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1 Introduction

Belief revision (for an overview, see [G�ar88, GR95]) deals with the problem
of how to accommodate new assertions into an existent body of knowledge.
Traditionally, the body of knowledge is represented by a belief set, a set of
formulas closed under logical implication. A belief set can also be represented
by the set of possible worlds where all its formulas hold.

The idea of this paper is to apply methods developed in the context of belief
revision in order to accommodate new information about concepts. If we think
of the representation of a belief set in terms of possible worlds, it contains the
set of worlds that the agent holds for possible, given his (partial) knowledge. We
will be talking about partial descriptions of an object, instead of descriptions
of the world, and of sets of possible objects instead of possible worlds. The
intuition behind it is that, given a description, there is a set of objects that the
agent holds for possible, that is, a set of objects that could be the one being
described.

For the sake of simplicity, we will concentrate on the semantical aspects of
the de�nitions. Concepts are de�ned by the properties an object must have in
order to be classi�ed as an instance of the concept.

A belief set can be represented by the set of worlds consistent with the beliefs
in it, that is, by the set of worlds that the agent holds for possible given his
beliefs. Grove [Gro88] has given a model for belief revision based on a family
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Peter G�ardenfors' work from the 80's and the 90's, we thought this Festschrift would be the
right place to present it.
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of concentric spheres around a given belief set K. Each sphere represents a
possible weakening of K, that is, the set of possible worlds obtained by giving
up some information in K. Each sphere is also called a fallback.

In this paper we are concerned with revising not assertions about the world,
but a description of a particular object. Such a description may be given by
some formula of a description language. We will not go into details about
the language here, but just assume that it contains the usual truth-functional
connectives.

Since we are interested in revision of concepts, we would like to change
perspective. We are dealing with (partial) representations of objects. Instead of
associating to a concept description a set of worlds where the concept satis�es
that description (like in [Leh98]), we �nd it more intuitive to associate with the
description a set of objects satisfying it. These are all the objects the agent
takes for possible given the description.

Following G�ardenfors [G�ar99], we will consider multidimensional spaces for
representing concepts. Each dimension is a quality, roughly equivalent to an
attribute name in a frame structure. An object is a point in a multidimensional
space, representing the values it has for each attribute. A concept is a convex
region of a multidimensional space.

Each concept comes equipped with a family of fallbacks, that represent pos-
sible \weakenings" of the concept, that is, sets of objects that satisfy only part
of the description. As in the case of Grove's models for belief revision, there
is an assumption here that the fallbacks can be completely ordered. This is a
simpli�cation. The general case, where the fallbacks are not necessarily nested,
will be addressed in future work.

One of the main characteristics of human reasoning is the ability of jump-
ing to conclusions even on the absence of complete information. People can
communicate without �lling in all the details about the object they are talking
about. When I hear that someone has a bird, I imagine a more or less typical
bird, imagine it 
ies, etc. But of course I may be wrong, the person may be
talking about a bird that does not 
y. This tendency to pick up most typical
objects has been studied in prototype theory ([Ros73, Lak87]). G�ardenfors has
also addressed prototype e�ects on conceptual spaces [G�ar99].

The use of multidimensional spaces instead of frame-like structures makes
some aspects of concept descriptions clearer. One can talk about concepts being
close to each other, and most important, about objects being more or less central
in a concept. Typical objects are more central than others. Desk-chairs are more
typical than rocking chairs and should be represented by points near the center
of the region representing the concept chair.

G�ardenfors de�nes the prototypical region of a concept as a sphere around
the center of the concept. The radius of the sphere has to be determined em-
pirically.

Throughout the paper, we will represent a concept complex by an ordered
pair formed by the description of the concept and the description of the proto-
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typical region.

De�nition 1.1 Let K and P be sets of formulas. hK;P i is a concept complex
i�:

1. K and P are belief sets, and

2. K � P

The set K describes objects of a certain concept. We will also use K as the
name of the concept. The set P describes the prototypical K-objects.

The set of possible objects that satisfy description K is denoted by [[K ]] .
Similarly, the set of objects that satisfy P is denoted by [[P ]] .

