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0. Introduction

This paper proposes a new approach for the modelization of the dynamics of epistemic states
using partial logic. It has three parts. In the first one, we present in a nutshell the classical
Alchourron-Gardenfors-Makinson (AGM) dynamics of epistemic states. We put forward a
very intuitive property that any epistemic state should possess after a contraction on B (to not
contain A 1 B if it doesnot contain = A) and show that the AGM approach does not satisfy
this property but for trivial cases. We suggest that this problem is related to the use of
classica propositional logic.

In the second part, we briefly present a partial semantics using three truth values: the
true, the false and the undefined. Two very general constraints are introduced, that of
monotonicity of truth functions and that of maximality. A complete system is provided, and it
is shown by a "representation” theorem that it is the only one that satisfies the two
constraints.

In the third and last part, we show that using these [J-saturated sets as epistemic states
(with an appropriate definition of expansion and contraction), we can define a dynamics of
epistemic states that satisfies all except two of the AGM postulates and that also satisfies the
property stated above. The bulk of the proofs are given in the addendum.

1. One problem with AGM
According to AGM, an epistemic state for a propositional language L, is a set K of

propositions closed under the relation of logical consequence, i.e., ACOK iff K — Awhere [—
isat least as strong as the relation of logical consequence in classical propositional logic. A



proposition A [L is said to be accepted (believed) iff A UK, rejected iff = A 0K, and
undetermined iff A K and - A K.

1.1 EXPANSION

The expansion of an epistemic state K by A is the logical closure of the set obtained by
adding Ato K. Formally KX = Cn(K O {A}).
Expansion functions satisfy the following postul ates:

(K+1) K& isan epistemic state

(K+2) AOKZ

(K+3) KO K%

(K+4) If A 0K, thenK = K&

(K+5) If K O H, thenKA O HA

(K+6) K isthe smallest set satisfying (K+1) - (K+5).

We have the following representation theorem [Gér 88, p.51].
Proposition 1: An expansion function satisfies (K+1) - (K+6) iff KA = Cn(K O {A}).
1.2 CONTRACTION

The contraction of an epistemic state K consists in forming a new epistemic state K which
does not contain A but is minimally different from K. The postul ates are:

(K-1) Kp isan epistemic state
(K2)Ka OK

(K-3) If ACK, thenKz =K

(K-4) If < A thenATOK}j

(K5) If ATK, thenK O (K )A
(K6) If = (A=B), thenKp =Kg.

In order to provide a representation theorem, Gérdenfors introduces the notion of a A-
maximal subset.

Definition: K' isaA-maximal subset of K, iff



(HhK'OK

(i) ACCNn(K")

(i) For any K" such that K OO K" 0 K, A OCn(K") (or, equivalently, for any B [ K, if B OK'
then (B O A) UK.

Géardenfors then shows that any A-maximal set satisfying (K-1)-(K_6), also satisfies

(KF)IfBOKandB OKx, then (B 0 A) OKj; .
The converse is the representation theorem [Gér 88, p.77]:

Proposition 2: Any contraction function satisfying (K-1)-(K-6) and (K_F) is a function that
selects amaximal subset.

Taking maximal subsets as epistemic states after contraction raises a problem. One can
easily show the following.

Proposition 3: For any epistemic state K, any A-maximal subset K' and any B, if O K, (B O
A OK'or (=B 0A) 0K

If this property seems quite natural when =B O K' or B [J K', it is barely acceptable
when - B [0 K'and B [J K'. Suppose, for example, that an agent believes that it israining in
Montréal (A) and hasnoideaiif itisraining in New Y ork (B). Suppose further that this agent
ceases to believe A. According to AGM, this agent still believes either (B 0 A) or (=B O A).
Both are unacceptable because should this agent come to believe that B or that = B, he will
again believethat A. AGM were aware of that difficulty [Alc 82].

