retained by Gärdenfors is that of partial meet contraction functions, i.e., to
define K-

A = ∩
i

 Xi where the Xi  are some but not all of the maximal subsets. We have the

following representation theorem [Gär 88, p.80].

Proposition 5: A contraction function is a partial meet contraction function iff it satisfies (K–

1)-(K–6).

Independently of the problem concerning the selection of the maximal states or the

question of the epistemic entrenchment of the sentences in K, this approach is barely

acceptable. Let's take a K such that A ∈ K, B ∉ K or ¬B ∉ K. We have seen that each A-

maximal subset will contain (¬B ⊃ A) or (B ⊃ A), but there is no reason to have (¬B ⊃ A)

∈ K-
A  or (B ⊃ A) ∈ K-

A  when there is no logical, semantical or causal link between A and B.

More precisely, the following principle seems to be quite natural.

Principle of cautiousness: If an agent believes (B ⊃ A) on the sole basis that he believes A

(i.e., he does not believe ¬B), then if he ceases to believe A, he ceases to believe (B ⊃ A).

Or, to put it in disjunctive form: If an agent believes (B ∨ A) on the sole basis that he

believes A (i.e., he does not believe B), then if he ceases to believe A, he ceases to believe

(B ∨ A).

In order to get rid of all these undesirable implications where the antecedent is

undetermined, we have to find for any A-maximal Xi containing (B ⊃ A) a A-maximal Xj

containing (¬B ⊃ A) and then both implications disappear when we take Xi ∩ Xj . But it is

hard to see how this can be done but on an ad hoc basis, because, when A is true, classical

logic cannot make a difference for (B ⊃ A) between the case where B is false and that where

B is undetermined.

This can be compared with the case where ¬B ∈ K. In that case we also have that

(B ⊃ A) ∈ K  and  (¬B ⊃ A) ∈ K, but then, in order to preserve consistency, the agent must
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chose between dropping (¬B ⊃ A) on one side or ¬B and (B ⊃ A) on the other side, and this

can be done in the light of extra logical reasons.  For example, if the agent strongly believes

in the existence of a counterfactual link between B and A, he will choose to drop (¬B ⊃ A); if

he believes that there is no link between B and A, he will choose to drop ¬B and (B ⊃ A).

But when neither B nor ¬B are accepted and there is no link between A and B, it seems

natural, even in minimal changes, to drop both (B ⊃ A) and (¬B ⊃ A) even if there is no

consistency constraint to do so. The notion of partial meet contraction function does not seem

to capture this simple idea because there is absolutely no room in classical logic for

undetermination: a disjunction may be true even if both of the disjuncts are undetermined.

A trivial solution would be to force epistemic states to be ∨-saturated: if an agent has

no opinion on A and no opinion on B, then he has no opinion on (B ∨ A). But then, once

more, because the logic is classical, every epistemic state contains (¬A ∨ A)  and so would

be a maximally consistent set, i.e., each agent  will be omniscient. There is a way out: to drop

classical logic and go partial.

2. An outline of a partial propositional logic

2.1 PARTIAL INTERPRETATIONS

Let L be the language of classical propositional logic, i.e.,

(i) For any n ∈ ω, pn ∈ L

(ii) If A, B ∈ L, ¬A ∈ L  and (A ∧ B) ∈ L

(iii) Nothing else belongs to L.

The other connectives are introduced as usual. We define a partial interpretation for L.

I : L → {0, 1, ⊥} (= 3)

     I(pn) is any element of 3

    I(¬A ) = 1 if I(A ) = 0

    I(¬A ) = 0 if I(A ) = 1

    I(¬A ) = ⊥ if I(A ) = ⊥

    I(A ∧ B) = 1 if I(A) =1 and I(B) = 1
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    I(A ∧ B) = 0 if I(A) = 0 or I(B) = 0

    I(A ∧ B) = ⊥ otherwise.

The values of other connectives are also those of Kleene's strong logic.

The set  {0, 1, ⊥} is naturally partially ordered in the following way.

0  0, 1  1, ⊥  ⊥, ⊥  0, ⊥  1.

According to this order, all the definable connectives are monotonic. From the point of

view of epistemic logic, this property of monotonicity is very interesting because it

authorizes to interprete ⊥ as meaning "undefined". For example, according to the truth table

given above, "I(A ∧ B) = 1 if I(A) = 1 and I(B) = 1", can be interpreted as saying that it is

necessary that A and B  be true to conclude that (A ∧ B) is true. In the same way, "I(A ∧ B) =

0 if I(A) = 0 or I(B) = 0", can be interpreted as saying that it is a sufficient reason that A be

false or B be false to conclude that (A ∧ B) is false. Finally, "I(A ∧ B) = ⊥ otherwise", can be

interpreted as saying that we cannot conclude in the other cases.