Suppose we have the concept tiger de�ned by means of properties like being
a vertebrate, having a certain DNA structure, etc. Prototypical tigers are big,
yellow with black stripes, carnivore, have four legs, etc. We want to revise this
concept due to new information acquired. Five situations are possible, as can
be seen in �gure 1 (� is the new piece of information being added).

[α]

[P]
[K](a) (b) (c)

(d) (e)

Figure 1: Revising concept complexes
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In situation (a), the new information is completely incompatible with even
the essential properties of tigers. Suppose the new input is that the object is
invertebrate. There is no such thing as an invertebrate tiger. In this case, the
new concept assumed should be the intersection of the invertebrate objects with
the inclusion minimal fallback of tiger that is compatible to it. This is equivalent
to a revision of the concept of tiger by the property of being invertebrate. The
resulting concept is that of invertebrates that look as much as a tiger as possible.
There is no information about the new prototypical region.

In situation (b), the new information is compatible with tiger but not with
prototypical tiger. Suppose it is that the object has three legs. The new concept
is that of three-legged tiger, that is a subset of tiger. The new prototypical
region contains those three-legged tigers that are as close to prototypical tigers
as possible (in that they are big, yellow with black stripes, etc.).

In situation (c), the new information is compatible with tiger as well as with
prototypical tiger. It could be that the object is female. The concept of female
tiger is the intersection of tiger and female and the prototypical female tiger is
the intersection of prototypical tiger with female, that is, those female tigers
that are big, yellow with black stripes, etc.

In situation (d), the new information is valid for all prototypical tigers, but
not for all tigers. It could be that the object has four legs. In this case, the
new concept is that of a four-legged tiger, that is the intersection of tiger and
four-legged. The prototypical region stays the same, prototypical four-legged
tigers are prototypical tigers.

Finally, in situation (e), the new information is already valid for all tigers,
for example, that they are vertebrates. Nothing changes, vertebrate tigers are
tigers.

We will examine two approaches for the revision of prototypes. First we will
consider that, besides the spheres around K, the description of the concept,
we have one internal sphere which represents the prototypical region, described
by P . We give AGM-style characterizations for the revision of concepts and
prototypes in terms of spheres, rationality postulates and partial meet revision.
Next, we examine what happens when we allow for more spheres between P
and K.

2 First Approach

In this section we will introduce rationality postulates for the revision of concept
complexes and will present two constructive methods for obtaining the revision.

2.1 Postulates

De�nition 2.1 Let hK;P i be a concept complex and hK;P i@� = hK�; P�i.
An operation @ of complex revision satis�es the following postulates:
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(KP@1) hK�; P�i is a complex.
(KP@2) � 2 K�.
(KP@4.1) If :� 62 K, then K� = K + �.
(KP@4.2) If :� 62 P , then P� = P + �.
(KP@5.1) If ` :�, then K� = L.
(KP@5.2) If P� = L then ` :�.
(KP@6) If ` �$ �, then hK�; P�i = hK� ; P�i.
(KP@7) If :� 2 P , then P� � K�.

1

(KP@DF) P�_� =

8<
:

P�, or
P�, or
P� \ P�

Proposition 2.2 Let hK;P i be a complex and @ a operation on hK;P i that
satis�es (KP@1) - (KP@6) and (KP@DF). Then @ satis�es:

(KP@5.1') K� = L if and only if ` :�.
(KP@5.2') P� = L if and only if ` :�.

(KP@DF.1) K�_� =

8<
:

K�, or
K�, or
K� \K�

2.2 Sphere-System

The model we suggest here is based on Grove's modelling for belief revision. We
use a family of spheres centered in P , where [[P ]] and [[K ]] are spheres of the
family and the other spheres contain [[K ]] (see Figure 2).