A first attempt to solve it was to take as epistemic states the intersection of all the A-
maximal sets (full meet contraction functions). But this solution is even worse because we
can show that thisintersection containsall and only the consequences of - A which belongto
K.

Proposition 4: For any K and any A [J K, if we define Ka = n X where the X; are the A-
maximal subsets, then B K, iff B O K n Cn(=A).

There is in fact a very large variety of A-maximal subsets of K as it is shown by the
following lemmas.



Lemma 1: Let K be an epistemic state, A K and Y O K besuch that Y <~ A. Thereisthen a
A-maximal subset X of K suchthatY [0 X.

Lemma 2: IfAOK,  Aand /< (B OA) and <~ (-B O A), then thereis a A-maximal
XOK suchthat (-B OA) OXand aA-maxima Y [ Ksuchthat (8 O A) 0.

The solution retained by Gardenforsis that of partial meet contraction functions, i.e., to
defineKa = n X where the X; are some but not all of the maximal subsets. We have the

following representation theorem [Géar 88, p.80].

Proposition 5: A contraction function isapartial meet contraction function iff it satisfies (K-
1)-(K_6).

Independently of the problem concerning the selection of the maximal states or the
guestion of the epistemic entrenchment of the sentences in K, this approach is barely
acceptable. Let'stake aK such that A 0 K, B [0 K or =B 0 K. We have seen that each A-
maximal subset will contain (=B [0 A) or (B [ A), but there is no reason to have (=B [0 A)
OKa or (B OA) 0K when thereisno logical, semantical or causal link between A and B.
More precisely, the following principle seemsto be quite natural .

Principle of cautiousness: If an agent believes (B [ A) on the sole basis that he believes A
(i.e., he does not believe - B), then if he ceasesto believe A, he ceases to believe (B [ A).

Or, to put it in digunctive form: If an agent believes (B [ A) on the sole basis that he
believes A (i.e., he does not believe B), then if he ceases to believe A, he ceases to believe
(B OA).

In order to get rid of all these undesirable implications where the antecedent is
undetermined, we have to find for any A-maximal X; containing (B 0 A) a A-maximal X;
containing (- B O A) and then both implications disappear when we take Xj n Xj . But it is
hard to seehow this can be done but on an ad hoc basis, because, when A istrue, classical
logic cannot make adifference for (B [ A) between the case where B is false and that where
B is undetermined.

This can be compared with the case where =B [ K. In that case we also have that
(BOA) OK and (-B O A) 0K, but then, in order to preserve consistency, the agent must



chose between dropping (- B [0 A) on one side or - B and (B [ A) on the other side, and this
can be doneinthelight of extralogical reasons. For example, if the agent strongly believes
in the existence of a counterfactua link between B and A, he will chooseto drop (=B [0 A); if
he believesthat there is no link between B and A, he will choose to drop =B and (B [J A).
But when neither B nor - B are accepted and there is no link between A and B, it seems
natural, even in minimal changes, to drop both (B [0 A) and (-B [ A) even if there is no
consistency constraint to do so. The notion of partial meet contraction function does not seem
to capture this simple idea because there is absolutely no room in classical logic for
undetermination: adigunction may be true even if both of the diguncts are undetermined.

A trivial solution would be to force epistemic states to be [-saturated: if an agent has
no opinion on A and no opinion on B, then he has no opinion on (B [0 A). But then, once
more, because the logic is classical, every epistemic state contains (- A O A) and so would
be amaximally consistent st i.e., each agent will be omniscient. Thereisaway out: to drop
classical logic and go partial.

2. An outline of a partial propositional logic
2.1 PARTIAL INTERPRETATIONS
Let L be the language of classical propositional logic, i.e.,
(i) Foranyn O w, ph OL
(i) IfABOL,~AOL and(AOB) OL
(iii) Nothing else belongsto L.
The other connectives are introduced as usual. We define a partial interpretation for L.

lI:L - {0,1, 0} (=3

[(pn) isany element of 3

I(=A)=1ifI(A)=0

I(=A)=0ifI(A)=1

I(-A)=OifI(A) =0

(AOB) =1if I(A) =1and I(B) = 1



I(AOB)=0ifI(A)=0orI(B)=0
(A UB) = U otherwise.