It can be shown that all the truth functions definable using the set {¬, ∧} are

monotonic.1

Functions definable using the set {¬, ∧} are not only monotonic, but are also maximal

in the following sense.Let f, g ∈ 3(3n) (f,gare not necessarily monotonic). Let us define f 

g iff for any <x0 ,...,xn-1> ∈ 3n, f(<x0 ,...,xn-1>)   g(<x0 ,...,xn-1>. Now, let f be monotonic.

Then,f is maximal iff for any g ∈ 3(3n), g ≠ f, if  f   g  then g is not monotonic.

We will need the following definitions and propositions.

Definition: Let I, I' be two partial interpretations. We will say that I   I' iff, for any

propositional symbol pn, I(pn)   I'(pn).

Proposition 6: I   I' iff for any A ∈ L, I(A)   I'(A).

Definition: A partial interpretation I is total iff for any pn, I(pn) ≠ ⊥.

Proposition 7: I is total iff for any A, I(A) ≠ ⊥.

1In fact, if V and w (the name of  1 and of ⊥ respectively) are added to L, {¬, ∧} is functionally
complete for monotonic functions. See [Thi 92].
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Definition: A formula A is t-valid iff for any I, I(A) = 1.

Definition: A formula A is f-valid iff for any I, I(A) ≠ 0.

Proposition 8: There is no t-valid formula and the set of f-valid formulas is the set of

classical tautologies.

Definition: Let Γ ⊆ L and A ∈ L , A is a t-valid consequence of Γ iff for any I, if I(X) = 1 for

any X ∈ Γ, then I(A) = 1.

2.2 A SYSTEM FOR PARTIAL PROPOSITIONAL LOGIC

 The following system is a variation of [Thi 92].

Definition: A derivation of A from Γ is a finite sequence of formulas such that the last one is

A, each member of the sequence is either a member of Γ or is obtained by the application of

one the following rules on previous formulas of the sequence.

R1. A ∧ ¬A  B

R2. ¬¬A   A

R3. A   ¬¬A

R4. A ∧ B  A

R5. A ∧ B   B

R6. A  ¬(¬A ∧ ¬B )

R7. A   ¬(¬B ∧ ¬A )

R8. ¬(¬¬B ∧ ¬¬A )   ¬(A ∧ B )

R9. ¬(A ∧ B )   ¬(¬¬B ∧ ¬¬A )

R10. If Γ    A and Γ    B, then  Γ    A ∧ B
R11. If Γ, A    C  and Γ, B    C, then  Γ, ¬(¬A ∧ ¬B )   C

Proposition 9: The preceding set of rules is sound and strongly complete for partial

interpretations (according to t-validity).

The proof of soundness is straightforward. The proof of completeness goes along the

following lines.
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Proposition 10: Any consistent set ∆ of formulas such that for some A, ∆  A, can be

embedded into a set Γ such that

(i) Γ  A
(ii) Γ is deductively closed for  
(iii) Γ is ∨-saturated (i.e., if ¬(¬A ∧ ¬B ) ∈ Γ, then A ∈ Γ or B ∈ Γ).

Because logic is partial, it does not follow from (i), (ii) and (iii) that Γ is maximally

consistent. For example, if A ∉ Γ and ¬A ∉ Γ, then ¬(¬A ∧ A ) ∉ Γ.

Proposition 11: For any Γ satisfying the properties above, there is an interpretation IΓ such

that, for any A∈L:

(i) IΓ(A) = 1 if A ∈ Γ
(ii) IΓ(A) = 0 if ¬A ∈ Γ
(iii) IΓ(A) = ⊥ if A ∉ Γ and B ∉ Γ.

Strong completeness follows as usual. This completeness proof gives rise to the

following "representation" theorem. Suppose you have two systems of partial logic S and S',

both of them satisfying the following property:

Every non empty closed saturated subset of L defines values of ¬, ∧ which

are monotonic and maximal

then S and S' are equivalent logic.

We will now use these ∨-saturated sets as epistemic states.

3. Partial interpretations as epistemic states

Definition: An epistemic state is a partial interpretation or, equivalently, because of

completeness, a consistent ∨-saturated set closed under  .

3.1 EXPANSION

Definition: Let Γ be an epistemic state. An expansion Γ+
A is a a deductively closed ∨-

saturated set of Γ ∪ {A}. (If Γ ∪ {A} is inconsistent, Γ+
A is L).
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Clearly, Γ+
A  is not unique. We postulate the existence of a selection function that selects

a particular enumeration of the elements of L. Using this particular enumeration in defining

the superset of Γ ∪ {A}, à la Lindenbaum, we will have unicity.