De�nition 2.3 (adapted from [Gro88]) Let M be the set of all possible ob-
jects. A family of spheres centered on hK;P i is a collection S of subsets of M
such that:

(S1) If U; V 2 S, then U � V or V � U .
(S2) [[P ]] is the �-minimum of S.
(S3) M is the �-maximum of S.
(S4) If � is a sentence in L and there is any sphere in S intersecting [[� ]] ,

then there is an inclusion minimal sphere intersecting [[� ]] .
(S5) [[K ]] 2 S
(S6) For every sphere U 2 S: if [[P ]] � U � [[K ]] , then U = [[P ]] .2

De�nition 2.4 Let hK;P i be a concept complex. Let S be a family of spheres
around hK;P i satisfying (S1)-(S6). Let fS(�) = [[� ]] \ cS(�), where cS(�) is
the minimal sphere in S which intersects [[� ]] . The revision @ of hK;P i by a
sentence � is given by:

hK;P i@� = hTh(fS(�) [ ( [[K ]] \ [[� ]] ); Th(fS(�))i

1Note that the converse, i.e. K� � P� follows from (KP@1).
2This postulate means that there are no other spheres between [[P ]] and [[K ]]
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[K]
[P]

Figure 2: One internal sphere

2.3 Partial Meet

De�nition 2.5 [AM82] The remainder operation ? is the operation such that
for all subsets B and elements � of L, X 2 B?� if and only if:

1. X � B,

2. � 62 Cn(X), and

3. � 2 Cn(Y ) for all Y such that X � Y � B.

Observation 2.6 [AM82] If K is a belief set, then so are the elements of K?�
for all � 2 L.

De�nition 2.7 [AGM85] Let K � L and � 2 L. A selection function for K?�
is a function g such that:

1. g(K?�) � K?�, and

2. If K?� 6= ; then g(K?�) 6= ;, otherwise, g(K?�) = K.

De�nition 2.8 Let hK;P i be a concept complex. Then @ is a partial meet re-
vision of hK;P i by � if and only if:

hK;P i@� = hK�; P�i
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where:

K� = (
T
g(K?:�)) + �

and
P� = (

T
h(P?:�)) + �

and Y 2 h(P?:�) if and only if either Y = P or Y 2 g(K?:�).

De�nition 2.9 A selection function g is transitively relational if and only if
it is based on some transitive relation v in the sense that g(K?:�) = fH 2
K?:� j H 0 v H for all H 0 2 K?:�g

Proposition 2.10 Let hK;P i be a concept complex. Let � be an AGM partial
meet revision operation for K. Then @ is a partial meet revision of hK;P i if
and only if:

hK;P i@� = hK � �; P�i
where:

P� =

�
K � � if :� 2 P
P + � otherwise

2.4 Representation Result

The following theorme shows that the three de�nitions of the revision operation
@ coincide:

Theorem 2.11 Let hK;P i be a concept complex and @ an operation on hK;P i.
Then the following statements are equivalent:

1. @ satis�es the postulates in De�nition 2.1.

2. @ is de�ned as in De�nition 2.4.

3. @ is de�ned as in De�nition 2.8, and the selection functions g and h on
which @ is based are transitively relational.

The problem with this approach is that there is not enough information
about the new prototypical region. Proposition 2.10 implies that whenever
:� 2 P , revision of hK;P i by � leads to a new complex where the prototypical
region and the complex are the same, i.e., hK 0;K 0i. In the next section we
explore another approach that does not have this drawback.
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3 Second Approach

In the previous section we have characterized an operation of concept complex
revision by means of postulates, systems of spheres and partial meet construc-
tions. As we have seen, after revising a complex structure hK;P i by �, if :� 2 P
then the new prototypical region is equal to the new concept. This is not very
natural. We would like to obtain a new prototypical region which is a proper
subset of the new concept. For this, more structure is needed. In this section
we observe what happens when more than one sphere internal to K is allowed.

3.1 Postulates

In this new formulation, postulate (KP@7) is substituted by (KP@7.1). This
means that the revised prototypical region is equal to the revised concept only
when the new information is inconsistent with the concept. When the new in-
formation is inconsistent with the prototypical region but not with the concept,
the description of the revised prototypical region is a proper superset of the
descripton of the revised concept.

De�nition 3.1 Let hK;P i be a concept complex and @ an operation such that
hK;P i@� = hK�; P�i. The operation @ is an operation of complex revision if
it satis�es the following postulates:

(KP@1) - (KP@6), (KP@DF), (KP@DF.1), and
(KP@7.1) If :� 2 K, then P� � K�.