The values of other connectives are a so those of Kleene's strong logic.
Theset {0, 1, [} isnaturaly partialy ordered in the following way.
0=0,1=10=0,0=00=1.

According to this order, al the definable connectives are monotonic. From the point of
view of epistemic logic, this property of monotonicity is very interesting because it
authorizes to interprete [ as meaning "undefined”. For example, according to the truth table
given above, "I(AOB) = 1if I(A) = 1 and I(B) = 1", can be interpreted as saying that it is
necessary that A and B betrue to conclude that (A [J B) istrue. In the same way, "I(ALB) =
Oif I(A)=0or I(B) = 0", can be interpreted as saying that it is a sufficient reason that A be
false or B befalse to conclude that (A [ B) isfalse. Finaly, "I1(A O B) = [ otherwise", can be
interpreted as saying that we cannot conclude in the other cases.

It can be shown that al the truth functions definable using the set {-, [0} are
monotonic.1

Functions definable using the set { -, [T} are not only monotonic, but are a'so maximal
in the following sense.Let f, g 0 3(3") (f,gare not necessarily monotonic). Let us define f —
g iff for any <xg,....xn-1> 0 3N, f(<Xg ,....Xn-1>) = g(<Xg,....Xn-1>. Now, let f be monotonic.
Thenfis maximal iff for any g 03(3"), g#f,if f— g thengis not monotonic.

We will need the following definitions and propositions.

Definition: Let I, I' be two partial interpretations. We will say that | = I' iff, for any
propositiona symbol pp, 1(pn) = 1'(Pn)-

Proposition 6: 1 = |"iff forany AL, I(A) = I'(A).
Definition: A partial interpretation | is total iff for any pp, [(pn) % .

Proposition 7: | istota iff for any A, I(A) # L.

Linfact, if V and % (the name of 1 and of [ respectively) are added to L, {~, [} is functionally
complete for monotonic functions. See [Thi 92].



Definition: A formula Aist-valid iff for any I, I(A) = 1.

Definition: A formula Aisf-vaidiff forany I, [(A) # 0.

Proposition 8: There is no t-valid formula and the set of f-valid formulas is the set of
classical tautologies.

Definition: LetI' O Land AL , Aisat-valid consequence of I iff for any I, if 1(X) = 1 for
any X T, thenl(A) = 1.

2.2 A SYSTEM FOR PARTIAL PROPOSITIONAL LOGIC

Thefollowing system isavariation of [Thi 92].

Definition: A derivation of Afrom I' isafinite sequence of formulas such that the last one is
A, each member of the sequenceis either amember of I or is obtained by the application of
one the following rules on previous formulas of the sequence.

RL.AO-A B

R2.--A A

R3.A [ ==A

R4.AOB A

R5.A0B — B

R6.Al~ = (~AO-B)

R7.A [ =(~-BO=A)

R8.—|(—|—IBD—I—IA) %—'(ADB)
R9.~(AOB) [~ ~(~=B0--A)

R10.1fI [~ Aandl |~ B,then I |~ AOB
RILIfI,A [~ Candl,B [~ C,then [,~(=AO=B) [~ C

Proposition 9: The preceding set of rules is sound and strongly complete for partial
interpretations (according to t-validity).

The proof of soundness is straightforward. The proof of completeness goes along the
following lines.



Proposition 10: Any consistent set A of formulas such that for some A, A < A, can be
embedded into aset I' such that

iHr = A

(i) I' isdeductively closed for [—

(@iii) T isO-saturated (i.e., if = (-AO-B)OT,thenAOT orBOT).

Because logic is partia, it does not follow from (i), (ii) and (iii) that I is maximally
consistent. For example, if AOT and-AOT, then-(-AOA)OT.