One can easily show that the following postulates are satisfied.

Proposition 12:

(I+1) Γ+
A  is an epistemic state

(I+2) A ∈ Γ+
A

(I+3) Γ ⊆ Γ+
A

(I+4) If A ∈Γ, then Γ = Γ+
A

(I+5) Γ+
A  is the smallest set satisfying (I+1) - (I+4).

Only one of the AGM postulates has no equivalent: (K+5) If K ⊆ H, then K+
A  ⊆ H+

A.

This is a consequence of ∨-saturation. For example,

∅ ⊆ ∅+
A  and ∅ ⊆ ∅ +¬A

but

∅ +
A ∨ ¬A  ⊆/  ∅+

A +
A ∨ ¬A   or  ∅ +

A ∨ ¬A  ⊆/  ∅ +¬A +
A ∨ ¬A .

3.2 CONTRACTION

Definition: Let  Γ be a ∨-saturated set. Any ∨-saturated subset X ⊆ Γ such that X   A is

said to be a A-∨-saturated subset of Γ.

Definition: X ⊆ Γ is a maximal A-∨-saturated subset of Γ iff for any B ∈ Γ – X, either X ∪
{B}   A or X+

B ⊆/  Γ.

Proposition 13: For any Γ and any A, there is a maximal A-∨-saturated subset of Γ.

In general, there are many maximal A-∨-saturated subsets of Γ. These can be defined

in the  same way we used in section 2. Starting with ∅ (which is a A-∨-saturated subset of

Γ) and any enumeration (Ai) = A0, A1,..., An,... of the members of Γ, we defined the

sequence Γ0, ..., Γn,... of A-∨-saturated subsets of Γ in the following way.
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Γ0 = ∅.

Induction step. If there is a A-∨-saturated subset Xn of Γ such that (Γn – 1 ∪ {An – 1}) ⊆ Xn,
then Γn = Xn , otherwise Γn = Γn – 1. One can easily show that ∪

i
 Γi is a maximal A-∨-

saturated subset of Γ.

If, in the induction step, the A-∨-saturated subset of Γ is defined using Lindenbaum's

lemma with the members of (Ai)  in the order given by the selection function and A is the

test-formula for consistency, then we obtain a unique maximal A-∨-saturated subset of Γ.
We note it Γ -

A. The following postulates are satisfied:

Proposition 14:

(I–1) Γ -
A  is an epistemic state

(I–2) Γ -
A  ⊆ Γ

(I–3) If A ∉Γ, then Γ -
A  = Γ

(I–4) A ∉ Γ -
A

(I–5) If A   B and B   A, then Γ -
A  = Γ -

B .

Again, there is one AGM postulate that is not satisfied

(K–5) If A ∈K, then K ⊆ (K-
A )+A

and again it is a consequence of ∨-saturation.

Proposition 15: Any contraction function satisfies the Principle of cautiousness, i.e., if B ∉
Γ, then (B ∨ A) ∉ Γ -

A.

Three final remarks. Firstly, if we define a revision function using Levi's identity, i.e.,

Γ*
A = Γ -¬A

+
A, the following postulates are satisfied.

Proposition 16:

(I*1) Γ*
A is an epistemic state

(I*2) A ∈Γ*
A

(I*3) Γ*
A  ⊆ Γ+

A

(I*4) If Γ ∪ {A} is consistent,  Γ+
A   ⊆  Γ*

A

(I*5)  If Γ is consistent,  then Γ*
A is inconsistent iff {A} is inconsistent.
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(I*6) If A   B and B   A, then Γ*
A  = Γ*

B .

Secondly, it may seem counterintuitive to suppose that any rational agent who has an opinion

on (A ⊃A) or equivalently on (¬A ∨A), must also have one on A and on ¬A. But there is no

damage because the only differences between the consequences of Γ and the consequences

of Γ ∪ {(A ⊃A)} are classical tautological consequences of Γ. It is however possible to

modelize the fact that an agent gives some credit to A and some to ¬A. Let's suppose that

(¬A ∨ A) ∉ Γ. If neither A nor ¬A  are tautologies, we have ∨-saturated supersets of both Γ
∪ {A}and Γ ∪ {¬A}. Then, the hesitation of the agent can be represented by a probability

distribution on saturated sets.

Thirdly, and this is an important point, this technique for providing partial interpretations can

be straightforwardly extended to first-order predicate logic and to finite type theory for which

a corresponding representation theorem holds.