3.2 Sphere-System

Now we allow for more spheres between [[K ]] and [[P ]] , as can be seen in Figure
3.

De�nition 3.2 Let hK;P i be a concept complex. Let S be a family of spheres
around hK;P i satisfying (S1)-(S5) 3. Let fS(�) = [[� ]] \ cS(�), where cS(�)
is the minimal sphere in S which intersects [[� ]] . The revision @of hK;P i by a
sentence � is given by:

hK;P i@� = hTh(fS(�) [ ( [[K ]] \ [[� ]] ); Th(fS(�))i

3.3 Partial Meet

De�nition 3.3 Let hK;P i be a concept complex. Then @ is a partial meet re-
vision of hK;P i by � if and only if:

hK;P i@� = hK�; P�i

3Note that we suppress (S6) in this approach.
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[K]
[P]

Figure 3: Several Internal Spheres

where:

K� = (
T
g(K?:�)) + �

and
P� = (

T
h(P?:�)) + �

and X 2 g(K?:�) if and only if there exists Y 2 h(P?:�) such that
(Y \K) = X.

3.4 Representation Result

The following theorem shows the relation between the three last de�nitions:

Theorem 3.4 Let hK;P i be a concept complex and @ an operation on hK;P i.
Then the following statements are equivalent:

1. @ satis�es the postulates in De�nition 3.1.

2. @ is de�ned as in De�nition 3.2.

3. @ is de�ned as in De�nition 3.3, and the selection functions g and h on
which @ is based are transitively relational.
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Recall the tiger example presented in the introduction. With the second
approach, only in case (a) of Figure 1, i.e., when :� 2 K, we get P� = K�.
This can be understood as follows: when :� 2 K, the change by adding � is a
change of concept and there is no information available about the prototypical
region of the new concept. More structure is needed.

4 Future Work

The nonmonotonic properties of prototypes were studied in [Leh98] and [Was98].
It would be interesting to combine the results obtained here with those articles,
mirrowing the relation between AGM belief revision and nonmonotonic infer-
ences given in [MG91].

In this article we have only dealt with the case where the fallbacks can be
nested. This is not a very realistic assumption. Recall the tiger example. If
the prototypical tigers are described as those having three legs, being big and
yellow, there are three ways of weakening this description, by giving up each
of the given properties, and it is not clear how to order these weakenings. A
solution to this problem could be to adopt the model for relational belief revision
given in [LR91], which allow for non-nested fallbacks.

In [Pag96], a model for abductive expansion is given which uses a family
of spheres internal to the belief set. It would be interesting to see the relation
between the technical results obtained for abductive expansion and the ones
given here.

A Appendix: Proofs

The next Lemmas will be used in the proofs.

Lemma A.1 [Mak85] Let K be a belief set. If :� 2 K, then for every � 2 L
and every X 2 K?:�, either �! � 2 X or �! :� 2 X.

Lemma A.2 Let hK;P i be a complex. Let S be a family of spheres around
hK;P i satisfying (S1)-(S6). Then there exists a family of spheres SK around
[[K ]] , satisfying (S1), (S3), (S4), and (S5) such that U 2 SK i� U 2 S and
[[K ]] � U .

Proof: Let SK = fU 2 Sj [[K ]] � Ug. We have to show that SK satis�es (S1),
(S3), (S4), and (S5). Since [[K ]] 2 S, (S5) and (S3) follow trivially. Moreover,
[[K ]] is the �-minimum of SK .

(S1): If U; V 2 SK , since U; V 2 S, either U � V or V � U .
(S4): Let cS(�) be the minimal sphere in S intersecting [[� ]] . We de�ne

cSK (�) to be cS(�) if cS(�) 2 SK . Otherwise, cSK (�) = [[K ]] . It is easy to see
that cSK (�) is the minimal sphere of SK interescting [[� ]] . 2
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Lemma A.3 [AGM85, Gro88]
Let K be a belief set and � an operator for K and let K� = K ��. Then the

following conditions are equivalent:

1. � satis�es closure (K� is a belief set), (KP@2), (KP@4.1), (KP@5.1),
(KP@6), and (KP@DF.1).