Proposition 11: For any I satisfying the properties above, there is an interpretation I such
that, for any ACIL:

MO Ir(A=21ifAOT
@i Ir(A)=0if-AO0T
@(ilr(A=0ifAOrandBOT.
Strong completeness follows as usual. This completeness proof gives rise to the
following "representation” theorem. Suppose you have two systems of partial logicSand S,

both of them satisfying the following property:

Every non empty closed saturated subset of L defines values of -, [0 which
are monotonic and maximal

then Sand S are equivaent logic.
We will now use these [J-saturated sets as epistemic states.
3. Partial interpretations as epistemic states

Definition: An epistemic state is a partia interpretation or, equivalently, because of
compl eteness, a consistent [-saturated set closed under —.

3.1 EXPANSION

Definition: Let I be an epistemic state. An expansion % is a a deductively closed O-
saturated set of ' O { A}. (If I O {A} isinconsistent, [ % isL).



Clearly, T4 isnot unique. We postulate the existence of a selection function that selects
aparticular enumeration of the elements of L. Using this particular enumeration in defining
the superset of I [ { A}, a la Lindenbaum, we will have unicity.

One can easily show that the following postul ates are satisfied.
Proposition 12:

(I+1) T £ isan epistemic state

(1+2) AOTE

(1+3yrorx

(I+4) If AOI, thenT =T %

(1+5) T £ isthe smallest set satisfying (1+1) - (1+4).

Only one of the AGM postulates has no equivalent: (K+5) If K O H, thenKxz 0 HZ.
Thisis aconsequence of [J-saturation. For example,

ODO00X andO 005
but
OaCf~A DOA AT ~A O Opf-a BOSAAT A

3.2 CONTRACTION

Definition: Let I bea O-saturated set. Any O-saturated subset X O I such that X < Alis
said to be a A-[J-saturated subset of .

Definition: X O I isamaximal A-[-saturated subset of I iff for any B 0 ' — X, either X O
{B} — AorXgmr.

Proposition 13: For any I' and any A, there isamaximal A-[J-saturated subset of T.

In general, there are many maximal A-[-saturated subsets of . These can be defined
in the same way we used in section 2. Starting with 0 (which is a A-[J-saturated subset of
) and any enumeration (A) = Ag, Ag,..., An,... Of the members of ', we defined the
sequencerl g, ..., p,... Of A-[J-saturated subsets of " in the following way.



MNo=10.

Induction step. If thereis a A-U-saturated subset Xpof I suchthat (M- 1 O {An—1}) O Xp,
then M'n = X, otherwise ' = M~ 1. One can easily show that Di [ isa maxima A-[-
saturated subset of I".

If, in the induction step, the A-U-saturated subset of I is defined using Lindenbaum's
lemma with the members of (Aj) in the order given by the selection function and A is the
test-formula for consistency, then we obtain a unique maximal A-[J-saturated subset of T.
Wenote it 5. The following postul ates are satisfied:

Proposition 14:

(1-2) T 5 isan epistemic state
(12rx0r

(I3) If AOI, thenT 3 =T

(14 ADOT

(15 IfA~ BandB [~ Athenl 5 =Tg.

Again, thereisone AGM postulate that is not satisfied
(K5) If ACK, thenK O (Ka)A
and again it is a consequence of [J-saturation.

Proposition 15: Any contraction function satisfies the Principle of cautiousness, i.e., if B [
I, then (B OA) O

Three fina remarks. Firstly, if we define arevision function using Levi'sidentity, i.e.,
A= =k, thefollowing postul ates are satisfied.

Proposition 16:

(1+1) [ is an epistemic state

(1+2) AO

(IL3)Fa OTK

(1«4) 1f I O {A} isconsistent, X O Ix

(1+5) If I isconsistent, then T isinconsistent iff { A} isinconsistent.

10



(I+6) If A~ BandB (~ A thenlp =Tg.