Addendum

Proposition 3: For any epistemic state K, any A-maximal subset K' and any B, if A ∈K,

(B ⊃ A) ∈ K' or (¬B ⊃ A) ∈ K'.

Proof

Let K' be a A-maximal subset of K and let B be any sentence. There are two cases.

(1) B ∈K. Because  (A ⊃ (B ⊃ A)) and A ∈K, by modus ponens, (B ⊃ A) ∈K.

Because K' is A-maximal, if (B ⊃ A) ∉K', then ((B ⊃ A) ⊃ A) ∈K'. But ((B ⊃ A) ⊃ A) is

tautologicaly equivalent to (¬B ⊃ A), and thus (¬B ⊃ A) ∈K'.

(2)  B ∉K. In that case (B ⊃ A) ∈K and (¬B ⊃ A) ∈K because  (A ⊃ (B ⊃ A)) and

 (A ⊃ (¬B ⊃ A)). The case is similar to (1).

Lemma 1: Let K be an epistemic state, A ∈ K and Y ⊆ K be such that Y A. There is then a

A-maximal subset X of K such that Y ⊆ X.

Proof

Let A0,..., An,... be an enumeration of the elements of K. Let us now consider the following

sequence of sets.

X0 = Y

If Xi  ∪ {Ai } A, then Xi + 1 = Xi  ∪ {Ai }
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If Xi  ∪ {Ai }  A, then Xi + 1 = Xi  ∪ {Ai  ⊃ A}.

We show that X =  ∪
i

 Xi  is A-maximal subset of K such that Y ⊆ X.

Claim: For any i, Xi   A.

X0  = Y   A (hypothesis).

Let us suppose that Xi    A.

If Xi  ∪ {Ai } A, then Xi + 1 =Xi  ∪ {Ai } A.

If Xi  ∪ {Ai }  A, then Xi + 1 =Xi  ∪ {Ai  ⊃ A}.

Let us suppose that Xi  ∪ {Ai  ⊃ A}  A. By the deduction theorem,

Xi    ((Ai  ⊃ A) ⊃ A). But ((Ai  ⊃ A) ⊃ A) is tautologically equivalent to (¬Ai  ⊃ A) and

thus Xi    (¬Ai  ⊃ A). By hypothesis, Xi  ∪ {Ai }  A and so by the deduction theorem,

Xi    (Ai  ⊃ A). Finally, because  ((Ai  ⊃ A)  ⊃ ((¬Ai  ⊃ A) ⊃ A))), Xi    A, which

contradicts the hypothesis.

Lemma 2: If A ∈ K ,  A and   (B  ⊃ A) and  (¬B  ⊃ A), then there is a A-maximal

X ⊆ K  such that (¬B  ⊃ A) ∈ X and  a A-maximal Y ⊆ K such that (B  ⊃ A) ∈ Y.

Proof

A ∈ K implies that (¬B  ⊃ A) ∈ K and (¬B  ⊃ A) ∈ K.

 It is not the case that {(¬B  ⊃ A)}  A because if so, we would have  ((¬B  ⊃ A) ⊃ A)

and thus  (B  ⊃ A). So, by lemma 1, there is a A-maximal X such that {(¬B  ⊃ A)} ⊆ X.

Similarly, it is not the case that {(B  ⊃ A)}  A because if so, we would have  ((B  ⊃ A)

⊃ A) and thus  (¬B  ⊃ A). So, by lemma 1, there is a A -maximal Y such that {(B  ⊃ A)}

⊆ Y.

Proposition 8: There is no t-valid formula and the set of f-valid formulas is the set of

classical tautologies.

Proof: One can easily check that if I(pn) = ⊥ for every n, then I(A) = ⊥ for every A.

Now, if A is a tautology, I(A) ≠ 0 because if I(A) = 0, there is an I ' such that I'(pn) =I(pn)

when I(pn) ≠ ⊥ and I'(pn) = 1 otherwise. Clearly, I' is total, I  I',I(A)  I(A) and finally, 0

 1.
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Conversely, if I(A) ≠ 0 for any I, I'(A) ≠ 0 for any I' total. Thus I'(A) = 1 and A is a classical

tautology.

Proposition 10: Any consistent set ∆ of formulas such that for some A, ∆  A, can be

embedded into a set Γ such that

(i) Γ  A
(ii) Γ is deductively closed for  
(iii) Γ is ∨-saturated (i.e., if ¬(¬A ∧ ¬B ) ∈ Γ, then A ∈ Γ or B ∈ Γ).

Proof

Let ∆ and A' be such that ∆  A, and let  A0,...,An,... be an enumeration of the elements of L

such that each formula of L occurs denumerably many times. We define the following

sequence of sets of formulas.