2. There exists a family S of spheres around K satisfying (S1)-(S4) such that
K � � = Th(fS(�)).

3. There exists a transitively relational selection function g such that K �� =
(
T
g(K?:�)) + �.

Lemma A.4 Let g be a selection function for K?:� and h a selection function
for P?:�, such that Y 2 h(P?:�) if and only if either Y = P or Y 2
g(K?:�). If g is transitively relational, then so is h.

Proof: If :� 62 P , then P?:� = fPg and it follows trivially that h is transi-
tively relational. Suppose :� 2 P . Then, by the de�nition of h, h(P?:�) �
g(K?:�). Since g is based on a transitive relation v, we can extend v to P?:�
in such a way that h(P?:�) = fY 2 P?:� j Y 0 v Y for all Y 0 2 P?:�g. 2

Lemma A.5 Let h be a selection function for P?:� and g a selection function
for K?:�, such that X 2 g(K?:�) if and only if there exists Y 2 h(P?:�)
such that (Y \K) = X. If h is transitively relational, then so is g.

Proof: If h is transitively relational, then there is a transitive relation v such
that h(P?:�) = fY 2 P?:� j Y 0 v Y for all Y 0 2 P?:�g. Let vK be a
relation such that for all X;X 0 2 K?:�:

X vK X 0 if and only if Y < Y 0, X = Y \K and X 0 = Y 0 \K.
It is easy to see that g is based on vK . We only have to show that vK is

transitive. Let X1 vK X2 vK X3. We have to show that X1 vK X3. From
the de�nition of vK , we know that there are Y1; Y2 and Y3 in P?:� such that
X1 = Y1 \ K, X2 = Y2 \ K, X3 = Y3 \ K, and Y1 < Y2 < Y3. Since v is
transitive, Y1 v Y3, and hence, X1 vK X3. 2

Proof of Proposition 2.2: (KP@5.1') and (KP@5.2') follow trivially from
(KP@5.1) and (KP@5.2). For (KP@DF.1) we will prove by cases.

(a) :� =2 K and :� =2 K: Then :(� _ �) =2 K, from which it follows that
K�_� = K + � _ � = K� \K�.

(b) :� =2 K and :� 2 K: Then :(� _ �) =2 K, from which it follows, since
:� 2 K and K 6= K?, that K�_� = K + � _ � = (K + :�) + (� _ �) =
K + (:� ^ �) = K + �.
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(c) :� 2 K and :� =2 K: Due the symmetry of the case, is similar to case (b).

(d) :� 2 K and :� 2 K: Then :(� _ �) 2 K. Then :� 2 P , :� 2 P and
:(� _ �) 2 P . Hence by (KP@1), (KP@7) and (KP@DF):

K�_� = P�_� =

8<
:

P� = K�, or
P� = K� , or
P� \ P� = K� \K�

2

Proof of Proposition 2.10:
By de�nition, � is a partial meet revision function if and only if there exists

a selection function g such that K �� = (
T
g(K?:�))+�. We must prove only:

There exists h, where Y 2 h(P?:�) if and only if either Y = P or
Y 2 g(K?:�) and such that P� =

T
(h(P?:�)) + �. We prove it by cases:

(a) :� =2 P : Then (
T
h(P?:�)) + � = (

T
h(fPg) + � = P + �.

(b) :� =2 K and :� 2 P : Then g(K?:�) = fKg and (since 6` :�)
P 62 h(P?:�). Hence, h(P?:�) = fKg and it follows that P� = K+� = K��.

(c) :� 2 K: We will prove by double inclusion. For the �rst direction let
� 2 K��. Then it follows that � 2 (

T
g(K?:�))+�, from which it follows that

� ! � 2
T
g(K?:�). For all Y 2 h(P?:�) either Y = P or Y 2 g(K?:�).

In both cases it follows that �! � 2
T
h(P?:�); from which we conclude that

� 2 (
T
h(P?:�)) + �.

For the other direction, let � 2 (
T
h(P?:�)) + �. Then �! � 2

T
h(P?:�).