Secondly, it may seem counterintuitive to suppose that any rational agent who has an opinion
on (A JA) or equivalently on (= A [JA), must al'so have one on A and on = A. But thereisno
damage because the only differences between the consequences of I' and the consequences
of ' O {(AOA)} areclassical tautological consequences of I". It is however possible to
modelize the fact that an agent gives some credit to A and someto - A. Let's suppose that
(=AOA) OT.If neither Anor - A aretautologies, we have [J-saturated supersets of both I
O {Atand ' O { -~ A}. Then, the hesitation of the agent can be represented by a probability
distribution on saturated sets.

Thirdly, and thisis an important point, this technique for providing partia interpretations can
be straightforwardly extended to first-order predicate logic and to finite type theory for which
a corresponding representation theorem holds.

Addendum

Proposition 3: For any epistemic state K, any A-maximal subset K' and any B, if A [K,
(BOA) OK'or(-BOA) OK'

Proof

Let K' be aA-maximal subset of K and let B be any sentence. There are two cases.

(1) B OK. Because— (A0 (B 0 A)) and A K, by modus ponens, (B O A) [K.
BecauseK'isA-maximal, if (B O A) OK', then (B O A) O A) UK. But (B O A) OA) is
tautologicaly equivaent to (=B [ A), and thus (-B [0 A) K"

(2) BOK.Inthat case (B 0 A) UK and (=B 0 A) [K becausei— (AT (B O A)) and

— (AO (=B OA)). Thecaseissimilar to (1).

Lemma 1: Let K be an epistemic state, A K and Y O K besuch that Y <~ A Thereisthena
A-maximal subset X of K suchthatY [J X.

Proof

Let Ag,..., An,... be an enumeration of the elements of K. Let us now consider the following
sequence of sets.

Xo=Y

X O{A} “AthenX +1=X O{A}

11



1fX O{A} —AthenX+1=% O{A OA.

We show that X = IIZI X is A-maximal subset of K such thatY O X.
Claim: For anyi, Xj < A

Xo =Y < A(hypothesis).
Let ussupposethat X; =~ A
X O{A} FAthenX +1=X O{A} FA

X O{A} FAthenX +1=X O{A OA}.

Let ussupposethat X; OO {A O A} — A. By the deduction theorem,

Xi = (A OA) OA).But (A OA) OA)istautologicaly equivalentto (=A O A) and
thusX; — (=A OA). By hypothesis, X; O {A } — Aand so by the deduction theorem,
Xi — (A OA).Findly, becauset— (& OA) O(-A OA)OA)),X — A which
contradicts the hypothesis.

Lenvma 2: If AOK, ¥ Aand < (B OA) and < (=B O A), then thereisa A-maximal
XOK suchthat (-B OA) O0Xand aA-maxima Y[ Ksuchthat (B OA) OY.

Proof

AOK impliesthat (-B O A) OKand (=B O A) OK.

Itisnot the casethat { (=B O A)} — Abecauseif so, wewould havel— (=B O A) O A)
and thusi— (B O A). So, by lemma 1, thereisaA-maximal X suchthat {(-B 0O A)} O X
Similarly, itisnot the casethat { (B [ A)} — Abecauseif so, wewould havel— ((B O A)
0 A) andthus— (=B O A). So, by lemmal, thereisaA-maximal Y suchthat {(B O A)}
avy.

Proposition 8: Thereis no t-valid formula and the set of f-valid formulasis the set of
classical tautologies.

Proof: One can easily check that if I(pn) = O for every n, then1(A) = [ for every A

Now, if Aisatautology, I(A) # 0 becauseif I(A) = 0, thereisan | ' such that I'(pn) =I(pn)
when I(pp) # O and I'(py) = 1 otherwise. Clearly, I'istotal, | = I',I(A) = I(A) and finaly, O
= 1

12



Conversely, if I(A) # Oforany I, I'(A) # O for any I' total. Thus1'(A) =1 and Aisaclassica
tautology.