Γ0 = ∆
If Γ2n  An, then Γ2n + 1 = Γ2n + 2 = Γ2n

If Γ2n  An, then Γ2n + 1 = Γ2n  ∪ {An} and

(1) if An is not ¬(¬B ∧ ¬C), then

Γ2n + 2 = Γ2n + 1;

(2) if An is ¬(¬B ∧ ¬C) for some B and some C, then Γ2n + 2 = Γ2n + 1 ∪ {B} if Γ2n + 1

∪ {B}  A and otherwise Γ2n + 2 = Γ2n + 1 ∪ {C}.

Claim: Γ =  ∪
i

 Γi  has the properties (i)-(iii).

We show that, for any i, Γi   A.

Γ0 = ∆  A  (hypothesis).

If Γ2n  An, then Γ2n + 1 = Γ2n + 2 = Γ2n   A  (induction hypothesis).

If Γ2n  An, then Γ2n + 1 = Γ2n  ∪ {An}. But if  Γ2n  ∪ {An}  A and Γ2n  An, Γ2n  A
. Thus Γ2n + 1  A  (induction hypothesis).

(1) If An is not ¬(¬B ∧ ¬C), then Γ2n + 2 = Γ2n + 1  A .

(2) If An is ¬(¬B ∧ ¬C) for some B and some C, then Γ2n + 2 = Γ2n + 1 ∪ {B} if Γ2n + 1

∪ {B}  A and otherwise Γ2n + 2 = Γ2n + 1 ∪ {C}. Let us suppose that Γ2n + 1 ∪ {B} if
Γ2n + 1 ∪ {B}  A and  Γ2n + 2 = Γ2n + 1 ∪ {C}  A by R11. Thus we have

Γ2n + 1 ∪ {¬(¬B ∧ ¬C)}  A and thus Γ2n + 1   A.

So we have proved that, for any i, Γi   A.

By the usual argument, Γ =  ∪
i

 Γi   A, and (i) is proved.
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Let us suppose that Γ  B and B ∉ Γ. This implies that for some Γi,  Γi   B. Let 2n  > i

be the smallest number such that An = B. We have Γi ⊆ Γ2n  B and thus B ∈Γ2n + 1 ⊆ Γ
which contradicts the hypothesis. This proves (ii).

(iii) follows directly from the definition of Γ2n + 2.

Proposition 11: For any Γ satisfying the properties above, there is an interpretation IΓ such

that, for any A∈L:

(i) IΓ(A) = 1 if A ∈ Γ
(ii) IΓ(A) = 0 if ¬A ∈ Γ
(iii) IΓ(A) = ⊥ if A ∉ Γ and B ∉ Γ.

Proof

We drop the index Γ. For any n, let I(pn) = 1 if pn ∈ Γ, I(pn) = 0 if ¬pn ∈ Γ and I(pn) = ⊥
otherwise.

Let A be ¬B. By the general definition of an interpretation, if I(A) = 1, then I(B) = 0. By

induction hypothesis, ¬B ∈ Γ.

If I(A) = 0, then I(B) = 1. By induction hypothesis, B ∈ Γ, and by R3, ¬¬B ∈ Γ.

Let A be (B ∧ C). If I(B ∧ C) = 1, by the general definition of an interpretation, I(B) = I(C) =

1. By induction hypothesis, B ∈ Γ and C ∈ Γ, by R10,  (B ∧ C) ∈ Γ.

Conversely, if (B ∧ C) ∈ Γ, by R4 and R5, B ∈ Γ and C ∈ Γ, by inducton hypothesis, I(B)

= I(C) = 1 and I(B ∧ C) = 1.

If I(B ∧ C) = 0, by the general definition of an interpretation, I(B) = 0 or I(C) = 0. Thus ¬B

∈ Γ or ¬C ∈ Γ and by R6 or R7, ¬(¬¬B ∧ ¬¬C) ∈ Γ. By R8,  ¬(B ∧ C) ∈ Γ.

Conversely, if ¬(B ∧ C) ∈ Γ, then by R9, ¬(¬¬B ∧ ¬¬C) ∈ Γ. By ∨-saturation, ¬¬B ∈
Γ or ¬¬C ∈ Γ. By R2, B ∈ Γ or C ∈ Γ.

Proposition 15: Any contraction function satisfies the Principle of cautiousness, i.e., if B ∉
Γ, then (B ∨ A) ∉ Γ -

A.

Proof
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If B ∉ Γ, then B ∉ Γ -
A. But A ∉ Γ -

A. Thus,  by ∨-saturation, (B ∨ A) ∉ Γ -
A.
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