Suppose by reductio that �! � =2
T
g(K?:�); then there existsX 2 g(K?:�)

such that � ! � =2 X . By previous lemma A.1 � ! :� 2 X ; from which
it follows (since X 2 h(P?:�)) that � ! � =2

T
h(P?:�). Absurd, then

�! � 2
T
g(K?:�); hence � 2 (

T
g(K?:�)) + � = K � �.

2

Proof of Theorem 2.11:
Part 1: Postulates to Partial Meet:
Due to lemma A.3, if K� satis�es closure; (i.e., K� is a belief set), (KP@2),

(KP@4.1), (KP@5.1), (KP@6), and (KP@DF.1), then there exists a tran-
sitively relational function g, such that K� = (

T
g(K?:�))+�. Due to propo-

sition 2.10 it is su�ces to prove that

P� =

�
K� if :� 2 P
P + � otherwise

since Lemma A.4 yields that h is transitively relational.
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Let :� 2 P , then by (KP@1) and (KP@7) it follows that P� = K�. If
:� =2 P , then (KP@4.2) yields that P� = P + �.

Part 2: Partial Meet to Spheres:
From Lemma A.3 it follows that:
(1) P� = (

T
h(P?:�)) + � and h transitively relational imply that there is

a system of spheres S satisfying (S1)-(S4) such that P� = Th(fS(�)).
(2) K� = (

T
g(K?:�)) +� and g transitively relational imply that there is

a system of spheres SK satisfying (S1), (S3)-(S5) such that K� = Th(fSK (�)),
where cSK (�) is the minimal sphere of SK intersecting [[� ]] and fSK (�) =
cSK (�) \ [[� ]] .

We have to prove that (a) SK = fU 2 Sj [[K ]] � Ug, (b) S satis�es (S6),
and (c) Th(fSK (�)) = Th(fS(�) [ ( [[K ]] \ [[� ]] )).

(a) Let U 2 S and let � be a sentence such that U = cS(�). We have to
show that if [[K ]] � U , then U 2 SK . From (1) we know that Th(cS(�)) =T
h(P?:�). Since Y in h(P?:�) if and only if either Y = P or Y in g(K?:�),

we have that
T
h(P?:�)\K =

T
g(K?:�). This means that cS(�)[ [[K ]] =

cSK (�) and hence, if [[K ]] � U , then cS(�) [ [[K ]] = U = cSK (�) and so,
U 2 SK .

(b) Let [[P ]] � U � [[K ]] and � be a sentence such that U = cS(�). Then
Th(cS(�)) =

T
h(P?:�). But since

T
h(P?:�) = P or

T
h(P?:�) � K,

we have that either U = [[P ]] or [[K ]] � U . Since we assumed U � [[K ]] ,
U = [[P ]] .

(c) There are two cases:
Case 1: If cS(�) � K, then cSK = [[K ]] and fSK = [[K ]] \ [[� ]] . Since

fS(�) = cS(�) \ [[� ]] � [[K ]] \ [[� ]] , we have fS(�) [ ( [[K ]] \ [[� ]] ) = [[K ]] \
[[� ]] = fSK (�).

Case 2: If K � cS(�), then cSK (�) = cS(�) and [[K ]] \ [[� ]] = ;. Hence,
fSK (�) = fS(�) [ ( [[K ]] \ [[� ]] ).

Part 3: Spheres to Postulates:
Due to lemma A.2 and A.3, @ satis�es (KP@2), (KP@4.1), (KP@5.1),

K� is a belief set, and K� = K� if ` �$ �. By A.2, since S is a sphere system
centered on [[P ]] , we obtain (KP@4.2), (KP@5.2), that P� is a belief set,
that P� = P� if ` � $ �, and (KP@DF). (KP@6) follows immediately. We
must prove only (KP@7) and that K� � P�. That K� � P� follows directly
from the de�nition, since Th(fS(�)[( [[K ]] \ [[� ]] ) � Th(fS(�)). For (KP@7),
let :� 2 P . We have two cases: If :� 2 K, then ( [[K ]] \ [[� ]] ) = ;, from which
it follows that K� = P�. If :� =2 K, and due to :� 2 P , (S6) yields that [[K ]]
is the minimal �-sphere, from which it follows that Th(fS(�)) = ( [[K ]] \ [[� ]] ),
hence K� = P�. 2
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Proof of Theorem 3.4:
Part 1: Postulates to Partial Meet:
From lemma A.3 it follows that if @ satis�es (KP@1), (KP@2), (KP@4.1),