Proposition 10: Any consistent set A of formulas such that for some A, A < A, can be
embedded into aset ' such that

Hr -~ A

(i) I isdeductively closed for [—

(i) I isO-saturated (i.e, if = (-AO-B) Ol ,thenAOT orBOT).

Proof

LetA and A' besuchthat A+ A andlet Ag,...,An,... be an enumeration of the elements of L
such that each formula of L occurs denumerably many times. We define the following
sequence of sets of formulas.

MN=A4A

If Con v~ Anthenlon+1=Ton+2=T2n

If I onl— An,thenTon+1=T2n O {Aq} and

(1) if Ayisnot—= (=B O-C), then

Fon+2=Ton+1;

(2) if Ahis= (=B O0-C) forsomeB andsomeC,thenlon+2=Ton+1 0 {B} if Mon+1
0 {B} /< Aandotherwiselon+2=T2n+1 0 {C}.

Clam:T = Q IMi hasthe properties (i)-(iii).
We show that, for any i, [j = A

Fo=A < A (hypothesis).

If Con = An,thenTon+1=T2n+2=T2n /< A (induction hypothesis).

If Con— An,thenTon+1=Ton O {Aq}.Butif Ton O {A} — Aandlont— An, Foni— A
.ThusT 2n+ 1 + A (induction hypothesis).

(D) If Ayisnot~ (=B O-C),thenTon+2=Ton+1 /< A.

(2) If Apis= (=B O-C) forsomeBandsomeC,thenlon+2=Ton+1 0 {B} ifMon+1
0 {B} } Aandotherwisel on+ 2 =T2n+ 1 0 {C}. Let ussupposethat I on + 1 O {B} if
Mon+10{B}F~ Aand M opn+2=T2n+10{C} — Aby R11l. Thuswe have
Mon+10{=-(-BO-C)} [ Aandthuslon+1 [ A

So we have proved that, for any i, [ =~ A.

By the usua argument, I = Q I+~ A and (i) is proved.

13



Let ussupposethat I' [~ BandB OT. Thisimpliesthat for somelj, I'j — B.Let2n >
be the smallest number such that A, = B. Wehavel'j Oon— BandthusB OMon+1 O T
which contradicts the hypothesis. This proves (ii).

(iii) follows directly from the definition of T op, + 2.

Proposition 11: For any I satisfying the properties above, there is an interpretation I such
that, for any ACIL:

() Ir(A) =1ifACT
(i) IF(A) =0if ~ACT
(i) Ir(A) = 0if AOT andB OT.

Proof

Wedrop theindex ™. For any n, letl(pn) = 1if pa O, I(pn) =0if =pa O T and I(py) = O
otherwise.

Let Abe - B. By the general definition of an interpretation, if I(A) = 1, then [(B) = 0. By
induction hypothesis,-B O T.
If 1(A) = 0, then1(B) = 1. By induction hypothesis, B ', and by R3,--B OT.

LetAbe (B OC). If I(B O C) =1, by the genera definition of an interpretation, I(B) = 1(C) =
1. By induction hypothesis, BT andC O, by R10, (BOC) OT.

Conversely, if B C) O, by R4and R5,B OO T and C (I ', by inducton hypothesis, 1(B)
=1(C)=1landI(BOC) =1

If (B O C) =0, by the general definition of an interpretation, 1(B) =0 or 1(C) =0. Thus-B
Dror—uCDrandbyRGOrRZ—'(—mBD—|—|C) DF.ByRS, ﬂ(BDC) ar.
Conversely, if-(BOC) O T, thenby R9, - (--B 0--C) OT. By U-saturation, == B [
Mor--COlMNByR2,BOlMNorCOT.

Proposition 15: Any contraction function satisfies the Principle of cautiousness, i.e., if B [
I, then (B OA) O

Proof

14



IfBOI, thenB OlMa. But AT A. Thus, by U-saturation, (B O A) O T A.
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