(KP@5.1'), (KP@6), and (KP@DF.1), then there exists a transitively rela-
tional function g, such that K� = (

T
g(K?:�)) + �. By the same lemma, if @

satis�es (KP@1), (KP@2), (KP@4.2), (KP@5.2'), (KP@6), and (KP@DF),
then there is a transitively relational function h, such that P� = (

T
h(P?:�))+

�.
It su�ces then to prove that X 2 g(K?:�) if and only if there exists

Y 2 h(P?:�) such that (Y \K) = X .
There are three cases to be considered:
Case 1: If :� 62 P , then g(K?:�) = fKg and h(P?:�) = fPg, and the

condition follows trivially.
Case 2: If :� 2 P and :� 62 K, then sinceK � P , for every Y 2 h(P?:�) it

holds that K � Y . Since g(K?:�) = fKg , the condition follows immediately.
Case 3: If :� 2 K, then by postulate (KP@7.1)

T
g(K?:�) + � =T

h(P?:�) + �. Since K � P , it is easy to see that X 2 K?:� if and
only if there is Y 2 P?:� such that Y \K = X .

If X 2 g(K?:�), then
T
g(K?:�) + � � X + �. From this it follows

that
T
h(P?:�) + � � X + �. Let Y 2 P?:� such that Y \K = X . ThenT

h(P?:�) + � � Y + � and hence, Y 2 h(P?:�).
For the other inclusion, let Y 2 h(P?:�)and let X = Y \ K. We have

X 2 K?:�. Then
T
h(P?:�) + � � Y + � and hence,

T
g(K?:�) + � �

Y + �. Since
T
g(K?:�) � K, we have

T
g(K?:�) + � � X + � and hence,

X 2 g(K?:�).
Part 2: Partial Meet to Spheres:
From Lemma A.3 it follows that:
(1) P� = (

T
h(P?:�)) + � and h transitively relational imply that there is

a system of spheres S satisfying (S1)-(S4) such that P� = Th(fS(�)).
(2) K� = (

T
g(K?:�)) + � and g transitively relational imply that there

is a system of spheres SK satisfying (S1)- (S3) and (S5)and having [[K ]] as
minimum such that K� = Th(fSK (�)), where cSK (�) is the minimal sphere of
SK intersecting [[� ]] and fSK (�) = cSK (�) \ [[� ]] .

We have to prove that (a) SK = fU 2 Sj [[K ]] � Ug, and (b) Th(fSK (�)) =
Th(fS(�) [ ( [[K ]] \ [[� ]] )).

(a) Let U 2 S and let � be a sentence such that U = cS(�). We have to
show that if [[K ]] � U , then U 2 SK . From (1) we know that Th(cS(�)) =T
h(P?:�). Since X in g(K?:�) if and only if there is Y in h(P?:�) such

that Y \K = X , we have that
T
h(P?:�)\K =

T
g(K?:�). This means that

cS(�)[ [[K ]] = cSK (�) and hence, if [[K ]] � U , then cS(�)[ [[K ]] = U = cSK (�)
and so, U 2 SK .

(b) There are two cases:
Case 1: If cS(�) � K, then cSK = [[K ]] and fSK = [[K ]] \ [[� ]] . Since

fS(�) = cS(�) \ [[� ]] � [[K ]] \ [[� ]] , we have fS(�) [ ( [[K ]] \ [[� ]] ) = [[K ]] \

14



[[� ]] = fSK (�).
Case 2: If K � cS(�), then cSK (�) = cS(�) and [[K ]] \ [[� ]] = ;. Hence,

fSK (�) = fS(�) [ ( [[K ]] \ [[� ]] ).
Part 3: Spheres to Postulates:
Since in theorem 2.11(S6) was used only to prove (KP@7), we must only

show that @ satis�es (KP@7.1). If :� 2 K, then [[K ]] \ [[� ]] = ; and thus,
P� = K�.

2
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